
Logic and Databases: A Deductive Approach 

HERVI~ GALLAIRE 

Compagnie G~n~rale d'I~lectricit~ Laboratoire de Marcoussis, Marcoussis, France 

JACK MINKER 

University of Maryland, Computer Science Department, College Park, Maryland 

JEAN-MARIE NICOLAS 

ONERA-CERT, D~partement d'In[ormatique, Toulouse, France 

The purpose of this paper is to show that logic provides a convenient formalism for 
studying classical database problems. There are two main parts to the paper, devoted 
respectively to conventional databases and deductive databases. In the first part, we focus 
on query languages, integrity modeling and maintenance, query optimization, and data 
dependencies. The second part deals mainly with the representation and manipulation of 
deduced facts and incomplete information. 

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Desigum 
data models; H.2.3 [Database Management]: Languages--query languages; H.2.4 
[Database Management]: Systems--query processing 

General Terms: Deductive Databases, Indefinite Data, Logic and Databases, Null Values, 
Relational Databases 

INTRODUCTION 
As emphasized by Codd [1982], theoretical 
database studies form a fundamental basis 
for the development of homogeneous and 
sound database management systems 
(DBMS), which offer sophisticated capa- 
bilities for data handling. A comprehensive 
study of the many problems that exist in 
databases requires a precise formalization 
so that detailed analyses can be carried out 
and satisfactory solutions can be obtained. 
Most of the formal database studies that 
are under way at present are concerned 
with the relational data model introduced 
by Codd [1970], and use either a specially 
developed database theory [Maier 1983; 
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Ullman 1982] or other formal theories such 
as mathematical logic as their framework. 
The purpose of this paper is to provide an 
overview and a survey of a subfield of logic 
as it is applied to databases. We are mostly 
concerned with the application of logic to 
databases, where logic may be used both  as 
an inference system and as a representation 
language; we primarily consider relational 
type databases. Some important efforts in 
the application of other aspects of logic 
theory to databases (e.g., see Maier [1983], 
Ullman [1982], and the references provided 
there) or those that deal with nonrelational 
(i.e., hierarchical and network) databases 
{e.g., see Jacobs [1982] and Jacobs et al. 
[1982]) are not covered here. 

The use of logic for knowledge represen- 
tation and manipulation is primarily due to 
the work of Green [1969]. His work was the 
basis of various studies that  led to so-called 
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question-answering systems, which are 
concerned mainly with a highly deductive 
manipulation of a small set of facts, and 
thus require an inferential mechanism pro- 
vided by logic. Similar techniques have 
been adapted to databases to handle large 
sets of facts, negative information, open 
queries, and other specific database topics. 
These techniques have given rise to what 
is called deductive databases. However, the 
use of logic to study databases is not re- 
stricted to providing deductive capabilities 
in a DBMS; the pioneering work of Kuhns 
[1967, 1970] also uses logic for conventional 
databases to characterize answers to quer- 
ies. 

Aside from the introduction and conclu- 
sion to this paper, there are two main sec- 
tions, which are devoted respectively to 
conventional databases and deductive da- 
tabases. In this introduction we provide 
background material to familiarize the 
reader with the terminology used through- 
out the paper, introducing the reader to 
concepts in relational databases, to the area 
of mathematical logic, and to the basic re- 
lationships between logic and databases. 
Section 1 is an extended and revised ver- 
sion of material that appeared in GaUaire 
[1981]. This material shows how logic pro- 
vides a formalism for databases, and how 
this formalism has been applied to conven- 

tional databases. Its use in query languages, 
integrity modeling and maintenance, query 
evaluation, and database schema analysis 
is described. In Section 2 we show how logic 
extends relational databases to permit de- 
duction and describe how logic provides a 
sound basis for a proper treatment and 
understanding of null values and incom- 
plete information. 

In the remainder of this introduction, we 
first describe the main concepts of the re- 
lational data model. Following this, we 
specify what is meant by mathematical 
logic, focusing on logic relevant to data- 
bases rather than logic in general. Finally, 
we briefly introduce two ways in which 
databases can be considered from the view- 
point of logic. 

1.1 Relational Model 

To define a relational model we need 
some concepts. A domain is a usually finite 
set of values. The Cartesian product of 
domains D1 . . . .  , Dn is denoted by D1 
× . . .  x Dn and is the set of all tuples 
(Xl, . . . ,  x,) such that  for any i, i = 1 . . . . .  
n (xl ~ D1). A relation is any subset of the 
Cartesian product of one or more domains. 
A database {instance) is a finite set of finite 
relations. By a finite relation we mean that  
the extension of the relation {i.e., the total- 
ity of all tuples that  can appear in a rela- 
tion) is finite. The arity of a relation R C 
D1 × . . .  × D, is n. One may envision a 
relation to be a table of values. Names are 
generally associated with the columns of 
these tables; these names are called attri- 
butes. Values of an attribute associated 
with column i of a relation are taken from 
domain Di. A relation R with attributes A1, 
. . . .  An defines a relation scheme denoted 
as R(A1, . . . ,  An), whereas the specific re- 
lation R (i.e., the relation with specified 
tuples) is said to be an instance or extension 
of the relation scheme. 

Not all instances of a relation scheme 
have meaningful interpretations; that  is, 
they do not correspond to valid sets of data 
according to the intended semantics of the 
database. One therefore introduces a set of 
constraints, referred to as integrity con- 
straints, associated with a relation scheme 
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to ensure that  the database meets the in- 
tended semantics. Integrity constraints 
may involve interrelationships between re- 
lations. 

To summarize, a database scheme con- 
sists of a collection of relation schemes 
together with a set of integrity constraints. 
A database instance, also called a database 
state, is a collection of relation instances, 
one for each relation in the database 
scheme. A database state is said to be valid 
if all relation instances that it contains 
obey the integrity constraints. In this pa- 
per, values in database/relation instances 
are referred to as elements, constants, or 
individuals, depending on the context. 

To manipulate data in a relational data- 
base, a language is introduced. One may 
introduce an algebraic language based on 
algebraic operators, or a calculus language, 
which we discuss in the following section. 
In an algebraic language we need only two 
operators for our purposes: the project and 
join operators. Given a relation R, and X a 
set of attributes of R, then the projection of 
R on X is {s[X][s E R}, where siX] is a 
tuple constructed from s by keeping all and 
only those components that belong to at- 
tributes in X. Given two relations R and S, 
the natural join R * S is formed by com- 
puting the Cartesian product, R × S, se- 
lecting out all tuples whose values on each 
attribute common to R and S coincide, and 
projecting one occurrence of each of the 
common attributes. For a more thorough 
presentation of the relational model, the 
reader is referred to Date [1977, 1981] and 
Ullman [1982]. See also Delobel [1980] and 
Maier [1983] for an overview and a survey 
of relational database theory. 

1.2 Mathematical Logic 

As is true for any formal system, mathe- 
matical logic relies upon an object language, 
a semantics or interpretation of formulas 
in that  language, and a proof theory. 

As the object language we shall use a first- 
order language such as that  of the first- 
order predicate calculus. Primitive symbols 
of such a language are (1) parentheses, (2) 
variables, constants, functions, and predi- 
cate symbols, (3) the usual logical connec- 

tors, -~ (not), & (and), V (or), --~ (implica- 
tion), ~ (equivalence), and (4) quantifiers, 
V (for all), 3 (there exists). Throughout the 
paper we use lowercase letters from the 
start of the alphabet to represent constants 
(a, b, c . . . .  ), those from the end of the 
alphabet to represent variables (u, v, w, x, 
y, z), and letters such as (/, g, h, . . . )  to 
denote functions. 

A term is defined recursively to be a 
constant or a variable, or if f is an n-ary 
function and tl, . . . ,  tn are terms, then 
f (h ,  . . . ,  tn) is a term. There are no other 
terms. We usually assume that  a term in 
the context of databases is function free; 
that is, it is either a constant or a variable. 

If P is an n-ary predicate symbol and tl, 
. . . .  tn are terms, then P(h,  . . . ,  tn) is an 
atomic formula. An atomic formula or its 
negation is a literal. Well-formed formulas 
(wffs) are defined recursively as follows. An 
atomic formula is a wff. If  Wl and w2 are 
wffs, then -n(wl), (Wl) V (w2), (Wl) & (w2), 
(wl) --~ (w2), and (Wl) ~ (We) are wffs. A 
closed wff is one that  does not contain any 
free variable (i.e., it contains only quanti- 
fied variables and constants). 

In dealing with wffs it is sometimes con- 
venient to place them in a normal form. A 
wff is in prenex normal form if all quanti- 
tiers appear in front of the formula. The 
wff corresponding to the statement "Every 
teacher has a diploma" is 

(1) (Yx Vy)(TEACH(x, y) 

--~ (3z)DIPLOMA(x, z)). 

It is indeed possible to place all quantifiers 
in front of the formula to achieve the pre- 
nex normal form (see Chang and Lee [1973] 
for details). When this is done, formula (1) 
becomes formula (2): 

(2) (Vx)(Vy)(3z)(~TEACH(x,  y) 

V DIPLOMA(x, z)). 

Similarly, the prenex normal form of the 
wff 

(3) (Vx)(Yy)(((3z)(P(x, z) & P(y, z))) 

(3u)Q(x, y, u)) 
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(4) (Vx)(Vy)(Yz)(3u) 

{'~P(x, z) V -uP(y, z) 

V Q(x, y, u)). 

A prenex formula is in Skolem normal form 
when all existential quantifiers are elimi- 
nated by replacing variables they quantify 
with arbitrary functions of all universally 
quantified variables that  precede them in 
the formula. These functions are called 
Skolem functions; a Skolem function of 0 
arguments is called a Skolem constant. A 
clause is a disjunction of literals, all of 
whose variables are implicitly universally 
quantified. The Skolem normal form of (2) 
is 

{5) Vx Vy('~TEACH(x, y) 

V DIPLOMA(x, f(x,  y)), 

where the existentially quantified variables 
are eliminated and replaced by Skolem 
functions. Similarly, the Skolem normal 
form of (4) is 

(6) (Yx)(Yy)(Vz)(~P(x,  z) V ~P(y ,  z) 

V Q(x, y, g(x, y, z))), 

where the existentially quantified variable 
u has been eliminated and replaced by the 
Skolem function g(x, y, z). When a wff is 
in Skolem normal form, all the quantifiers 
remaining in the front of the formula may 
be eliminated since all variables that  re- 
main are, by convention, universally quan- 
tified. Formula (5), above, may be replaced 
by 

(7) -~TEACH(x, y) 

V DIPLOMA(x, f(x,  y)). 

Thus 

-~A1 V . . .  V ~Am V B1 V . . .  V Bn, 

where the A1 and the Bj are positive literals, 
is a clause. We shall write a clause in an 
equivalent form as 

Ai & . . .  & Am--* B 1 V  . . .  V B n .  

In a clause, whenever n is equal to 0 or 1, 
the clause is said to be a Horn clause. If 
both m and n are equal to 0, there are no 

atoms on the left- or right-hand side of the 
implication sign, and the clause is called 
the empty clause. A clause (a literal) in 
which no variables appear is called a ground 
clause (ground literal). Every closed, well- 
formed formula may be placed in clause 
form. We note that  the transformation of 
a wff into prenex normal form preserves 
equivalence, but this is not the case for 
transformations into Skolem or clause 
form. The latter transformations only pre- 
serve satisfiability, which is sufficient for 
provability purposes. 

Two complementary aspects of wffs are 
of interest. One deals with semantics (or 
model theory), the specification of truth 
values to wffs, whereas the other deals with 
proof theory, the derivation of a wff from a 
given set of wffs. 

L2.1 Semantics: Model and Interpretation 

In semantics we are concerned with inter- 
pretations, where an interpretation of a set 
of wffs consists of the specification of a 
nonempty set (or domain) E, from which 
constants and variables are given values. 
Each n-ary function symbol is assigned a 
function from E" to E. Each n-ary predicate 
is assigned a relation on E ". 

