Interpolation and SAT-based Model Checking

K.L. McMillan
Cadence Berkely Labs

A “How-To” presented by
Scott Cotton
IMPRS Software Model Checking Seminar
Summer, 2005
scotton@mpi-sb.mpg.de

Introduction. 2
Main results
Fully symbolic, fully SAT-based method for model checking.

Can do unbounded model checking.

Does not heavily depend on number of inputs or free variables

in systems.

Works well for localizable properties.

How-To Roadmap

Background and Overview.

Encoding the transition system for SAT.

Interpolants.

SAT-based reachability algorithm.

Implementation and optimizations.

Conclusion and discussion.

Introduction. 3

How-To Roadmap

Background and overview.

Encoding the transition system for SAT.

— Unfoldings.

— Prefixes and suffixes.

Interpolants.

SAT-based reachability algorithm.

Implementation and optimizations.

Conclusion and discussion.

Introduction. 4

How-To Roadmap
Background and overview.
Encoding the transition system for SAT.

Interpolants.

— Definition.

— As approximate reachability operator.

— Finding interpolants.

SAT-based reachability algorithm.

Implementation and optimizations.

Conclusion and discussion.

Introduction. 5

How-To Roadmap

Background and overview.

Encoding the transition system for SAT.

Interpolants.

SAT-based reachability algorithm.

— Top level pseudocode.

— Termination conditions
Implementation and optimizations.

Conclusion and discussion.

Introduction. 6

How-To Roadmap

Background and overview.

Encoding the transition system for SAT.

Interpolants.
SAT-based reachability algorithm.

Implementation and optimizations.
Generating resolution proofs.

Increasing bounds.

Using precise suffixes.

Reusing suffixes.

Conclusion and discussion.

Introduction. 7

How-To Roadmap

Background and overview.

Encoding the transition system for SAT.

Interpolants.

SAT-based reachability algorithm.

Implementation and optimizations.

Conclusion and discussion.

Introduction. 8

Background and Overview. 9
Symbolic Model Checking

Reduction of verification properties to properties of finite state

systems.

State space defined by an indexed set of Boolean variables
V =A{v1,...,0,}.

Each state s is a bit-vector (s1,...,sp).

A transition system T'S = (I, T, F') is represented by Boolean

formulas (o1, o1, o).

No need to build an explicit representation of the T'S.

Background and Overview. 10

Symbolic Model Checking with BDDs

Translation of specifications and transition systems to QBF

(FV.p).

Representation of QBF in canonical graphical form.

Evaluation of fixed point QBF formulas puX.p is used
— To translate CTL formula.

— To determine reachable set.

Since QBF formulas are represented in canonical graphical

form, fixed points are easy to detect.
Some formulas will make the size of BDDs explode.

Space requirements are the bottle neck and are hard to predict.

Background and Overview. 11

Basic Symbolic Model Checking with SAT

Represent bounded runs of a transition system and verification

properties in propositional logic.

Every satistying assignment is a run, every run is a

counterexample.

No counterexample exists if none is found for a sufficiently

large bound.
More space efficient than BDDs.
The bound is often large and hard to determine precicesly.

The procedure does not scale well with the bound.

11

Background and Overview. 12

Symbolic Model Checking with SAT + Interpolation

Can also prove no counterexample exists with small bounds.
Based on fixed point detection for approximate reachable set R.
R is constructed with interpolants.

R is a forward overapproximation and also a backward

underapproximation.
R becomes more precise as the bound increased.

Bounds increased until fixed point or counterexample found.

SAT Encoding. 13
SAT Encoding: Input and Assumptions

A symbolic transition system (@7, @7, 0F)

over variables V and V.
Runs of the T'S are counterexamples.
The transition relation 7' is total.

Formulas represent the T'S:
sEpr < sel

SEpp < seF

(5,8) Eor < (s,8)eT

SAT Encoding. 14

SAT Encoding: Unfolding the TS (1/3)

Use variables W = Wy, W1, ..., Wk.
Each W; is an indexed copy of V.
Each W, represents the states reachable in 7 steps.

Notation:

SAT Encoding. 15
SAT Encoding: Unfolding the TS (2/3)

We encode the runs of length [j ... k| as follows:

def i i
BMC} = ©7 A (/\ o) A (\/ ©r)

0<i<k j<i<k

e Any satisfying assignment A : W — {0, 1} encodes a run
S0,81,-+.,8, With h € [j...k].

o If BMC? is not satisfiable, there is no run of length [j...k] in

the transition system.

