# Interpolation and SAT-based Model Checking

K.L. McMillan Cadence Berkely Labs

A "How-To" presented by
Scott Cotton

IMPRS Software Model Checking Seminar
Summer, 2005
scotton@mpi-sb.mpg.de

#### Main results

- Fully symbolic, fully SAT-based method for model checking.
- Can do *unbounded* model checking.
- Does not heavily depend on number of inputs or free variables in systems.
- Works well for *localizable* properties.

- Background and Overview.
- Encoding the transition system for SAT.
- Interpolants.
- SAT-based reachability algorithm.
- Implementation and optimizations.
- Conclusion and discussion.

- Background and overview.
- Encoding the transition system for SAT.
  - Unfoldings.
  - Prefixes and suffixes.
- Interpolants.
- SAT-based reachability algorithm.
- Implementation and optimizations.
- Conclusion and discussion.

- Background and overview.
- Encoding the transition system for SAT.
- Interpolants.
  - Definition.
  - As approximate reachability operator.
  - Finding interpolants.
- SAT-based reachability algorithm.
- Implementation and optimizations.
- Conclusion and discussion.

- Background and overview.
- Encoding the transition system for SAT.
- Interpolants.
- SAT-based reachability algorithm.
  - Top level pseudocode.
  - Termination conditions
- Implementation and optimizations.
- Conclusion and discussion.

- Background and overview.
- Encoding the transition system for SAT.
- Interpolants.
- SAT-based reachability algorithm.
- Implementation and optimizations.
  - Generating resolution proofs.
  - Increasing bounds.
  - Using precise suffixes.
  - Reusing suffixes.
- Conclusion and discussion.

- Background and overview.
- Encoding the transition system for SAT.
- Interpolants.
- SAT-based reachability algorithm.
- Implementation and optimizations.
- Conclusion and discussion.

## Symbolic Model Checking

- Reduction of verification properties to properties of finite state systems.
- State space defined by an indexed set of Boolean variables  $V = \{v_1, \dots, v_n\}.$
- Each state s is a bit-vector  $(s_1, \ldots, s_n)$ .
- A transition system TS = (I, T, F) is represented by Boolean formulas  $(\varphi_I, \varphi_T, \varphi_F)$ .
- No need to build an explicit representation of the TS.

# Symbolic Model Checking with BDDs

- Translation of specifications and transition systems to QBF  $(\exists V.\varphi)$ .
- Representation of QBF in canonical graphical form.
- Evaluation of fixed point QBF formulas  $\mu X.\varphi$  is used
  - To translate CTL formula.
  - To determine reachable set.
- Since QBF formulas are represented in canonical graphical form, fixed points are easy to detect.
- Some formulas will make the size of BDDs explode.
- Space requirements are the bottle neck and are hard to predict.

# Basic Symbolic Model Checking with SAT

- Represent bounded runs of a transition system and verification properties in propositional logic.
- Every satisfying assignment is a run, every run is a counterexample.
- No counterexample exists if none is found for a sufficiently large bound.
- More space efficient than BDDs.
- The bound is often large and hard to determine precicesly.
- The procedure does not scale well with the bound.

# Symbolic Model Checking with SAT + Interpolation

- Can also prove no counterexample exists with small bounds.
- Based on fixed point detection for approximate reachable set R.
- R is constructed with interpolants.
- R is a forward overapproximation and also a backward underapproximation.
- R becomes more precise as the bound increased.
- Bounds increased until fixed point or counterexample found.

# SAT Encoding: Input and Assumptions

- A symbolic transition system  $(\varphi_I, \varphi_T, \varphi_F)$  over variables V and V'.
- Runs of the TS are counterexamples.
- The transition relation T is total.
- Formulas represent the TS:

$$s \models \varphi_I \iff s \in I$$
$$s \models \varphi_F \iff s \in F$$
$$(s, s') \models \varphi_T \iff (s, s') \in T$$

# SAT Encoding: Unfolding the TS (1/3)

- Use variables  $\mathbf{W} = W_0, W_1, \dots, W_k$ .
- Each  $W_i$  is an indexed copy of V.
- Each  $W_i$  represents the states reachable in i steps.
- Notation:

$$\varphi_I^i \stackrel{def}{=} \varphi_I[W_i/V] 
\varphi_F^i \stackrel{def}{=} \varphi_F[W_i/V] 
\varphi_T^i \stackrel{def}{=} \varphi_T[W_i/V, W_{i+1}/V']$$