In an interpretation with domain E, a 
closed wff is either true or false, whereas a 
(open) wff with n (n >_ 1) free variables 
determines a set of n-tuples (i.e., a relation) 
on E ~. Each of these n-tuples is such that 
when its components are substituted for 
the corresponding free variables in the open 
wff, then in this interpretation, the closed 
wff that  is obtained is true. If the set of n- 
tuples is empty, then the open wff is said 
to be false, and if the set of n-tuples coin- 
cides with E ~, then the open wff is said to 
be true. Broadly, the truth value of a closed 
wff is obtained as follows. If R is the rela- 
tion assigned to a n-place predicate symbol 
P, then P(el, . . . ,  en) evaluates to true if 
(el . . . . .  e,)  ~ R; otherwise it evaluates to 
false. Now, if Wl and w2 are closed wffs, 
~wl evaluates to true if wl is false; other- 
wise it evaluates to false, wl & we evaluates 
to true if both w~ and w2 are true; otherwise 
it evaluates to false, wl ~ w2 evaluates to 
true if either wl is false or w2 is true; oth- 
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erwise it evaluates to false. Well-formed 
formulas constructed using the other logi- 
cal symbols may be evaluated similarly. 
Finally, if x is a variable in w, Vxw(x) 
(respectively, 3xw(x)) evaluates to true if 
for all elements el in E (respectively, there 
is an element el E E such that) w(el) is 
true; otherwise it evaluates to false. 

A model of a set of wffs is an interpreta- 
tion in which all wffs in the set are true. A 
wff w is said to be a logical consequence of 
a set of wffs W iff w is true in all models of 
W. This is denoted by W ~ w. 

1.2.2 Syntax: First-Order Theory 

The first-order predicate calculus is a formal 
system that  has as object language a f irst- 
order language, a set of axiom schemas (the 
logical axioms), and two inference rules: 
modus ponens and generalization. 

When other wffs are added as axioms, 
the formal system that is obtained is called 
a first-order theory. The new axioms are 
called nonlogical or (proper) axioms. A 
first-order theory is essentially character- 
ized by its nonlogical axioms. A set of non- 
logical axioms could be, for example, 

Man(Turing), 

(Vx)(Man(x) --~ Mortal(x)). 

A model of a theory is an interpretation in 
which all axioms are true; logical axioms 
are, in fact, chosen to be true in all inter- 
pretations. For the above theory, setting 

Man(Turing) = True, 

Mortal(Turing) = True 

yields a model since it makes all statements 
in the above theory true. A wff w is deriv- 
able from a set of wffs W in a theory 
T(W b- w) iff w is deducible from W and 
from the axioms of T by a finite application 
of the inference rules. 

Using the inference rule of modus po- 
hens, which states that  from p and p ~ q 
one can conclude q, we obtain from the 
above theory the derived result: Mor- 
tal(Turing). If W is empty, then w is a 
theorem of T (}--T W, or equivalently T b- 
w). Whenever T is clear, we shall write W 
I- w for W ~T W. 

• 157 

Inference rules other than modus ponens 
and generalization can be used to derive 
theorems; in fact most theorem-proving 
techniques are based on the inference rule 
termed the Robinson Resolution Principle 
[Robinson 1965], which applies to wffs in 
clausal form. 

The Robinson Resolution Principle is a 
rule of inference that permits a new clause 
to be derived from two given clauses; fur- 
ther, the derived clause is satisfiable (i.e., 
has a model) if the two given clauses are 
satisfiable. In the context of databases as- 
sumed to be function free, the principle can 
be described in terms of the following ex- 
ample. From 

Ci: -TP(a, b, c) V Q(d, e), and 

C2: P(x, y, z) V R(x, y), 

one obtains the derived clause 

C3: Q(d, e) V R(a, b). 

The clause C3 is found by considering 
the literals in the two clauses that  have the 
same predicate name, but one is negated 
and the other is not. The only predicate of 
this type is P. One then determines if the 
two atoms {P(a, b, c), P(x, y, z)} can 
be made identical by some substitution 
to the variables, where a, b, and c are as- 
sumed to be constants and x, y, and z are 
assumed to be variables. The substitution 
{a/x, b/y, c/z} is such a substitution, and is 
to be read: Substitute a for x, b for y, and c 
for z. One then eliminates the two literals 
made identical by the substitution (said to 
be unified) from each clause, forms the 
disjunction of the remaining literals in the 
two clauses, and applies the unifying sub- 
stitution to the remaining literals to obtain 
the derived clause. Thus in this example 
the clause C3 is derived. 

The resolution principle is used mostly 
to carry out refutation proofs: In order to 
prove W F- w, one tries to show that  W and 
-~w are not simultaneously satisfiable. As 
resolution preserves satisfiability, if one 
can, by resolution from the clausal forms 
of W and -~w, derive the empty clause, then 
W and -~w cannot simultaneously be sat- 
isfiable. For example, ~P(a, b, c) and 
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P(x, y, z), where x, y, and z are variables, 
would resolve to yield the empty clause. 

A resolution proof consists of applying 
resolution to all clauses in the original set, 
adding those newly deriv6d clauses to the 
set, and iterating the process. 

The most important relationships be- 
tween the semantic and the syntactic ap- 
proaches are soundness and completeness. 
An inference system is sound iff for all W 
and w, whenever W }-- w, it implies that 
W ~ w; it is complete iff for all W and w, 
whenever W ~ w, it implies that W ~ w. 
The inference rules of modus ponens and 
generalization are complete and sound for 
the propositional calculus. Similarly, reso- 
lution refutation is complete and sound for 
first-order theories: The empty clause is 
derived if and only if the initial clause 
(which is negated to apply resolution) is a 
theorem in the theory. However, there is 
an element of undecidability; if the clause 
proposed to be proved is not a theorem, the 
inference process may never terminate. 
Resolution refutation is also complete and 
sound. The meaning of completeness and 
soundness is that the same results are ob- 
tained by using semantics, which deals with 
truth assignments, and provability, which 
deals with inference rules. 

The reader should refer to Enderton 
[1972] and Mendelson [1978] for general 
background on logic and to Chang and Lee 
[1973] and Loveland [1978] for more ma- 
terial on the resolution principle. 

1.3 Databases Viewed through Logic 

Before considering the formalization of da- 
tabases in terms of logic, we shall mention 
some assumptions that govern query (and 
integrity constraint) evaluation of data- 
bases. On the one hand, these assumptions 
express a certain implicit representation of 
negative facts (e.g., "Paul is not the father 
of Peter:" -~Father(Paul, Peter)) and, on 
the other hand, they make precise the uni- 
verse of reference to which queries refer. 
There are three such assumptions: 

(1) The closed world assumption (CWA), 
also called convention for negative in- 
formation, which states that facts not 
known to be true are assumed to be 

false (i.e., "~R(el . . . . .  en)  is assumed to 
be true iff the tuple (el, . . . ,  e,) fails 
to be found in relation R). 

(2) The unique name assumption, which 
states that individuals with different 
names are different. 

(3) The domain closure assumption, which 
states that there are no other individ- 
uals than those in the database. 

Answers to "For all" queries or queries 
involving negation are obtained by using 
the above hypotheses. For example, the 
query, "Who is not a Full Professor?", ad- 
dressed to a database whose current state 
consists of 

Full-Prof.(Jean), 
Full-Prof.(Paul), 
Associate -Prof. (Andre), 
Assistant-Prof. (Pierre), 

will get as an answer {Pierre, Andre}. In- 
deed, the domain closure assumption re- 
stricts the individuals to be considered to 
the set {Jean, Paul, Pierre, Andre}. Fur- 
thermore, according to the unique name 
assumption, one gets the following: Pierre 

Jean, Pierre ¢ Paul. Consequently, 
Pierre q~ Full-Prof., which, according to the 
closed world assumption, leads to "~Full- 
Prof.(Pierre). The second element of the 
answer, -~Full-Prof.(Andre), is obtained in 
a similar way. 

We note that one way to avoid calling for 
the domain closure assumption is to con- 
sider as acceptable queries (and integrity 
constraints) only expressions that restrict 
their own reference domain. This is the 
case for any expression of the relational 
algebra and for the so-called class of defi- 
nite (or safe, or range-restricted) logical 
formulas (see Section 1.1.1). 

Although the query evaluation process in 
any DBMS (implicitly) works under the 
above hypotheses, these assumptions were 
made explicit and clearly understood only 
through a logical formalization of data- 
bases. 

As first characterized by Nicolas and 
Gallaire [1978], a database can be consid- 
ered from the viewpoint of logic in two 
different ways: either as an interpretation 
(of a first-order theory) or as a (first-order) 
theory. When considered from the view- 
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point of interpretations, queries (and integ- 
rity constraints) are formulas that  are to 
be evaluated on the interpretation using 
the semantic definition of truth. From the 
viewpoint of a theory, queries and integrity 
constraints are considered to be theorems 
that are to be proved. The interpretation 
viewpoint and the theory viewpoint respec- 
tively formalize the concepts of conven- 
tional and deductive databases. 

Reiter [1984] and Kowalski [1981a] have 
investigated these two approaches more 
thoroughly. Reiter refers to the two ap- 
proaches as the model-theoretic view and 
the proo[- theoret ic  view, respectively, 
whereas Kowalski refers to them as the 
relational structure view and the logic da- 
tabase view. 

The three terms "interpretation," 
"model," and "relational structure" are 
closely related. A model is an interpretation 
that  makes all axioms true. The "relational 
structure" view means that  queries are 
evaluated by assuming the database entries 
to be true. All these terms relate to the 
semantic definition of truth. We shall use 
the term "model-theoretic view" for these 
three terms throughout this paper. The 
three terms "theory," "proof theoretic," and 
"logic database" connote that, in order to 
determine answers to queries, one derives 
data from axioms. We use the term "proof 
theoretic" for these terms throughout the 
paper. 

Both Kowalski and Reiter have shown 
that, although conventional databases are 
generally considered from a model-theo- 
retic view, they can also be considered from 
the proof-theoretic view and can thus be 
considered as a particular logic database. 

This section provides an intuitive char- 
acterization of these two views of a data- 
base through the perspective of logic. Fur- 
ther details are provided in Section 2 of 
this paper for the proof-theoretic view. 

Let DB be an instance of a relational 
database. Then DB consists of a set of 
relations (i.e., a relation R for each relation 
schema R(A1 . . . . .  An)) and a set of integ- 
rity constraints, IC. Let D be the union of 
the underlying domains of all attributes 
that occur in the relation schema. Now 
define a first-order language L to consist of 
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an n-place predicate symbol R for each n- 
ary relation in DB and a set of constants, 
one for each element in D; the language is 
assumed to have no function symbols. DB 
can be seen as an interpretation of formulas 
of the language as defined in Section 
1.2, and the formulas of L can be evalu- 
ated in this interpretation as follows: 
Variables range over the domain D, and 
R ( e l , . . . ,  en) is true iff ( e l , . . . ,  en) E R. The 
language can be extended to include arith- 
metic comparison operators (<, =, >, _<, _>) 
as particular predicate symbols, which are 
assigned their usual interpretation. 

If the integrity constraints in IC are ex- 
pressed as formulas of L, then the database 
DB will be a valid database state iff every 
constraint in IC evaluates to true in DB, 
that is, iff DB is a model of IC. We note 
that, according to the very definition of an 
interpretation, the evaluation of logical for- 
mulas (on an interpretation) is done in 
accord with the closed world, unique name, 
and domain closure assumptions stated at 
the beginning of this section. 

The above constitutes a description of 
the model-theoretic view of a database. The 
proof-theoretic view of DB is obtained by 
constructing a theory T that  admits DB as 
a unique model. Then for any wff w in L, 
T ~-- w iff w is true in DB. 

The process of defining T consists of 
making its (proper) axioms precise. The 
axioms (see Reiter [1984]) are of three 
kinds: 
(1) Assertions. For any relation R in DB 

and any tuple (el, . . . ,  en) E R, an 
axiom R(el, . . . ,  en) ~ T. 