Remark: Requires a total transition relation

SAT Encoding. 16

SAT Encoding: Unfolding the TS (3/3)

def i i
BMCY = A (N\ o)A\ o)
0<i<k §<i<k

set of 2-reachable states

SAT Encoding. 17

SAT Encoding: Prefixes and Suffixes (1/2)

e Prefixes are valid paths, starting in some initial state but

without considering accepting states:

PREF, = ;" A (- N\ ©h)

—h<:<0

e Suffixes are valid paths, without respect to initial states, but

containing an accepting state:

SUFFy =(\ o)A\ ¢F)

0<i<k j<i<k

SAT Encoding. 18
SAT Encoding: Prefixes and Suffixes (2/2)

PREF,

def

SUFFY

SAT Encoding. 19
SAT Encoding: Conclusion
e Sets of bounded runs are encoded in propositional logic.

e With a total transition relation, we can easily encode runs

whose length falls in some range [j...k].

o Prefixes and suffixes: PREF), SUFFY.

Interpolants. 20
Interpolants: Definition

Given a pair of formulas (A, B) such that A A B is unsatisfiable, an
interpolant for (A, B) is a formula P such that

1. A — P.
2. P N\ B is unsatisfiable.

3. P contains only variables common to both A and B.

Example: A=pA(-qV-r) B=gArANs P=-qV-r

Interpolants. 21

Interpolants and Reachability (1/4)

Main Idea: If BMCE! (o1, o1, @F) contains no counterexample
(unsatisfiable):

1. Split BMCg™ into PREF; and SUFF{.

2. Find an interpolant P for the pair (PREF, SUFF’S).
3. Reformulate and repeat for BMCE ™ (¢ vV P, T, F)

PREF; — P P overapproximates 1-

reachable states

P A SUFFIS is unsat | P underapproximates
states which cannot
reach F'in [0...k] steps

22

Interpolants.

2/4)

(

= Reachable

O
—
®
£
x
@)
| -
Q.
o
©
Q
@)
®
<
&)
qv)
)
nd
1
X

F* = Backward reachable

X
o

/ \\\\\\\\\\
/ M"P”’//
\3&0%«&4&4

N
Faviy “‘
-) ”
SecenIdeed
b ek
KRR
ARG
e
Rt
o

<
=
qcm
qw
=
Q
aw
»)
st
d
-
av
n
+
S
<
Q
@
—
)
+
-
i

Interpolants. 23

Interpolants and Reachability (3/4)

Proposition: Let R<; = ¢ V \/1<j<i P;. If P,11 — R<;, and

BMC§ (R<;, o1, ¢r) is unsat for 0 < j < i then there is no run for

(9017 P, 90F>-
Why?

e Fach P; is an overapproximation of the i-reachable set.

o If P,.1 — R<;, then P11 C R<; (formulas represent sets of

states).
o R;+1 = R<; (fixed point reached).

o BMC’S(RSi, ©T,¢F) is unsat, so R<; N F' = {).

Interpolants. 24

)

N—"

c

O

)

©

£

X

o
ol

R

Qo

- ®
QL o
QO O
© ©
GG
© ©
(O)
X o
i1l
X X
X o

Need to increase

N
al

‘guna‘ua.ac;.
¢.xgjummmﬁmw TN
*
S et T
iseeiese s ,

o R
o R N
4 R R D

LL 0005

* = Backward reachable

ST SN
otets
5SS

ORGS0

Selege s ete%s
SN
X

,./‘f‘ :

X

N

.
\ L
ol
T

&5

/.
A
£ o /
RRSTIRNL T e
A R X

\ B
AmmmWL”zxpagw 4

$%
355
S
RIE8L
\mangmmmm”',, A““““w, \“mm“
ST \\\
Gt . /)
‘ v
R

£33 ‘WﬁwAff
il
‘aamaﬁwdm..
SATR, eI
RAOTRNY B teted
\ TR

..r..,m..m.w.w.m.m.‘...._.////
N
/

Interpolants and Reachability

Interpolants. 25
Interpolants and Reachability: Conclusion

e Interpolants can be used to determine that no counterexample

exists, provided that
— BMC’S is not satisfiable for an abstraction of (¢, o1, 0r).

o BMCIS may be satisfiable with a spurious counterexample if £k

is not sufficiently large.

e Spurious counterexamples come from the underapproximation

of the set of states backwards reachable from F'.

Interpolants. 26
Finding Interpolants

e Some SAT solvers can produce a resolution proof of

unsatisfiability.

e Resolution proofs can be used to efficiently derive interpolants.