SAT Encoding: Unfolding the TS (2/3)

We encode the runs of length  $[j \dots k]$  as follows:

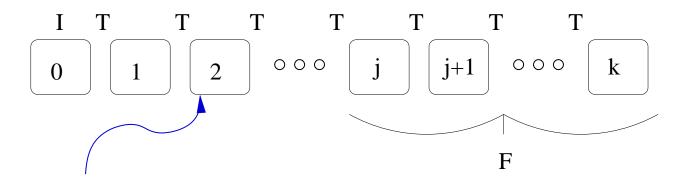
$$BMC_j^k \stackrel{def}{=} \varphi_I^0 \wedge (\bigwedge_{0 \le i < k} \varphi_T^i) \wedge (\bigvee_{j \le i \le k} \varphi_F^i)$$

- Any satisfying assignment  $A : \mathbf{W} \to \{0, 1\}$  encodes a run  $s_0, s_1, \dots, s_h$  with  $h \in [j \dots k]$ .
- If  $BMC_j^k$  is not satisfiable, there is no run of length  $[j \dots k]$  in the transition system.

Remark: Requires a total transition relation

SAT Encoding: Unfolding the TS (3/3)

$$\mathrm{BMC}_{j}^{k} \stackrel{def}{=} \varphi_{I}^{0} \wedge (\bigwedge_{0 \leq i < k} \varphi_{T}^{i}) \wedge (\bigvee_{j \leq i \leq k} \varphi_{F}^{i})$$



set of 2-reachable states

# SAT Encoding: Prefixes and Suffixes (1/2)

• Prefixes are valid paths, starting in some initial state but without considering accepting states:

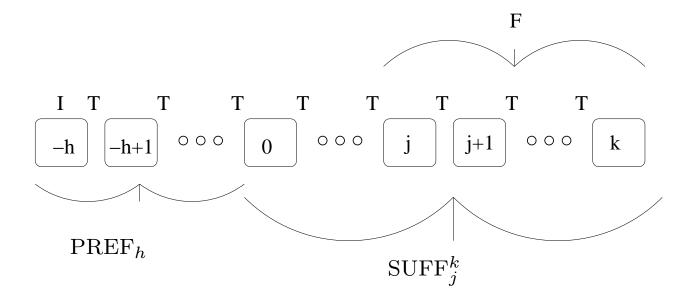
$$PREF_h = \varphi_I^{-h} \wedge \left( \bigwedge_{-h \le i < 0} \varphi_T^i \right)$$

• Suffixes are valid paths, without respect to initial states, but containing an accepting state:

$$SUFF_{j}^{k} = (\bigwedge_{0 \le i < k} \varphi_{T}^{i}) \wedge (\bigvee_{j \le i \le k} \varphi_{F}^{i})$$

SAT Encoding: Prefixes and Suffixes (2/2)

$$\begin{aligned} \text{PREF}_h & \stackrel{def}{=} & \varphi_I^{-h} \wedge (\bigwedge_{-h \leq i < 0} \varphi_T^i) \\ \text{SUFF}_j^k & \stackrel{def}{=} & (\bigwedge_{0 \leq i < k} \varphi_T^i) \wedge (\bigvee_{j \leq i \leq k} \varphi_F^i) \end{aligned}$$



## SAT Encoding: Conclusion

- Sets of bounded runs are encoded in propositional logic.
- With a total transition relation, we can easily encode runs whose length falls in some range  $[j \dots k]$ .
- Prefixes and suffixes:  $PREF_h$ ,  $SUFF_i^k$ .

### Interpolants: Definition

Given a pair of formulas (A, B) such that  $A \wedge B$  is unsatisfiable, an interpolant for (A, B) is a formula P such that

- 1.  $A \rightarrow P$ .
- 2.  $P \wedge B$  is unsatisfiable.
- 3. P contains only variables common to both A and B.