(2) Particularizat ion Axioms.  Particu- 
larization axioms explicitly state the 
evaluation hypotheses that, in the 
model-theoretic view, are conveyed by 
the notion of interpretation: 

(i) The completion axioms. There is 
one such axiom for any relation 
R in DB. I f  ( e l ,  . . . ,  e ? )  . . . .  , 

(e~ . . . . .  e~) are all the tuples in R, 
it is written as 

Vxl . . .  Vx~(R(xl  . . . . .  x~) 

(xl = el & . . .  & Xn = e~) 

V . . .  V (xl = e ~ &  . . .  & x =  e~)). 
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The completion axiom effectively 
states that the only values tuples 
that the relation R can have are 

(el . . . . .  e~), . . . ,  (evl, . . . ,  e$). 

(ii) The unique name axioms. If el, 
. . . .  eq are all the individuals in DB, 
the unique name axioms are 

(el ~ e2) . . . .  , (el ~ eq), 

(e2 ~ e3) . . . .  , (eq-1 ~ eq).  

(iii) The  domain closure axiom. This is 

Vx((x = el) V (x = e2) V . . .  Y (x = eq)) .  

(3) Equali ty  Axioms.  Equality axioms are 
needed since the axioms in (2) involve 
the equality predicate. These axioms 
specify the usual properties of equality: 

• reflexivity: 

V x ( x  = x ) .  

• symmetry:  

Vx Vy((x = y) ~ (y = x)). 

• transitivity: 

Vx Vy Vz((x = y) & ( y  = z) ~ (x  = z)). 

• principle of substitution of equal terms: 

~¢Xl " ' "  V y n ( P ( x l ,  . . . ,  xn) 

& (xx = Yl) & "'" & (xn = y~) 

P(Y l  . . . .  , Yn)). 

Let us briefly give the underlying reason 
why T admits DB as a unique model (up to 
an isomorphism). The only interpretation 
of T in which the domain closure axioms 
and the unique name axioms are all satis- 
fied is such that their individuals are in 
one-to-one correspondence with elements 
in D. Thus all the possible models of T have 
the same domain as DB (up to an isomorph- 
ism). For any such model M, since its do- 
main is fixed, in order to be different from 
DB, it must assign to at least one R a 
relation R '  different from R. But this is not 
possible. Indeed, if a tuple (el, . . . ,  e,) 
belongs to R but not to R' ,  then M does 
not satisfy one of the axioms in (1). Con- 
versely, if (e~ . . . . .  en)  belongs to R'  but 

not to R, then M does not obey the comple- 
tion axiom associated with R. 

As defined above T provides the proof- 
theoretic view of DB. According to this 
view, DB satisfies a constraint w in IC iff 
T I--- w. Furthermore, the answer to a query 
formulated as W(x l ,  . . . ,  xp)--where Xl, 
. . . .  xp are the free variables in the formula 
W--consists of those p-tuples ( e l , . . . ,  ep) 
such that T I- W(e l  . . . .  , %).  

It is worth noting that, although accord- 
ing to this view query (and integrity con- 
straint) evaluation calls for proof tech- 
niques, DB is and remains a conventional 
(i.e., nondeductive) database. No other 
(positive) facts than those explicitly stated 
in (1) can be derived from T. 

At this stage one may notice that  the 
above proof-theoretic view is not intended 
to be used directly as a basis for a DBMS 
implementation. The combinatorial com- 
plexity of the particularization axioms 
would lead to inefficient systems, but, as 
emphasized by Reiter [1984], the value of 
this view is found in the generalizations 
that it suggests for databases: (1) Add some 
disjunctive facts or existentially quantified 
literals among the assertions and one ob- 
tains a database with null values and in- 
complete information; (2) suppress from 
the set of ICs some of its formulas and add 
those formulas as axioms to the theory and 
one obtains a new theory that is a deductive 
database. However, the formulation of the 
completion axioms then has to be recon- 
sidered, as is seen in Section 2. Except for 
work in deductive databases, the applica- 
tions of logic to databases has mainly re- 
ferred, either explicitly or implicitly, to the 
model-theoretic view. This work is reported 
upon in Section 1. 

1. CONVENTIONAL DATABASES 

The goal of Section 1 is to show how logic 
can provide formal support to study clas- 
sical database problems, and in some cases, 
how logic can go further, helping to com- 
prehend and then to solve them. We de- 
scribe contributions published in the liter- 
ature that relate to logic and databases with 
respect to query languages, integrity mod- 
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eling and maintenance, query evaluation, 
and database schema analysis. 

1.1 Query Languages 

1.1.1 Toward Relational Calculus 

One of the first impacts of logic on data- 
bases was the use of its language as a basis 
for defining assertional query languages. 
This can be done in any one of four ways 
[Pirotte 1976, 1978], depending on whether 
one-sorted or many-sorted languages [En- 
derton 1972] are used and whether tuples 
of relations or elements of domains are 
considered as primitive objects [Ullman 
1980]. In fact, only two out of these four 
possibilities have been truly exploited: the 
so-called domain relational calculus (DRC, 
one sorted/elements of domains) and the 
tuple relational calculus (TRC, one sorted/ 
tuples of relations). Both of these languages 
have the same expressive power [Ullman 
1980]. The respective pioneering and fun- 
damental efforts of Kuhns [1967] and Codd 
[1972] are shown in each of these two cases. 
We shall focus on the DRC. 

As described in Section 1.3, the reason 
for considering the language of logic as a 
basis for defining query languages is that a 
relational database (instance) can be 
viewed as an interpretation of a first-order 
language. Thus the answer to a formula 
W(xl . . . . .  Xp), where xl . . . .  , Xp are the free 
variables in W, considered as a query, is the 
set ofp-tuples (e~ . . . .  , ep) E D R such that 
W(el, . . . ,  ep) is true. However, when con- 
sidered as queries, some formulas may be 
"unreasonable" [Kuhns 1967], since their 
answer may be different in two database 
states, where the relations they refer to 
are the same. A typical example is the for- 
mula "~R(x~ . . . . .  x,), which character- 
izes all tuples in D" except those that 
are in R as opposed to P(xl  . . . .  , Xn) & 
"~R(xl . . . . .  Xn). 

A semantic characterization of formulas 
that can be considered to be reasonable 
queries led to the notions of definite for- 
mulas [Kuhns 1967] and safe formulas fUll- 
man 1980]. Roughly, such formulas are do- 
main independent since they self-restrict 
the range of the variables that they con- 

tain. 1 However, once these classes were de- 
fined, a new problem appeared, that of find- 
ing machine-recognizable criteria for deter- 
mining whether a given formula is definite 
(or safe). Unfortunately, as proved by Di 
Paola [1969] and Vardi [1981], the decision 
problem for definite formulas is recursively 
unsolvable. Thus what remained to be done 
was to look for the largest of its subclasses 
that was recursive. This was one of the 
motivations for various authors who intro- 
duced purely syntactically defined sub- 
classes of definite formulas such as 
"proper" [Kuhns 1970], range separable 
[Codd 1972], acceptable [Artaud and No- 
colas 1974], range restricted [Nicolas 
1979a, 1979b], and evaluable [Demolombe 
1982] formulas. 

Using many-sorted logic as a basis for 
defining query languages while considering 
elements of domains as primitive objects 
was exploited by Pirotte [1978] (see also 
Minker [1978b] and Reiter [1978b]). In 
such a case each sort is assigned to a data- 
base domain, and the well formedness of 
formulas is checked with regard to sort 
requirements. Languages obtained in this 
manner have the same expressive power as 
the preceding ones. 

Many-sorted languages offer a more 
"precise" definition of the model, but they 
freeze to some extent any evolution of the 
application. In that respect one should note 
how important the issue of knowledge rep- 
resentation is to many applications, not 
only in the database field, but also in arti- 
ficial intelligence and programming lan- 
guages. An important workshop sponsored 
by SIGART, SIGMOD, and SIGPLAN 
brought to light many points common to 
these fields [Brodie and Zilles 1980] (see, 
e.g., papers by Codd [1980], Lacroix and 
Pirotte [1980], and Mylopoulos [1980]). 

Two additional points indicating the im- 
portance of a relational calculus language 
are that Codd [1972] proposed it as a ref- 
erence for measuring the "completeness" 

1 It turns out, and it is not  fortuitous, tha t  "reasonable" 
queries precisely correspond to formulas tha t  avoid 
calling for the domain closure assumption (see Section 
1.3). 
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of query languages (discussed below), and 
query languages known to be "user 
friendly" (e.g., Query-by-example, Zloof 
[1977] and Quel, Stonebraker et al. 
[1976]) are based on it. However, improve- 
ments to user interfaces are still required, 
regardless of the query language. 

1.1.2 Extensions to Query Languages 

In this section we argue that logic supports 
powerful extensions to basic query lan- 
guages in two directions: natural languages 
and programming languages. Logic lan- 
guages are close to natural languages. In 
addition to Codd [1972], who used this ar- 
gument to support the relational calculus 
as a yardstick to measure other languages, 
many linguists have also made this obser- 
vation; thus querying databases using nat- 
ural language has been and is a subject of 
active research [Colmerauer 1973; Colmer- 
auer and Pique 1981; Dahl 1982; Moore 
1981; Warren 1981; Woods 1967]. 

Several authors have questioned Codd's 
proposal to "define" completeness (i.e., ex- 
pressiveness) of query languages with ref- 
erence to a language (relational calculus) 
whose expressiveness had not been as- 
sessed from a semantic viewpoint. This 
proposal has also been questioned because 
some well-known operations on data such 
as the transitive closure of a relation [Aho 
and Ullman 1979] and aggregation opera- 
tions used to compute sums, averages, and 
other operations are not expressible either 
in the relational calculus or in the relational 
algebra. This completeness notion has thus 
attracted much discussion. 

Bancilhon [1978] and Paredaens [1978] 
have shown that, when restricted to finite 
relations, the relational calculus and the 
relational algebra are both complete in the 
sense that  for a given database they can 
express all (and only those) relations whose 
extension is definable over the set of all 
domains of that database. This complete- 
ness definition is still restrictive as one 
cannot, for instance, express the transitive 
closure of a relation with a single expres- 
sion independently of the extension of that 
relation. To attain such a capability, var- 
ious authors proposed that the relational 

calculus or relational algebra be embedded 
in a host language [Aho and Ullman 1979; 
Chandra and Harel 1979, 1980]. Such an 
embedding will allow a simple expression 
(i.e., a program in the host language) to 
define an operator, for example, transitive 
closure, from the primitive constructs of 
the host language (such as iteration, recur- 
sion, or least fixed points). In some cases, 
all computable functions can be expressed; 
this is the ultimate notion of completeness. 

Of course, the host language can be a 
logic programming language. Its expressive 
power attains completeness, according to 
Cooper [1980], or can be limited to subsets 
of computable functions. But  logic offers 
an alternative way to provide extensions 
such as those that motivate the embedding 
of the query language (logic) in a host pro- 
gramming logic language. Indeed, the same 
effect is obtained by extending the repre- 
sentation and manipulation capabilities of 
the database system itself (rather than of 
the query language); this is precisely the 
idea of the deductive database system, 
where the database system is a theory, usu- 
ally first order, with nonunit axioms (e.g., 
see Gallaire and Minker [1978]). 

Accepting the view that a database sys- 
tem consisting of a theory that contains 
nonunit axioms is similar to extending the 
host language of a database system may not 
be entirely apparent. Harel [1980], in a 
review of the book edited by Gallaire and 
Minker [1978], attempts to refute the above 
view, but provides no convincing argu- 
ments. The database theory view has many 
theoretical advantages, if not practical 
ones, which are developed in Section 2 of 
the paper. Harel [1980] provided another 
critique of the work presented by Gallaire 
and Minker [1978], namely that some quer- 
ies are not characterizable in first-order 
logic and hence the language must be ex- 
tended to a higher order language. Although 
it is true that such extensions may yield 
answers to queries, that is, relation exten- 
sions that may not be first-order definable 
(e.g., the transitive closure of a relation), 
the query language remains precisely first 
order in the database-theoretic view, and 
may possibly remain first order in a model- 
theoretic view, depending on the choice of 
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the host logic programming language. Thus 
the second critique need not apply. The 
possible failure to note the distinction be- 
tween regarding a database an an interpre- 
tation or as a theory may have been the 
cause for the comments by Harel as conjec- 
tured by Kowalski [1981b]. 