Interpolants. 27

Finding Interpolants: Resolution (1/4)

General form of resolution rule:

I'Vae, AV —x
I'VA

Requires formula to be in CNF.
I'V A is called the resolvent.
x is called the pivot variable.

Example: the resolvent of aV -bVcand bV disaVcVd.

Interpolants.
Finding Interpolants: Resolution (2/4)
(CNF Reminder):

e A clause is a non tautological disjunction of literals \/, [;.

e A literal is a variable x or its negation —uz.
e A formula is in CNF if it is a conjunction of clauses.

e Translation to CNF is linear if extra variables are used, can be

exponential otherwise.

Interpolants. 29
Finding Interpolants: Resolution (3/4)

Given an unsatisfiable set of clauses A, a resolution proof II for A is

a directed acyclic graph (Vi1, Frp) with
e AC Vg

e For every a € A, a is a root (Er(a) = 0).

e | € Vi is the unique leaf (E;'(L) = 0).

e For every c € (Vi1 \ A4),

— ¢ is the resolvent of two clauses ¢y, co € V7.

— FEn(e) ={c1, e}

Interpolants. 30
Finding Interpolants: Resolution (4/4)

Example Resolution Proof for A = {(—a V b), a, —b}

[—a Vb

Interpolants. 31
Finding Interpolants: Derivation (1/3)

Given a proof II that A U B is unsatisfiable, and an assignment
H : Vars(B) — {0, 1}, produce a formula P such that:

e P|H/Vars(B)] =1L = A is unsatisfiable.

e P|H/Vars(B)| =T = B is unsatisfiable.

Intuition: P “decides” to refute exactly one of A, B for any input.

Result: P is an interpolant.

Interpolants. 32
Finding Interpolants: Derivation (2/3)

Idea: build P recursively on the structure of the proof by defining a

recursive function v : Vi — (Vars(B) — {0,1})

e Ior roots r:
— Ifr € Bthen~(r)=T
— If r € A then
v(r) = \/{l | [is a literal in r and Var(l) € Vars(B)}

e For internal nodes ¢ derived from parents

c1 and ¢y via variable z:
— If x € Vars(B) then v(c) = v(c1) A y(c2).
— If x &€ Vars(B) then v(c¢) = v(c1) V v(c2).

Interpolants. 33
Finding Interpolants: Derivation (3/3)
A={(—-aVb),a}, B={-b}

Refutation of AU B Derivation of Interpolant

~aVb | e | b b L] [T

a V

b b

b A

. b

Interpolants. 34
Interpolants: Conclusion
e Forward overapproximation.

e Backward underapproximation.

e Derivable from resolution proofs.

SAT-based Reachability. 35
SAT-based Reachability: Top Level Pseudocode

k = O; R = LI
if o7 A pr is SAT return Reachable.

repeat
A= PREF1(R, QOT,QOF)

if AN B is SAT
if R = o5 return Reachable
else increase k; R = ¢r; continue
let P be an interpolant for A A B
if P— R
return Not Reachable
R=RVP

SAT-based Reachability. 36

SAT-based Reachability: Termination

How big might k& need to be?

e Let d be the length of the longest shortest path leading to a
state in F'.

e If k£ > d, then the approximation is adequate.

e Often possible that £ < d suffices.

Implementation and Optimization. 37
SAT-based Reachability: Implementation

SAT solvers work in CNF, but PREF and SUFF must be

disjoint sets of clauses, and may not in CNF.

—> CNFization must be performed separately.

Interpolants are not in CNF and can be highly redundant.
—> interpolants must be simplified and translated to CNF.

Many DPLL SAT solvers can’t produce refutations.

—> record resolutions during learning.
How to check P — R?

What strategy to use to increase k7

Implementation and Optimization. 38
SAT-based Reachability: Optimizations

e If the TS loops indefinitely in an accepting state, we can
replace SUFF¢ with SUFF}.

— resolution proofs are smaller, SAT solving faster.

e More generally, is there an automatic way of choosing a good j
for SUFF%?

e Reusing the clauses representing SUFF’S and clauses derived

from these clauses across iterations.

Conclusion. 39
Conclusion
Ken McMillan’s “Interpolation and SAT-based Model Checking”.

e Fully symbolic, fully SAT-based unbounded model checking.

e Approximate reachability, with controllable degree of

approximation.
e Effective for localizable properties.

e Can be effective for systems with many inputs.

Questions?

Encoding the transition system for SAT.

— Unfolding, prefixes, suffixes.

Interpolants.
— Reachability.

— Derivation.

SAT-based reachability algorithm.
— Pseudocode.

— Termination.

Implementation and optimizations.

Conclusion. 40

Thank you.