Example:  $A = p \land (\neg q \lor \neg r)$   $B = q \land r \land s$   $P = \neg q \lor \neg r$ 

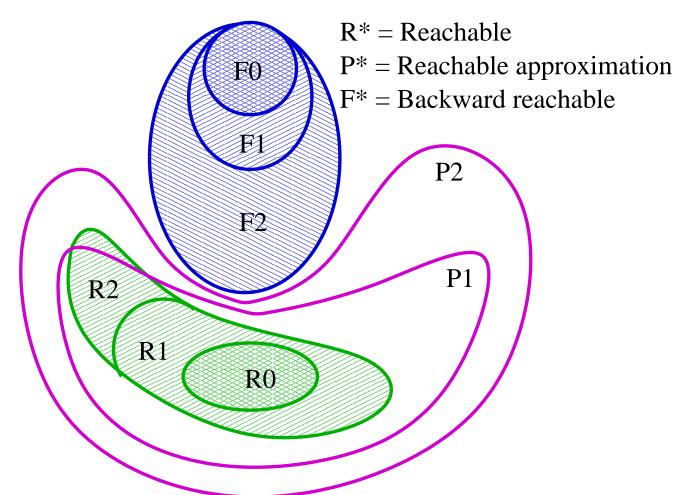
# Interpolants and Reachability (1/4)

Main Idea: If  $BMC_0^{k+1}(\varphi_I, \varphi_T, \varphi_F)$  contains no counterexample (unsatisfiable):

- 1. Split  $BMC_0^{k+1}$  into  $PREF_1$  and  $SUFF_0^k$ .
- 2. Find an interpolant P for the pair  $(PREF_1, SUFF_0^k)$ .
- 3. Reformulate and repeat for  $BMC_0^{k+1}(\varphi_I \vee P, T, F)$

| $\mathrm{PREF}_1 \to P$               | P overapproximates 1-            |
|---------------------------------------|----------------------------------|
|                                       | reachable states                 |
| $P \wedge \mathrm{SUFF}_0^k$ is unsat | P underapproximates              |
|                                       | states which cannot              |
|                                       | reach $F$ in $[0 \dots k]$ steps |

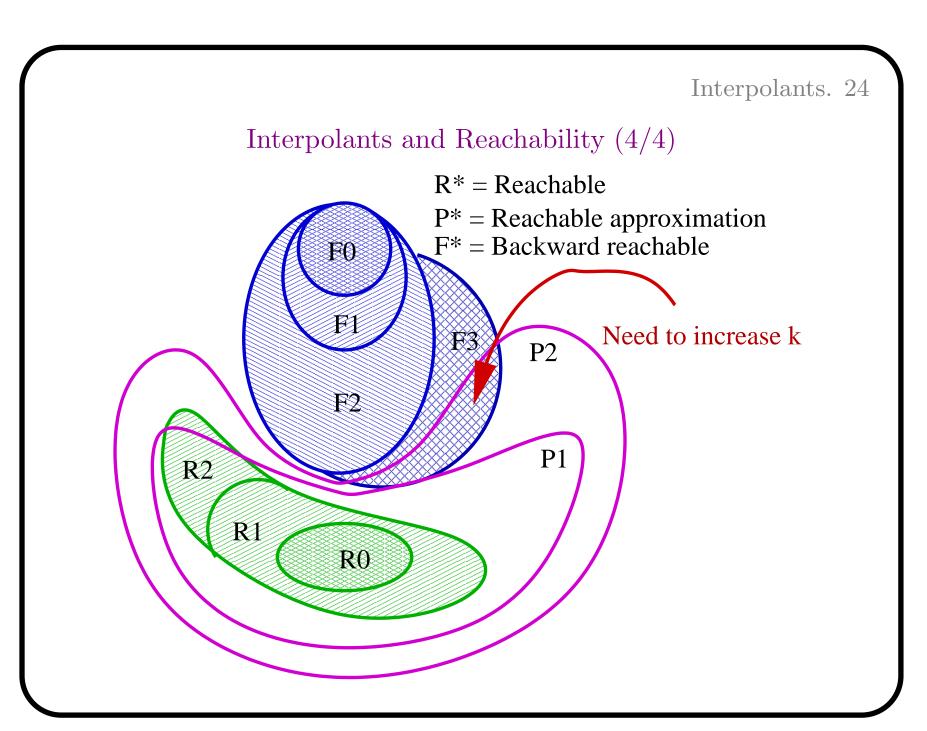
# Interpolants and Reachability (2/4)



# Interpolants and Reachability (3/4)

**Proposition**: Let  $R_{\leq i} = \varphi_I \vee \bigvee_{1 \leq j \leq i} P_j$ . If  $P_{i+1} \to R_{\leq i}$ , and  $BMC_0^k(R_{\leq j}, \varphi_T, \varphi_F)$  is unsat for  $0 \leq j \leq i$  then there is no run for  $(\varphi_I, \varphi_T, \varphi_F)$ .