1.1.3 Null Values 

Null values are a special case of the incom- 
plete information problem that  is addressed 
further in Section 2. Null values have been 
investigated in the ANSI /X3/SPARC 
[1975] report. Although many different 
meanings can be ascribed to missing or null 
values in the instance of a relation, most 
researchers have dealt primarily with "at- 
tributes applicable but values are un- 
known," whereas only a few deal with 
"value does not exist" [Zaniolo 1981]. An 
unknown value can be represented readily 
in a database, but problems arise with re- 
spect to its manipulation and interpreta- 
tion in a query language. 

A model-theoretic approach is to define 
a three-valued logic [Codd 1979], based on 
the truth values {true, false, undefined}. 
The logical connectors truth definition is 
extended appropriately: Should any com- 
ponent in a tuple be unknown, the corre- 
sponding literal has the truth value true, 
false, or undefined, depending on whether 
one obtains a literal that  is systematically 
true, systematically false, or either true or 
false when substituting any value for un- 
known. This approach has been criticized 
by several authors [Grant 1977; Vassiliou 
1979] because the theory does not provide 
for several unknown values. Some of the 
unknown values may be known to be equal 
even though their precise values are un- 
known. Furthermore, an expression should 
be evaluated globally, and not recursively 
in terms of its subexpressions, in order to 
infer some of the externa! knowledge from 
the incomplete internal knowledge. As a 
typical example, if the age of John is un- 
known, the expression 

3x(Age(John, x) & x < 60) 

V (Age(John, x) & x _> 60) 

should receive the value true although both 
operands of the disjunction have value un- 
defined. 

Lipski [1979] defines information which 
surely, alternatively possibly, can be ex- 
tracted from a database in the presence of 
unknown values. He then defines a query 
language that  encompasses such modal op- 
erators. Although such an approach has 
been criticized on grounds of efficiency 
[Vassiliou 1980], where a denotational se- 
mantics approach is specified, Imielinski 
and Lipski [1981] improve upon Lipski's 
earlier approach and define systems capa- 
ble of handling null values when subsets of 
the relational operators are used. 

Where does logic stand in tackling this 
problem? As already noted, Codd's ap- 
proach can be considered to be a model- 
theoretic approach. Other approaches that  
use logic as a basis and are more general 
encompass more forms of incomplete infor- 
mation such as indefinite data. Data are 
said to be indefinite if they are of the form 
P(a) V Q(b), and it is unknown whether 
P(a) is true, Q(b) is true, or both are true. 
Reiter [1983, 1984] gives precise solutions 
to some of these issues on the basis of the 
proof-theoretic view of databases with null 
value and indefinite data. The theory that 
models such a database is obtained from 
the theory given for a standard database in 
Section 1.3 by the addition of a new class 
of axioms that  stand for facts with null 
values (Skolem constants in logical terms) 
and for indefinite data and by a reformu- 
lation of the particularization axioms that 
account for the presence of these new ax- 
ioms. For details on these axioms see Reiter 
[1984]. Grant and Minker [1983] provide a 
precise algorithm to answer queries on such 
databases for a subclass of such data when 
null values are contained within the given 
domain of elements and only positive 
ground clauses are permitted. 

Three additional approaches to the prob- 
lem of null values use a tool from metalan- 
guage techniques. In Levesque [1981] a 
language is defined that  extends predicate 
calculus in that  one can refer to the state 
of the database and thus to what is cur- 
rently known. Both the semantics and 
proof theory are covered, cases where one 
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can fall back on predicate calculus are stud- 
ied, and connections with nonmonotonic 
logic (described in Section 2) are stressed 
and shown to yield a simpler semantics of 
the concept of nonmonotonicity. It be- 
comes possible to specify that not all tuples 
of a relation are known and to query a 
database as to what is known and what is 
not known. A slightly different framework 
is provided by Konolige [1981], who uses a 
metalanguage based on first-order logic to 
describe information known about the do- 
main of discourse (i.e., the actual world) 
and the database language. Queries are 
specified in the metalanguage. Some quer- 
ies can be translated into a database lan- 
guage and hence can be evaluated. Others 
cannot be answered from the database; that 
is, they have no equivalent answer because 
of the incompleteness of the data. Both of 
these approaches can be dealt with within 
a general framework investigated by Bowen 
and Kowalski [1982]. They consider predi- 
cate logic as an object language and as a 
metalanguage where the provability rela- 
tion of the object language can be formu- 
lated in the metalanguage. One can reason 
at the metalanguage level and at the same 
time provide answers at the object language 
level. 

At this time the results discussed above 
tend to be more theoretical than practical. 
In the case of null values, a more practical 
solution combining logic and relational al- 
gebra has been studied by Biskup [1981], 
who also further investigates Codd's pro- 
posals, providing them with a sound foun- 
dation and arguing for their practical ap- 
plicability [Biskup 1982]. In the case of 
more general incomplete information, we 
mention here the work by Bossu and Siegel 
[1981], where a promising approach based 
on model theory is taken, and the work by 
Minker [1982]. Finally, an interesting com- 
plement to logic for handling null values 
can be found in Siklossy and Lauriere 
[1982]. As mentioned above, work in arti- 
ficial intelligence that deals with nonmono- 
tonic logics is relevant to this topic. The 
interested reader is referred to papers in 
the 1980 special issue of the Artificial In- 
telligence Journal on nonmonotonic logic 
[AIJ 1980]. 

1.2 Integrity Constraints 

1.2.1 Formulation and Enforcement 

Database consistency is enforced by integ- 
rity constraints, which are assertions that  
database instances (states) are compelled 
to obey. Integrity constraints have been 
classified according to various criteria. The 
first criterion distinguishes between state 
constraints, which characterize valid data- 
base states, and transition constraints, 
which impose restrictions on the possible 
state transitions of a database. Among state 
constraints different subclasses can be iso- 
lated: for example, type constraints, which 
require the arguments of relations to be- 
long to specified domains, or dependency 
constraints, which are discussed in Sec- 
tion 1.4. 

As stated by Ullman [1980], a fundamen- 
tal idea concerning integrity constraints is 
that query languages can be used to express 
them, although transition constraints re- 
quire special attention [Casanova and 
Bernstein 1979; Florentin 1974; Nicolas 
and Yazdanian 1978]. It is therefore not 
surprising that various authors have used a 
first-order language to study integrity con- 
straints and have appealed to both the 
model-theoretic and the proof-theoretic 
logical views. 

The model-theoretic view is exploited by 
Nicolas and Yazdanian [1978] for charac- 
terizing those integrity constraints in a da- 
tabase that might be falsified by a given 
update, and must consequently be evalu- 
ated to determine whether the resulting 
database state is valid. Once such a con- 
straint, say C, has been selected, one can 
take advantage of the fact that  C is known 
to be satisfied in the state before the up- 
date, in order to derive (according to the 
update) a simplified form of C, say S(C), 
such that  S(C) is satisfied in the new da- 
tabase state iff C is satisfied, and the eval- 
uation cost of S(C) is less than or equal to 
the evaluation cost of C. Then the evalua- 
tion of S(C) can be substituted for the 
evaluation of C, thus reducing the cost of 
integrity constraint checking. Such a sim- 
plification method, which relies upon truth, 
preserving instantiations of formulas, is de- 
fined by Nicolas [1979a, 1979b] for con- 
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straints expressed in the domain relational 
calculus. 

An implementation of this simplifica- 
tion method is reported upon by Homeier 
[1981]. A similar method was also intro- 
duced later by Blaustein [1981] for con- 
straints expressed in the tuple relational 
calculus. Finally, in Casanova and Bern- 
stein [1979] the same database logical view 
is used to define a data manipulation lan- 
guage with a logic system that permits one 
to prove whether or not a transaction pre- 
serves consistency (see Section 1.2.2). 

In addition, Henschen et al. [1984] de- 
scribe a technique for extracting integrity 
tests from database constraints expressed 
as first-order formulas. The tests can be 
generated at database design time and are 
applied when updates to the database ap- 
pear. Of particular interest in this approach 
is that tests are applied before the update 
is made. 

An alternative formulation of integrity 
constraints as first-order formulas has been 
exploited by McSkimin [1976], McSkimin 
and Minker [1977], Minker [1978b], and 
Reiter [1981]. Although their work was 
done in the context of deductive databases, 
it can be applied equally well to integrity 
checking in conventional databases. Both 
approaches consider a (principal) database 
augmented with a type database. Types are 
distinguished by unary relations (or Boo- 
lean combinations of them); a type data- 
base is a set of formulas (represented as a 
semantic graph in Minker [1978b]), ex- 
pressing relations among types (e.g., inclu- 
sion, and disjointness) and also the inclu- 
sion of certain data values to a particular 
type. The connection between both data- 
bases is made via type integrity constraints 
that force arguments of relations to be of 
the same type. 

Minker uses these integrity constraints 
to reject queries that are not well formed, 
such as a query that requires two relations 
to be joined on attributes that belong to 
disjoint types. A refutation-like procedure 
checks the well formedness of a query by 
using type constraints and the type data- 
base. 

Reiter [1981] addresses the problem of 
detecting the violation of these constraints 

when the database is updated. Both inser- 
tions of data and of general laws are con- 
sidered (integrity constraints on standard 
databases, axioms in a deductive database). 
The method relies upon a transformation 
of these general laws, which are universally 
quantified formulas, into a form for which 
simple criteria for the detection of type 
constraint violations are proposed. 

1.2.2 Proving Consistency of Transactions 

It is clearly easier to prove the consistency 
of transactions when data is defined in a 
formal framework, and integrity con- 
straints and database transactions (which 
retrieve, insert, delete, and update infor- 
mation) are stated formally and in the same 
language. Starting from a database state 
that complies with given constraints, con- 
sistency of transactions is proved when the 
state arrived at after the transaction has 
been executed also complies with these con- 
straints. In order to prove consistency, a 
formal system can be provided whose ob- 
jects are the transactions: A syntax, seman- 
tics, and proof theory for reasoning about 
objects are needed. A transaction is expres- 
sible in a programming language, including 
expressions used to define sets of data upon 
which the transaction acts; thus transac- 
tion languages include data definition lan- 
guages. If the data definition language itself 
is endowed with a proof theory, the trans- 
action formal system can use it. This is the 
case with the logic interpretation of data- 
bases. 

Casanova and Bernstein [1979, 1980] of- 
fer an elegant, albeit theoretical, answer to 
these problems. The data definition lan- 
guage, viewed through its logic perspective, 
includes the integrity constraints as axioms 
of a first-order theory. The transaction lan- 
guage then is embedded in regular programs 
[Pratt 1976], supported by a formal system, 
first-order dynamic logic (DL). This 
embedding is accomplished by expressing 
the operations of retrieve, insert, delete, 
and update in terms of assignment, tests, 
random tuple selection, union, composi- 
tion, and iteration operators, the semantics 
of which encompass that of all computable 
queries (Section 1.1.2). Regular first-order 
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DL [Harel 1979] then is extended to a 
system called modal dynamic logic (MDL) 
to reason about such programs. MDL is 
shown to have the necessary power to prove 
most essential database questions: consist- 
ency, transaction, and serializability of 
transactions. One should note that this 
work was also extended to deal with aggre- 
gate operators (Section 1.1.2). This ap- 
proach obviously needs a more practical 
counterpart. Gardarin and Melkanoff 
[1979] offer a partial answer, using Hoare's 
logic rather than dynamic logic. 

1.3 Query Optimization 

Optimization of query evaluation, or im- 
provement of query evaluation as it might 
better be termed, has been attacked in 
many different ways. A traditional ap- 
proach is to use low-level information such 
as statistical information about various 
costs to access individual relations. Sys- 
tems that have been implemented, for ex- 
ample, System R [Chamberlin et al. 1981; 
Selinger et al. 1979] and more experimental 
systems [Demolombe 1980; Grant and 
Minker 1981], have demonstrated that sig- 
nificant gains in efficiency can be achieved 
by using such information. However, it is 
clear that additional gains can be obtained 
by using higher level information, whether 
syntactic or semantic. 

Syntactic transformations, yielding a 
logical equivalent of the initial query have 
been studied by Aho et al. [1979] and Chan- 
dra and Merlin [1976]. For example, the 
query 

(3u, v, w, y, z)R(x, v, w) 

& R(x, z, w) & S(u, w) 

& S(u, v) & S(y, w) 

& S(y, v) & S(y, z), 

where x is a free variable, can be shown to 
be equivalent to 

3u, v, w R(x, v, w) & S(u, v). 

But perhaps the most promising technique 
is found in the so-called semantic transfor- 
mations. A first step in that direction was 
taken by McSkimin [1976] and McSkimin 

and Minker [1977], who used a form of 
integrity constraint that describes domains 
of relations and relates them to each other. 
Additional information, which takes into 
account the cardinality of intersections or 
unions of domains, is used to simplify quer- 
ies and also to interrupt the process of 
extracting an answer whenever the addi- 
tional information justifies it. 

A more general approach, related to 
global problem-solving strategies [Kowal- 
ski 1979], is described by King [1981] and 
Hammer and Zdonik [1980], where the idea 
of query modification based on general 
rules is addressed. A set of general rules 
(integrity constraints and/or deductive 
laws--see Section 2) such as "a ship carries 
no more cargo than its rated capacity" or 
"the only ships whose deadweight exceeds 
150 thousand tons are supertankers" [King 
1981] can also be used to transform a query 
submitted by a user into a query less costly 
to evaluate, eliminating unnecessary rela- 
tions or propagating constraints. This pro- 
cess then interacts with, and uses infor- 
mation from, a more classical optimizer, 
which can take into account such factors 
as indexing of attributes. Obviously a major 
problem is to control the derivation of quer- 
ies from the original query. This is a clas- 
sical problem in artificial intelligence sys- 
tems, and has been studied by King, who 
derived a set of heuristics and specified and 
implemented a plan-generate-test  process 
that  gives interesting and practical results. 
Logic is seen at its best in such applica- 
tions. Much remains to be done in this 
important area. 

A different use of logic is reported by 
Warren [1981] in relation to the applica- 
tion of natural language database querying. 
The underlying database is relational, and 
logic is used to (1) write a translator from 
natural language input to an internal rep- 
resentation, (2) represent the internal form 
of queries as logic formulas, (3) write an 
optimizer O f the querying process, which 
analyzes the query and uses the traditional 
type of statistical information already re- 
ferred to above, to modify the query, and 
(4) evaluate the query (which could be in- 
terfaced to the access level of a standard 
database management system). The per- 

Computing Surveys, Vol. 16, No. 2, June 1984 



Logic and Databases: A Deductive Approach • 167 

formance of the overall process is very ac- 
ceptable; the interested reader is referred 
to Warren [1981] for further details. War- 
ren's approach to optimization is similar 
to the approach taken by Selinger et al. 
[1979]. See Chakravarthy et al. [1982] for 
a discussion of how a logic database may 
be interfaced with a relational database and 
related work by Kunifuji and Yokota [1982] 
and Yokota et al. [1983]. 

Before leaving this extremely promising 
field, we note another use of constraints or 
general laws describing the domain of dis- 
course in the query interpretation process. 
As discussed by Janas [1979, 1981], when- 
ever a query has an empty answer, a rea- 
sonable set of subqueries can be con- 
structed whose failure explains the empty 
answer of the original query; this reasona- 
ble set is obtained by taking particular in- 
tegrity constraints into account. A reason 
for not having an answer is that no tuples 
that currently exist in the database satisfy 
the query, in which case the subquery that 
fails can be identified or the constraints of 
the database are such that no answers that 
satisfy the query will ever be possible from 
the database. Such information could be of 
considerable value to a user. See also De- 
molombe [1981] for related work. 

1.4 Database Design 

There is an area where logic plays an in- 
creasing role in the specification of data 
models. In general, there are several meth- 
ods of formal specification and several for- 
malisms for each method; databases are but 
one kind of object to formalize, and tech- 
niques developed for programming lan- 
guages in general can be applied. We have 
seen in Section 1.2.2 how such a specifica- 
tion can be used for a precise purpose: 
proving the consistency of a transaction. 
Veloso et al. [1981] provide a comprehen- 
sive review of these techniques, for a large 
part on the basis of logic (see also Borgida 
and Wong [1981], where logic is used to 
define the formal semantics of the Taxis 
data model). Logic is a very important tool 
in this area, if only because it blends nicely 
with all the other tools described in this 
paper for different purposes. 

We now turn to data dependencies, a 
concept central to database design. Data 
dependencies are special cases of integrity 
constraints that express structural proper- 
ties of relations and permit relations to be 
decomposed, and retain certain properties 
described below. A number of dependencies 
of various kinds have been characterized 
and studied in the literature (see Delobel 
[1980] and Maier [1983] for comprehensive 
surveys on dependencies). In this section 
we see how logic has been used to study the 
properties of some of these dependencies 
and, in some cases, define them. We also 
note that special formal systems have been 
developed for that purpose (e.g., see Arm- 
strong [1974]). This section is divided into 
two parts; the first is concerned with stud- 
ies involving propositional logic, and the 
second with studies involving first-order 
logic. 

1.4.1 Propositional Logic and Dependencies 

Delobel, Fagin, Parker, and Sagiv [Delobel 
and Parker 1978; Sagiv and Fagin 1979; 
Sagiv et al. 1981] have shown that an equiv- 
alence exists between some dependencies 
and a fragment of the propositional logic. 
They have shown that functional depend- 
encies (FDs) [Codd 1970] and multivalued 
dependencies (MVDs) [Fagin 1977b; Zan- 
iolo 1976] can be associated with proposi- 
tional logic statements. The equivalence 
developed between these dependencies and 
propositional logic extends earlier results 
of Fagin [1977a] and also Delobel and 
Casey [1973] that relate FDs to the theory 
of Boolean switching functions. 

The above-mentioned equivalence pro- 
vides new techniques for proving properties 
of FDs and MVDs, and for solving the 
membership problem for those dependen- 
cies. Additionally, shorter and simpler 
proofs have been obtained for important 
theorems about FDs and MVDs, and strat- 
egies developed for special-purpose theo- 
rem provers provide efficient algorithms for 
the membership problem. Furthermore, on 
the basis of a proof of this equivalence, a 
characterization of the dependency basis in 
terms of truth assignments has been given 
by Fagin [1977b]. This has led to the de- 
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velopment of an efficient membership al- 
gorithm for FDs and MVDs by Sagiv 
[1980], which has been supplanted by a 
faster algorithm by Galil [1982]. As another 
application of this equivalence, Parker and 
Delobel [1979] have developed an algo- 
rithm to determine whether a set of attri- 
butes is a key for a relation, that is, whether 
a set of attributes uniquely determines a 
tuple in the relation and is itself not con- 
tained i n a n y  other set of attributes that 
uniquely determines a tuple. 

The equivalence, first established for 
FDs, was extended later to include MVDs 
[Sagiv et al. 1981]. It has also been ex- 
tended to other kinds of dependencies, for 
example, Boolean dependencies, which are 
expressions of attributes built using the 
Boolean operators &, V, -~. For example, 
A V (B & -~C) is a Boolean dependency 
whose meaning is "for every pair of tuples, 
either the two tuples agree on attribute A, 
or the two tuples agree on attribute B and 
disagree on attribute C." However, al- 
though this shows that the equivalence can 
be extended to some generalization of FDs, 
it cannot be extended to embedded MVDs 
(MVDs that hold for a projection of a re- 
lation) or to mutual dependencies for which 
the inferential structure of propositional 
logic seems to be too weak [Delobel 1978]. 
Nicolas [1978] was the first to suggest that 
first-order logic be used. However, before 
considering first-order logic, we note a sim- 
ilar equivalence result between FDs ob- 
tained by Vassiliou [1980], who redefined a 
FDs interpretation in order to account for 
null values, and implicational statements 
of a model propositional logic system. Vas- 
siliou exploited this equivalence, notably, 
for proving the completeness of a set of 
inference rules for those "newly inter- 
preted" FDs. 

1.4.2 First-Order Logic and Dependencies 

By considering dependencies as first-order 
formulas, one provides advantages similar 
to those sketched for propositional logic; 
results from proof theory and model theory 
can be used to study their properties. 

Dependency statements can be expressed 
as first-order formulas. For example, given 
a relation scheme R(ABCD), the FD C --~ D 

and the MVD A ~ ~ B are, respectively, 
equivalent to the following two first-order 
formulas: 

Vx . . .  Vv ' (R(x ,  y, z, v) 

& R(x ' ,  y' ,  z, v') ~ (v = v')), 

Vx . . .  Vv ' (R(x ,  y, z ' ,  v ')  

& R(x, y ' ,  z, v) ~ R(x, y, z, v)). 

New kinds of dependencies have been 
characterized and defined directly as par- 
ticular first-order formulas. Typical of this 
are generalized dependency statements 
(GDs) and their embedded version (EGDs) 
[Grant and Jacobs 1982], implicational de- 
pendencies (IDs) and their embedded ver- 
sion (EIDS), and extended embedded IDs 
(XEIDs) [Fagin 1980, 1982], and tuple- and 
equality-generating dependencies [Beeri 
and Vardi 1980, 1981]. We briefly specify 
the main results related to these depend- 
encies below. 

Essentially, generalized dependencies are 
Horn clauses that contain no function sym- 
bols; they capture FDs, MVDs, JDs {join 
dependencies), IDs, and some other con- 
straints. Horn clauses are defined in Sec- 
tion 1.2 and in Section 2. After studying the 
implication problem for GDs, Grant and 
Jacobs [1982] proposed a decision proce- 
dure for determining whether a GD is a 
logical consequence of a set of GDs. This 
procedure is related to both techniques 
from automatic theorem proving and the 
"chase method," a decision procedure for 
dependencies described by Maier et al. 
[1979] on the basis of the tableau formalism 
of Aho and Ullman [1979]. 

Horn clauses were also used to define 
EIDs, which were studied to "help bring 
order to the chaos by presenting certain 
mathematical properties shared by all (the 
previously defined) dependencies" [Fagin 
1980, 1982]. Among these properties are 
domain independence, which means that 
whether or not a dependency holds for a 
relation can be determined independently 
of the underlying domains of the attributes 
in the relation, satisfiability on empty rela- 
t/ons (i.e., relations with no tuples), and 
faithfulness with regard to a version of the 
Cartesian product called direct product. 
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As principle results for EIDs, Chandra et 
al. [1981] have shown that any set D of 
EIDs admits an Armstrong relation (i.e., a 
relation that obeys all.dependencies in D - -  
and their consequences--but no others) 
and that the decision problem for this class 
of dependencies is undecidable. However, a 
complete set of inference rules has been 
given for the equivalent class of algebraic 
dependencies [Yannakakis and Papadimi- 
triou 1982]. 

On the basis of the formulation of de- 
pendencies as first-order formulas, Beeri 
and Vardi [1980, 1981] have studied the 
implication problem for a general class of 
dependencies, the tuple- and equality-gen- 
erating dependencies (tgds and eqds), and 
for some of its subclasses. These depend- 
encies, which, in fact, correspond to EIDs, 
intuitively require that, "if some tuples ful- 
filling certain conditions exist in the data- 
base, then either some other tuples (possi- 
bly with unknown values), fulfilling certain 
conditions, must also exist in the database 
(tgds), or some values in the given tuples 
must be equal (eqds)" [Beeri and Vardi 
1980, 1981]. 