- Why?
  - Each  $P_i$  is an overapproximation of the *i*-reachable set.
  - If  $P_{i+1} \to R_{\leq i}$ , then  $P_{i+1} \subseteq R_{\leq i}$  (formulas represent sets of states).
  - $R_{\leq i+1} = R_{\leq i}$  (fixed point reached).
  - BMC<sub>0</sub><sup>k</sup> $(R_{\leq i}, \varphi_T, \varphi_F)$  is unsat, so  $R_{\leq i} \cap F = \emptyset$ .



### Interpolants and Reachability: Conclusion

- Interpolants can be used to determine that no counterexample exists, provided that
  - BMC<sub>0</sub><sup>k</sup> is not satisfiable for an abstraction of  $(\varphi_I, \varphi_T, \varphi_F)$ .
- BMC $_0^k$  may be satisfiable with a spurious counterexample if k is not sufficiently large.
- Spurious counterexamples come from the underapproximation of the set of states backwards reachable from F.

# Finding Interpolants

- Some SAT solvers can produce a resolution proof of unsatisfiability.
- Resolution proofs can be used to efficiently derive interpolants.

Finding Interpolants: Resolution (1/4)

• General form of resolution rule:

$$\frac{\Gamma \vee x, \Delta \vee \neg x}{\Gamma \vee \Delta}$$

- Requires formula to be in CNF.
- $\Gamma \vee \Delta$  is called the resolvent.
- x is called the pivot variable.
- Example: the resolvent of  $a \vee \neg b \vee c$  and  $b \vee d$  is  $a \vee c \vee d$ .

Finding Interpolants: Resolution (2/4)

(CNF Reminder):

- A clause is a non tautological disjunction of literals  $\bigvee_i l_i$ .
- A literal is a variable x or its negation  $\neg x$ .
- A formula is in CNF if it is a conjunction of clauses.
- Translation to CNF is linear if extra variables are used, can be exponential otherwise.

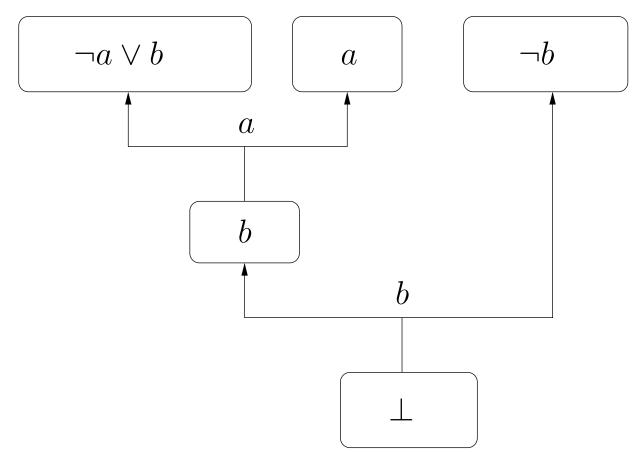
Finding Interpolants: Resolution (3/4)

Given an unsatisfiable set of clauses A, a resolution proof  $\Pi$  for A is a directed acyclic graph  $(V_{\Pi}, E_{\Pi})$  with

- $A \subseteq V_{\Pi}$
- For every  $a \in A$ , a is a root  $(E_{\Pi}(a) = \emptyset)$ .
- $\bot \in V_{\Pi}$  is the unique leaf  $(E_{\Pi}^{-1}(\bot) = \emptyset)$ .
- For every  $c \in (V_{\Pi} \setminus A)$ ,
  - -c is the resolvent of two clauses  $c_1, c_2 \in V_{\Pi}$ .
  - $E_{\Pi}(c) = \{c_1, c_2\}.$

Finding Interpolants: Resolution (4/4)

Example Resolution Proof for  $A = \{(\neg a \lor b), a, \neg b\}$ 



Finding Interpolants: Derivation (1/3)

Given a proof  $\Pi$  that  $A \cup B$  is unsatisfiable, and an assignment  $H: \text{Vars}(B) \to \{0,1\}$ , produce a formula P such that:

- $P[H/Vars(B)] = \bot \implies A$  is unsatisfiable.
- $P[H/Vars(B)] = T \implies B$  is unsatisfiable.

Intuition: P "decides" to refute exactly one of A, B for any input. Result: P is an interpolant.