In the same work Beeri and Vardi pro- 
posed an extension to the chase method 
(see also Sadri and Ullman [1980, 1982]), 
which provides a proof procedure for these 
dependencies and a decision procedure for 
total dependencies (i.e., nonembedded). A 
decision procedure is guaranteed to termi- 
nate in any case, whereas a proof procedure 
is not guaranteed to terminate when D does 
not imply d. It is worth noting that, when 
described in the formalism of logic, the 
chase method corresponds to a well-known 
theorem-proving procedure by refutation 
(using resolution and paramodulation) 
[Beeri and Vardi 1981]. 

We have described results by using logic 
that relates to conventional relational da- 
tabases; in the following section, we de- 
scribe how logic extends conventional da- 
tabases to permit deduction and sheds new 
insight into problems concerning negative 
and incomplete information. 

2. DEDUCTIVE DATABASES 

A deductive database is a database in which 
new facts may be derived from facts that 

were explicitly introduced. We consider 
such databases here from a proof-theoretic 
viewpoint as a special first-order theory. In 
this framework, we focus upon several sub- 
jects: the manner in which negative data 
are to be treated in a database, the null 
value problem in which the value of a data 
item is missing, and indefinite data in which 
one knows, say P(a) V P(b) is true, but one 
does not know if P(a) is true, P(b) is true, 
or both are true. 

We first provide the background for de- 
fining deductive databases, and then treat 
two different kinds of deductive databases: 
definite and indefinite. It will be seen that 
assumptions generally made with respect 
to definite databases do not apply directly 
to indefinite databases. Finally, we briefly 
discuss other extensions to deductive da- 
tabases and logic databases. 

For additional material on the subjects 
of deductive databases or logic and data- 
bases not covered in this survey article, see 
Gallaire et al. [1984], the Proceedings of the 
First Conference on Logic Programming 
[1982], the Logic Programming Workshop 
Proceedings [1983], the International Joint 
Conference on Artificial Intelligence [1983], 
the International Symposium on Logic Pro- 
gramming [1984], and other conferences 
devoted to artificial intelligence and logic 
programming. 

2.1 Definition of Deductive or Logic 
Databases 

In general, we shall consider a database 
to consist of a finite set of constants, say 
{cl . . .  cn}, and a set of first-order clauses 
without function symbols (see Section 1.2). 
Functions are excluded in order to have 
finite and explicit answers to queries. Ini- 
tially our theory precludes null values that 
arise in a database when one has state- 
ments such as (3x)P(a, x), that is, linked 
to "a" in the predicate P there is a value, 
but its precise value is unknown. When one 
skolemizes the formula (3x)P(a, x) and 
places it in clause form, the clause P(a, ~o) 
results, where o0 is a Skolem constant (i.e., 
a constant whose value is otherwise uncon- 
strained). 
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The general form of clauses that  will 
represent facts and deductive laws is 

P i  & P2 & . . .  & Ph---~R1V . . .  V Rq. 

It is equivalent to the clause 

~P1 V . . .  V -~Pk V R1 V . . .  V Rq. 

The conjunction of the Pi is referred to 
as the left-hand side of the clause and the 
disjunction of the Rj as the right-hand side. 
Since the clauses that  we will consider are 
function free, terms that  are arguments of 
the Pi and Rj are either constants or vari- 
ables. Whenever any variable that  occurs 
in the right-hand side of a clause also occurs 
in the left-hand side, the clause is said to 
be range restricted.  We shall briefly discuss 
various types of clauses depending on the 
respective values of k and q, as in Minker 
[1983]: 

Type  1: k = 0, q = 1. Clauses have the 
form 

P ( t l ,  . . . , tm). 

(a) If the ti are constants, Cil, . . . ,  Cim, 
then one has 

P(c i l ,  . . . ,  Vim), 

which represents an assertion or a fact in 
the database. The set of all such assertions 
for the predicate letter P corresponds to a 
"table" in a relational database. The arrow 
preceding an assertion will generally be 
omitted. 

(b) When some, or all, of the ti are vari- 
ables, the clause corresponds to a general 
statement in the database. For example, 

Ancestor(Adam, x), 

states that  Adam is an ancestor of all in- 
dividuals in the database (the database con- 
sists only of human beings). Clearly, such 
data, which are not range-restricted clauses 
and therefore assume that  all the individ- 
uals in the database are of the same "type," 
appear very seldom. 

Type  2: k = 1, q = 0. Clauses have the 
form 

P( t l  . . . . .  tin) ---~. 

(a) When all of the ti are constants, then 
we have 

P(Cil, • . . ,  Cim) ~ ,  

which stands for a negative fact. Negative 
statements may seem peculiar since rela- 
tional databases do not contain negative 
data. We shall return to this topic in a later 
section. 

(b) Some of the ti are variables. This may 
either be thought of as an integrity con- 
straint (as a particular Type 3 clause; see 
below), or as the "value does not exist" 
meaning for null values (see Section 1.1.3). 

T y p e  3: k > 1, q = 0. Clauses have the 
form 

PI  & " '"  & Pk ' -~ .  

Such axioms may be thought of as integrity 
constraints. That  is, data to be added to a 
database must satisfy the laws specified by 
the integrity condition to be allowed in the 
database. For example, one may specify an 
integrity law that  states that  "no individual 
can be both a father and a mother of an- 
other individual." This may be specified as 

FATHER(x,  y) & MOTHER(x,  y) --~. 

If FATHER(JACK, SALLY) is already in 
the database, an at tempt to enter 
MOTHER(JACK, SALLY) into the data- 
base should lead to an integrity violation. 
This does not rule out other kinds of integ- 
rity constraints. 

T y p e  4: k _> 1, q = 1. Clauses have the 
• form 

P I  & P2 & "'" & P k i >  R1. 

The clause may be considered to be either 
an integrity constraint or a definition of 
the predicate R1 in terms of the predicates 
P1 . . . . .  Pk (such a definition is a deductive 
law). 

Type  5: k = 0, q > 1. Clauses have the 
form 

- - ~ R i V R 2 V . . .  VR1. 

If the xi, i = 1, . . . ,  n are constants, then 
we have an indef in i te  assert ion.  That  is, any 
combination of one or more Ri is true, but 
we do not know which ones are true. 
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Type 6: k _> 1, q > 1. Clauses have the 
form 

PI & P2 & . . . & Ph--~ R1V R2 V . . . V Rq. 

The clause may be interpreted as either an 
integrity constraint or the definition of in- 
definite data. An integrity constraint that 
states that each individual has at most two 
parents may be written as 

P(x~, Yl) & P(Xl, Y2) & P(Xl, y3) 

--~ (yl = y2) V (yl = y3) V (Y2 ~- Y3). 

As a general rule of deduction we might 
have 

Parent(x, y)  --~ Mother(x, y)  

V Father(x, y). 

This general law could also be inter- 
preted as an integrity constraint. 

Finally, a clause where k = 0, q = 0 (the 
empty clause) denotes falsity and should 
not be part of a database. Furthermore, we 
shall call a clause definite if its right-hand 
side consists of exactly one atom (i.e., Type 
lb  or Type 4). 

All the types of clauses defined above, 
except ground facts (Type la), are treated 
as integrity constraints in conventional da- 
tabases. In a deductive database some of 
them may be treated as deductive laws. We 
shall distinguish two classes of databases: 
definite databases in which no clauses of 
either Type 5 or Type 6 appear and indef- 
inite databases in which such clauses do 
appear. 

2.2 Definite Deductive Databases (DDDBs) 

2.2. I A Formal Definition of DDDBs 

A definite deductive database is defined as 
a particular first-order theory (together 
with a set of integrity constraints). This 
theory is obtained from the theory given 
for conventional databases in Section 1.3 
by the addition of a new class of axioms, 
which stand for the deductive laws, and by 
a reformulation of the completion axioms, 
which account for the presence of these new 
axioms. More precisely, a definite deductive 
database consists of the following: 

• 171 

(1) A theory T whose proper axioms a r e  

• Axioms 1 (the particularization axioms): 
the domain closure axiom, the unique 
name axioms, the equality axioms (as 
given in Section 1.3), and the completion 
axioms (one for each predicate in T) 
whose formulation is given below. 

• Axioms 2 (the elementary facts): a set 
of ground atomic formulas defined by 
clauses of Type la  in Section 2.1. 

• Axioms 3 (the deductive laws): a set of 
function-free definite clauses of Type 4 
(or Type lb) in Section 2.1. 

(2) A set of integrity constraints IC, 
which consists of any closed formulas. 

The completion axiom for a predicate P 
is now not only built from the facts related 
to P (which occur in Axioms 2), but  also 
from the "only if" missing part  of the def- 
inite clauses defining P (which occur in 
Axioms 3). For example, let P have the 
following assertions in T: 

P(ci, cj), 

P(%, Cq), 

and let 

Q(x, y) & R(y, z) --0 P(x, z), 

and 

S(x, y) ~ P(x, y), 

be all the clauses in Axioms 3 that  imply 
P; then, the completion axiom for P is 

P(x, y) --~ ((x = Cl) & (y = cj)) 

V ((x = Cp) & (y = Cq)) 

V (Q(x, y) & R(y, z)) 

V (S(x, y)). 

Such a completion axiom permits one to 
derive a negative fact ~P(d, e) whenever 
P(d, e) is neither in Axioms 2 nor derivable 
through Axioms 3. Thus from the database 
just specified we can derive ~P(ci, Cp). 

In such a deductive database the defini- 
tion of answers to queries and of the satis- 
fiability of integrity constraints is equiva- 
lent to their definition in a conventional 
database viewed from the proof-theoretic 
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perspective. An answer to a query W ( x l ,  
. . . .  x~), where xl, . . . ,  xp are free variables 
in W, is the set of tuples (cil . . . . .  % )  such 
that T ~ W(cil, . . . ,  %). Now, a deductive 
database obeys the integrity constraints in 
IC iff for any formula ¢ in IC T I- ¢. 

An alternative definition can be given for 
the satisfiability of integrity constraints: A 
deductive database obeys the integrity con- 
straints in IC iff T U IC (the axioms in T 
together with the formulas in IC) is con- 
sistent [Kowalski 1979]. Since the theory 
T, as defined above for a definite deductive 
database, is complete (i.e., for any closed 
formula W, either T I- W or T ~ -7 W), both 
definitions are equivalent in that case. 
However, for more general deductive data- 
bases whose corresponding theory is not 
complete, the second definition is less strin- 
gent than the first and its impact is worth 
investigating. 

Deductive laws (in Axioms 3) that imply 
a relation R provide an extended definition 
for R. The tuples <cil, . . . ,  cim) that "sat- 
isfy" R are not only those tuples such that 
R(cil . . . . .  cim) is a fact in Axioms 2, but 
also those tuples such that R(ca ,  . . . ,  ci,~) 
is derivable through the deductive laws. 
Relations that are jointly defined by deduc- 
tive laws and elementary facts in a deduc- 
tive database, called derived relations, con- 
stitute a generalization of relations defined 
as "views" in a conventional database. A 
"view" is a relation, not stored in the da- 
tabase, that is defined in terms of database 
relations or other views by a relational al- 
gebra (or calculus) expression. A derived 
relation reduces to a view when 

(i) there are no elementary facts in Ax- 
ioms 2 related to this relation, and 

(ii) no recursive deductive law or cycle ap- 
pears among the deductive laws that 
imply this relation in Axioms 3. 

In such a case, if E1 --~ R , . . . ,  Eq ~ R are 
all the deductive laws that imply R, this 
derived relation corresponds to the view 
V = E~ V . . .  V Eq. We note that Point (i) 
is not significant since two different names 
may be given to the "explicit part" and the 
"derived part" of a relation. However, Point 
(ii) has more impact. Some relations may 
be defined as derived relations, whereas 

strictly, they cannot be defined as views. A 
typical example is the Ancestor relation, 
which is the transitive closure of the Parent 
relation. Incidentally, we note that the re- 
lational calculus (or algebra) may be ex- 
tended (or embedded into another lan- 
guage) in order to be able to define such a 
relation as a view. However, since from a 
model-theoretic viewpoint the transitive 
closure of a relation is not first-order defin- 
able, one has to call for languages that are 
more powerful than first-order language. 
But, in a (definite) deductive database de- 
fined from a proof-theoretic point of view 
as above, the Ancestor relation can easily 
be defined as a derived relation in terms of 
two deductive laws: 

(Parent(x, y) --~ Ancestor(x, y), 

Ancestor(x, y )  & Parent(y, z) 

Ancestor(x, z)), 

and strictly remain in the context of first- 
order logic (see Section 1.1.2). 

Clearly, on considering the combinatorial 
complexity of the particularization axioms 
(Axioms 1), it would be quite inefficient to 
implement a (definite) deductive DBMS, 
while clinging to the formal definition of a 
DDDB given here, namely, to implement 
such a DBMS as a standard theorem prover 
that treats axioms in Axioms 1 in the same 
way as axioms in Axioms 2 or Axioms 3. 
The solution is similar to what is done for 
conventional DBMSs. It consists of substi- 
tuting adequate metarules (or metaconven- 
tions) for the particularization axioms, thus 
obtaining a so-called operational definition 
of a DDDB. The following section is de- 
voted to this issue. 

2.2.2 An Operational Definition of DDDBs 

Particularization axioms may be elimi- 
nated for DDDBs in a way that is similar 
to conventional databases, thus providing 
a convenient way to implement correspond- 
ing systems. First, calling for the domain 
closure axiom may be avoided by dealing 
with range-restricted formulas for query, 
integrity constraint, and deductive law for- 
mulation (see Section 1.1.1). Then, as dis- 
cussed by Kowalski [1978, 1979] and 
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proved by Clark [1978], the unique name 
and completion axioms may be removed, 
provided that negation is interpreted as 
{finite) failure (see also Jaffar et al. [1983] 
for a stronger result). The metarule of ne- 
gation as failure states that for any positive 
literal P, ~ -~P iff F- P; that is, failure to 
prove P permits one to infer "~P. Finite 
failure further requires that all proof at- 
tempts terminate. Finally, since the equal- 
ity axioms were needed only for the pres- 
ence of the equality predicate in the above 
axioms, they are no longer required. 

To summarize, keeping in mind that any 
formula now has to be range restricted, 
from an operational point of view a DDDBs 
consists of the following: 

(1) A set of axioms: Axioms 2 (elementary 
facts) U Axioms 3 {deductive laws). 

(2) A set of integrity constraints: IC. 
(3) A metarule: negation as finite failure 

(nff). 

Query answering and integrity constraint 
satisfiability remain defined as in Section 
1.3.1 except that, now "~" has to be inter- 
preted as "provable under nff." 

Negation as finite failure generalizes in 
the deductive databases case to the usual 
assumption underlying conventional data- 
bases for negative facts (see Section 1.3). 
The use of this concept was discussed as 
the "convention for negative information 
representation" by Nicolas and Syre [1974] 
and Nicolas and Gallaire [1978], and also 
described as the "closed world assumption" 
(CWA) 2 by Reiter [1978a, 1980]. This con- 
cept is also used in the artificial intelligence 
languages PLANNER [Hewitt 1972] and 
PROLOG [Roussel 1975]. 

The syntactic definition (i.e., according 
to proof theory) of negation as failure given 
above has a semantic {i.e., according to 
model theory) counterpart. Let G be the set 
of all possible ground {positive) atomic for- 
mulas constructible from the symbols in a 
given set of definite clauses. A Herbrand 
model for this set of clauses is a subset of 

2 There is the open world assumption (OWA) corre- 
sponding to the CWA that  provides a standard inter- 
pretation of negation as given with a full first-order 
theory. 

G that makes all the clauses true. It has 
been shown [Van Emden and Kowalski 
1976] that the intersection of all such 
models is itself a model, and indeed is the 
minimal model {i.e., it contains the mini- 
mal number of atomic formulas). If one 
substracts the set of atomic formulas in the 
minimal model from G, the remaining set 
of atomic formulas is the set of all formulas 
whose negations may be assumed to be true. 
These are the same atomic formulas ob- 
tained by the CWA. This shows that the 
CWA and negation as failure assume com- 
plete knowledge, and there are no unknown 
facts. A discussion of the semantic defini- 
tion of negation as failure can be found in 
Minker [1982] and Van Emden [1978]. 

Although the formal and operational def- 
initions of a DDDB are equivalent in the 
sense that they will give the same answers 
to queries, they are in fact not strictly 
equivalent. The formal definition is stated 
in standard first-order logic, which is mon- 
otonic, whereas the use of negation as fail- 
ure in the operational definition leads to a 
nonmonotonic logic. A logic is said to be 
monotonic if one is given a theory T (i.e., a 
set of axioms) in which a formula w can be 
proved (i.e., T t -  w), then the addition to T 
of an axiom A still permits one to prove 
w; that is, T U {A} ~ w. According to nega- 
tion as failure, -~P(b) can be inferred from 
{P(a), Q(b)} but not from {P(a), Q(b)} U 
{P(b)}; thus we have a nonmonotonic logic. 
For an analysis of the relation between 
predicate completion and work in artificial 
intelligence on nonmonotonic logic, the 
reader is referred to Reiter [1982]. 

Finally, we note that, as shown by Nico- 
las and Gallaire [1978] and formally proved 
by Reiter [1978a], a definite deductive da- 
tabase is always consistent under the CWA. 
The intuitive reason is that definite clauses 
preclude the derivation of positive facts 
from negative facts. We see in Section 2.3 
that this is not the case when indefinite 
clauses are accepted as deductive laws. 

2.2.3 Deductive Laws and Integrity Constraints 

Both deductive laws in Axioms 3 and integ- 
rity constraints in IC correspond to general 
knowledge of the world modeled by the 
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database. Given such general knowledge, 
we might inquire as to the basis on which 
one can decide to consider a general rule as 
a deductive law, and thus incorporate it in 
Axioms 3, or as an integrity constraint, and 
thus incorporate it as part of the IC. There 
is no final answer to this (database design) 
question, but  some suggestions are provided 
by Nicolas and Gallaire [1978] and Reiter 
[1978a, 1984]. They are briefly stated be- 
low. 

(i) If one wants to obtain finite and 
explicit answers to queries (i.e., sets 
of tuples of elements in the data- 
base), deductive laws have to be 
function free. Thus general knowl- 
edge that corresponds to formulas 
that do not fulfill this constraint 
should be treated as integrity con- 
straints. For example, the general 
knowledge "every teacher has a di- 
ploma," 

(Vx Vy(TEACH(x, y) 

(3z)DIPLOMA(x, z))), 

should be treated as an integrity 
constraint since the clause form of 
the axiom contains a Skolem func- 
tion. 

(ii) In order to avoid inconsistency with 
the CWA, one retains as deductive 
laws only general knowledge that 
corresponds to definite clauses (and 
thus use the other clauses as integ- 
rity constraints). However, as we 
shall see in Section 2.3, there is an- 
other possibility, which consists of 
modifying the CWA. 

(iii) Since purely negative clauses (i.e., 
clauses of Type 3 in Section 2.1) 
will never produce new facts (under 
the CWA), they need only be used 
as integri ty cons t ra in ts  [Reiter  
1978a]. 

(iv) General knowledge that implies in- 
stances of a relation that  is com- 
pletely defined independently of it 
will not, if used as a deductive law, 
produce any new valid facts and 
should be used as an integrity con- 
straint. 

For example, the general knowledge, "the 
age of any person is less than 150," 

(Vx Vy)(Age(x, y) ~ (y < 150)), 

used as a deductive law, would always pro- 
duce facts which are either inconsistent 
(e.g., 180 < 150) or redundant (e.g., 35 < 
150). A functional dependency statement 
such as 

(Vx Vx' Vy)(Father(x, y) & Father(x' ,  y) 

(x = x')), 

is another example of this kind. Hence 
these rules are best used as integrity con- 
straints. 

In the two examples above, the implied 
relations are of a particular kind, and it is 
generally agreed that they are defined in- 
dependently of any reference to a specific 
database. For more standard relations, it is 
a matter of choice (dependent upon data- 
base design) to decide what general knowl- 
edge and which assertions will participate 
in the complete definition of a relation. As 
an extreme ease, in a conventional database 
it is (implicitly) assumed that every relation 
(other than views) is completely defined in 
terms of elementary facts (the tuples in the 
corresponding table), and thus all general 
knowledge is used as integrity constraints. 

As noted by Kowalski [1979] and as we 
shall emphasize here, a deductive database 
can be viewed as a logic program that pro- 
duces facts (the facts in the minimal model 
characterized in Section 2.2.2) and whose 
integrity constraints are the program prop- 
erties. Modifications to the program (viz. 
database updates involving either deduc- 
tion laws or elementary facts) must pre- 
serve those properties. 

When general knowledge has been par- 
titioned between deductive laws and integ- 
rity constraints, they have to be exploited 
conjointly. Integrity checking in a deduc- 
tive context is discussed by Nicolas and 
Yazdanian [1978] and Reiter [1981], and a 
methodology for updating databases with 
integrity constraints and deductive laws 
was suggested by Fagin et al. [1983]. Fur- 
ther, query evaluation and update handling 
are uniformly treated by dos Santos et al. 
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[1981], where deduction provides either a~ 
analysis of a state of the database, that is, 
an answer to a query, or a plan, that is, a 
sequence of database modifications to reach 
a desired state. We now focus on deductive 
laws. 

As mentioned in the preceding section, 
the theory that constitutes a definite de- 
duciive database admits a (unique) mini- 
mal model. This (minimal) model consists 
of a set of facts that connotes that these 
are the facts that are true. These facts 
constitute the conventional database 
(CDB) underlying the deductive database. 
Now, one can choose to exploit the deduc- 
tive database in either of two ways. The 
underlying CDB can be kept implicit, in 
which case the deductive laws, or their com- 
piled form (see Section 2.2.4.2), have to be 
run at query evaluation time to find the 
(implicit) deducible facts. The alternative 
consists of making the underlying CDB 
explicit. To do so, deductive laws have to 
be run when new facts are inserted into the 
database to make explicit the deducible 
facts. Then query evaluation can be done 
as in a conventional database. In the first 
case deductive laws are said to be used as 
derivation rules, whereas in the second 
case, they are said to be used as generation 
rules [Nicolas and Gallaire 1978]. The re- 
spective advantages of derivation and gen- 
eration rules are discussed by Nicolas and 
Gallaire [1978] and Nicolas and Yazdanian 
[1982]. We only mention here that, as op- 
posed to derivation paths, "generation 
paths" stop naturally even when recursive 
rules or cycles among the rules appear. The 
interested reader will find a description of 
a prototype deductive DBMS by using gen- 
eration rules in Nicolas and Yazdanian 
[1982]. 

Finally, we note that exploiting deductive 
laws as generation rules can be viewed as 
an automatic revalidation of integrity con- 
straints in a conventional database. This 
can also be viewed as providing a gener- 
alization of "concrete views" [Blaustein 
1981], that is, views whose corresponding 
set of tuples is explicitly stored. 

In the following section we focus on 
proof-theoretic techniques used for exploit- 
ing derivation rules. 

2.2.4 Inference Methods and Database Access 

We shall describe two ways to perform the 
inference process: the interpretive and the 
compiled methods. 