Finding Interpolants: Derivation (2/3)

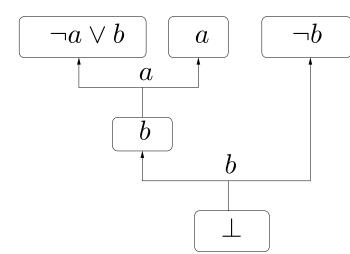
Idea: build P recursively on the structure of the proof by defining a recursive function  $\gamma: V_{\Pi} \to (\operatorname{Vars}(B) \to \{0,1\})$ 

- For roots r:
  - If  $r \in B$  then  $\gamma(r) = \top$
  - If  $r \in A$  then  $\gamma(r) = \bigvee\{l \mid l \text{ is a literal in } r \text{ and } \mathrm{Var}(l) \in \mathrm{Vars}(B)\}$
- For internal nodes c derived from parents  $c_1$  and  $c_2$  via variable x:
  - If  $x \in Vars(B)$  then  $\gamma(c) = \gamma(c_1) \wedge \gamma(c_2)$ .
  - If  $x \notin Vars(B)$  then  $\gamma(c) = \gamma(c_1) \vee \gamma(c_2)$ .

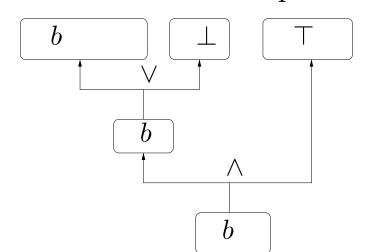
Finding Interpolants: Derivation (3/3)

$$A = \{(\neg a \lor b), a\}, B = \{\neg b\}$$

Refutation of  $A \cup B$ 



Derivation of Interpolant



# Interpolants: Conclusion

- Forward overapproximation.
- Backward underapproximation.
- Derivable from resolution proofs.

#### SAT-based Reachability. 35

SAT-based Reachability: Top Level Pseudocode

$$k=0; R=\varphi_I$$

if  $\varphi_I \wedge \varphi_F$  is SAT return Reachable.

repeat

$$A = PREF_1(R, \varphi_T, \varphi_F)$$

$$B = SUFF_0^k(R, \varphi_T, \varphi_F)$$

if  $A \wedge B$  is SAT

if  $R = \varphi_I$  return Reachable

else increase k;  $R = \varphi_I$ ; continue

**let** P be an interpolant for  $A \wedge B$ 

if 
$$P \to R$$

return Not Reachable

$$R = R \vee P$$

SAT-based Reachability. 36

SAT-based Reachability: Termination

How big might k need to be?

- Let d be the length of the longest shortest path leading to a state in F.
- If k > d, then the approximation is adequate.
- Often possible that  $k \ll d$  suffices.

#### Implementation and Optimization. 37

## SAT-based Reachability: Implementation

- SAT solvers work in CNF, but PREF and SUFF must be disjoint sets of clauses, and may not in CNF.
  - ⇒ CNFization must be performed separately.
- Interpolants are not in CNF and can be highly redundant.
  - ⇒ interpolants must be simplified and translated to CNF.
- Many DPLL SAT solvers can't produce refutations.
  - $\implies$  record resolutions during learning.
- How to check  $P \to R$ ?
- What strategy to use to increase k?

### Implementation and Optimization. 38

# SAT-based Reachability: Optimizations

- If the TS loops indefinitely in an accepting state, we can replace  $SUFF_0^k$  with  $SUFF_k^k$ .
  - $\implies$  resolution proofs are smaller, SAT solving faster.
- More generally, is there an automatic way of choosing a good j for  $SUFF_{j}^{k}$ ?
- Reusing the clauses representing  $SUFF_0^k$  and clauses derived from these clauses across iterations.

Conclusion. 39

### Conclusion

Ken McMillan's "Interpolation and SAT-based Model Checking".

- Fully symbolic, fully SAT-based unbounded model checking.
- Approximate reachability, with controllable degree of approximation.
- Effective for localizable properties.
- Can be effective for systems with many inputs.

Conclusion. 40

# Questions?

- Encoding the transition system for SAT.
  - Unfolding, prefixes, suffixes.
- Interpolants.
  - Reachability.
  - Derivation.
- SAT-based reachability algorithm.
  - Pseudocode.
  - Termination.
- Implementation and optimizations.