The interpretive method works with a 
problem solver, using the deductive laws 
and interleaves search of the extensional 
DB (which contains the elementary facts, 
i.e., Axioms 2). In the compiled approach, 
the problem solver uses all of the deductive 
laws until a point is reached at which either 
the problem is solved or all that remains is 
to search for facts in the extensional DB. 
Both methods work well when deductive 
laws are assumed to be free of cycles, that 
is, when there are no recursive axioms. 
Otherwise, both have difficulties handling 
the termination problem, that is, detecting 
at which point no new solutions will be 
found. However, it should be possible to 
find such termination conditions, as only a 
finite number of tuples can be generated as 
answers to any query to a definite deductive 
database (function free, with a finite set of 
constants and consisting of only definite 
clauses). This problem has been studied by 
a number of authors [Chang 1981; Kunifuji 
and Yokota 1982; Minker and Nicolas 1982; 
Naqvi and Henschen 1984; Reiter 1978c; 
Shapiro and McKay 1980; Yokota et al. 
1983]. 

2.2.4.1 Interpretive Method o[ Deduc- 
tion. We shall describe the interpretive 
method for the following simple database. 
Let the facts in the database (the exten- 
sional DB) be 

F(e, b~) M(c, e) 
F(e, b2) M(c,[) 
F(e, b3) M(c,g) 

M(g, d) 

H(a, c) 

where F, M, and H stand, respectively, for 
Father, Mother, and Husband. Let the de- 
ductive laws be 

(A1) M(x, y) & M(y, z) ~ GM(x, z), 

(A2) M(x, y) & F(y, z) ~ GM(x, z), 

(A~) GM(z, y) & H(x, z) ~ GF(x, y). 

Relation GM (Grandmother) is said to be 
intensionally defined in terms of the exten- 
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sional relations F and M. Relation GF 
(Grandfather) is intensionally defined in 
terms of the extensional relation H and 
intensional relation GM, and hence in 
terms of the extensional relations F and M 
as well. There is no loss of generality in 
assuming that no relation is hybrid; that is, 
all relations are either (purely) intensional 
or (purely) extensional (e.g., see Minker 
[1982]). We illustrate the interpretive ap- 
proach, starting from a query GF(a, y): 

(1) GF(a, y), 

and applying A3, using the Robinson Res- 
olution Principle (Section 1.2) yields 

(2) GM(z, y) & H(a, z) 

as the subproblems to be solved. At this 
point a selection function could be used to 
provide advice to solve H(a, z) first. The 
reason for selecting H(a, z) first is that it 
contains a constant and is presumably eas- 
ier to satisfy than the case where one ar- 
bitrarily looks for a tuple that satisfies 
GM(z, y) and hopes that the value of z, 
when substituted into H(a, z), will be in the 
database. By accessing the database, we 
find that H(a, c) is in the database and z is 
bound to c. Now, the subproblem 

(3) GM(c, y) 

remains to be solved. Since there are two 
ways to solve this last goal on the DB 
(Axioms A1 and A2), a choice is made to 
select Rule A2, yielding 

(4) M(c, Yl) & F(yl,  y), 

which now must be solved. These subprob- 
lems may be solved in two steps, to obtain 
one answer, {bl}. However, the process is 
not finished, and backtracking at previous 
choice points will yield {b2, b3, d} as further 
answers. So, for the sake of efficiency, at 
each step one has to involve a selection 
function and a choice function. Some of the 
variants of this basic method have explored 
the idea of obtaining the whole set of an- 
swers at each access to the DB, rather than 
one at a time [Chakravarthy et al. 1982; 
Minker 1975a, 1975b, 1978a, 1978b]. AI- 

though no termination conditions are 
known in the general case, one should note 
that this problem also exists in logic pro- 
gramming, where it is left up to the skill of 
the programmer to specify a termination 
condition. 

2.2.4.2 Compilation Method of Deduc- 
tion. Access to the database is delayed in 
the deductive process until all the work 
remaining to be done for query evaluation 
is to access the database. This should allow 
the possibility for global optimizations of 
DB accesses. The method was basically 
described by Chang [1978], Furukawa 
[1977], Kellogg et al. [1978], Kellogg and 
Travis [1981], and Reiter [1978b]. Two pos- 
sible techniques can be used. In the first 
technique, which could be called a pseudo- 
compilation technique, only one path at a 
time i s pursued. That  is, a single expression 
involving only extensional relations is pro- 
duced at a given time; backtracking then 
produces further expressions. This is 
clearly a source of redundant work. With 
the above deductive laws, first one would 
get the expression 

M(z, Yl) & M(yl,  y) & H(a, z), 

which would be passed over to the DB 
evaluator, and along a second path one 
might generate the expression 

M(z, Yl) & F(yl, y) & H(a, z), 

which has obvious redundancies with the 
previous expression [Chakravarthy et al. 
1982; Kunifuji and Yokota 1982]. The sec- 
ond technique aims at producing an itera- 
tive program that  synthesizes the set of all 
retrieval expressions. Let us illustrate it by 
extending the deductive laws of our pre- 
vious example to the following intensional 
recursive relation (Ancestor): 

F(x, y) & A(y, z) ~ A(x, z), 

M(x, y)  ~ A(x, y). 

In this case, a method described by Naqvi 
and Henschen [1980, 1984] would produce 
the following program from an initial query 
A(?, a). 
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Z2 :'~- a 

eval(F(y2, yl) & M(yl, z~)) 
/likely to access M first/ 

print(y1) /there may be several values of yl/ 
enque(S, yl) 

/put in set S those values not already put into 
it/ 

while(S ~ empty) do 
y2 := deque(S) /take the first element/ 
eval(F(y3, y2)) 
print(y3) 
enque(S, y3) 
end 

This method is general but suffers from 
some drawbacks in that some redundancy 
may still remain. The enque process may 
be time consuming and the program gen- 
erated depends on the initial query. 

2.3 Indefinite Deductive Databases (IDDDBs) 

An indefinite deductive database differs 
from a definite deductive database (refer- 
ring to its operational definition) in Axioms 
3 and the metarule to handle negation. The 
difference in Axioms 3, although seemingly 
minor, will be seen to be substantial. We 
define Axioms 3' as follows: 
• Axioms 3': a set of function-free definite 

or indefinite clauses. An indefinite 
clause is to the form given by Type 5 or 
Type 6 in Section 2.1, for example, 

P(a, b) V Q(c, d, e), 
o r  

R(x, y) & T(y, z) 
P(x, z) V Q(x, y, z). 

More precisely, an indefinite deductive da- 
tabase consists of 
(1) A set of axioms T, where T = Axioms 

2 U Axioms 3'. 
(2) A set of integrity constraints IC. 
(3) A metarule: generalized negation as 

failure, described below. 

The addition of indefinite clauses 
changes matters radically. Methods and re- 
sults that apply to definite deductive data- 
bases do not apply to indefinite deductive 
databases. For example, an indefinite 
database may be inconsistent under the 
CWA. Consider a database that  consists of 
a single fact, 

cat(felix), 

and of a single deductive law, 

cat(x) ~ black(x) V white(x). 

Since black(felix) cannot be proved, appli- 
cation of the CWA leads to 

}- -%lack(felix). 

Similarly, one can also conclude 

}- -~white(felix). 

But the set 

{cat(x) --~ black(x) 

V white(x), cat(felix), 

-Tblack(felix), -Twhite(felix) } 

is obviously inconsistent. Hence the closed 
world assumption (negation as failure) as 
defined for definite databases is not appli- 
cable to indefinite databases. 

The concept of a CWA can be extended 
to achieve a generalized closed world as- 
sumption (GCWA) as follows. Let E be the 
set of all purely positive (possibly empty) 
clauses not provable. Then assert ~P(x)  iff 
P(x) V C is not provable for any C in E. 
We also refer to this as generalized negation 
as failure. As in the case of definite data- 
bases, one can obtain a semantic interpre- 
tation of generalized negation as failure. 
But, whereas in a definite database there is 
a unique minimal model, in an indefinite 
database a set of minimal models arises. 
The GCWA as defined above was intro- 
duced by Minker [1982]. In the case where 
no general axioms appear other than defi- 
nite ground clauses, Grant and Minker 
[1983] have developed an algorithm on the 
basis of the GCWA to compute answers to 
queries. Although the GCWA provides a 
sound formal basis, this notion has not yet 
been shown to be sufficiently efficient when 
general axioms are permitted to be directly 
usable in practice. A variant that  may be 
more promising from a practical point of 
view was introduced independently, and 
widely studied by Bossu and Siegel [1981]. 

The GCWA treats null values correctly, 
where it is meant here that  the null value 
is among the constants already known in 
the database. Let the database consist of 
{P(o~), Q(a), Q(b)}, where '00' is a null value, 
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or Skolem constant that arises from the 
statement 3xP(x).  If the domain D consists 
only of {a, b}, then the existentially quan- 
tified statement corresponds to 

(3xP(x)) ~ P(a) V P(b). 

Hence P(~) is a shorthand notation for 
P(a) V P(b). If one were to replace the entry 
P(o~) with P(a) V P(b), and the database 
were treated under the GCWA, one could 
not conclude ~P(a) from this database. The 
null value is then treated correctly. A dis- 
advantage to this approach is that of having 
to list a potentially long disjunction for a 
database with many constants in its do- 
main. 

Another major difference is that the de- 
duction mechanism needs to be more com- 
plex for indefinite databases than for defi- 
nite deductive databases. Indeed, proof 
strategies such as input resolution [Chang 
1970] and LUSH resolution [Hill 1974], 
although complete for Horn clauses, are not 
complete for non-Horn clauses. When deal- 
ing with indefinite clauses, a complete 
proof strategy such as linear resolution 
[Loveland 1969, 1970; Reiter 1971], linear 
resolution with selection function (SL) 
[Kowalski and Kuehner 1971], or linear 
resolution with unrestricted selection func- 
tion based on trees (LUST) [Minker and 
Zanon 1982] is required. 

Answers in an indefinite deductive da- 
tabase are no longer definite. That  is, if the 
entire database consists of the single entry 
P(a) V P(b), then the answer to the query 
P(x)?  is x = a + b, which denotes that 
either x = a or x = b or both satisfy the 
query. The problem of indefinite answers 
is addressed by Reiter [1978b] and Grant 
and Minker [1983]. 

Minker and Perlis [1983, 1984] treat a 
different kind of indefiniteness. Users may 
know that some of their facts are correct. 
They may also know that they are not 
willing to make statements about other 
facts. That  is, the facts may or may not be 
true. In either a conventional or a deductive 
database there is no facility available to 
store facts and specify to the user that  these 
facts may or may not be true. To account 
for this possibility Minker and Perlis have 
generalized the concept of circumscription 

developed by McCarthy [1980] to what they 
call protected circumscription. They have 
shown that the user can then obtain an- 
swers of the form yes, no, and unknown. 
Efficient computational techniques are re- 
quired to make the approach practical. 
They have also developed a completeness 
and soundness result for protected circum- 
scription in the case of finitary data, and 
hence for cases of interest to databases. 

2.4 Logic Databases 

The presentation of deductive databases 
given in the preceding sections essentially 
reflects a view from the perspective of con- 
ventional databases, that is, a "DB field" 
view. Starting with a conventional DB, one 
introduces some ad hoc deductive capabil- 
ities while keeping (as far as possible) the 
usual DB conventions. For example, only 
function-free formulas are retained, but 
clearly, authorizing functions allows more 
general forms of data to be manipulated 
(i.e., general terms instead of only con- 
stants and variables), which eventually give 
a different conceptual model to the user 
(e.g., semantic networks; see Deliyanni and 
Kowalski [1979] for a discussion as to how 
semantic networks can be represented in 
logic). We do not consider an (extended) 
deductive database as an unconstrained 
first-order theory because its implementa- 
tion would be extremely inefficient. 

Introducing functions into DB Horn 
clauses takes the deductive database field 
closer to the field of logic programming. It 
is thus not surprising to see the same en- 
hancements carried out for both fields. 
Horn clauses augmented with negation as 
failure led to the PROLOG language, which 
has been demonstrated to be efficient 
[Roussel 1975]. A PROLOG program is 
quite similar to a definite deductive data- 
base (up to functions). However, this does 
not mean that a standard interpreter for 
such a language constitutes a DDBMS that 
must not only provide us with query facili- 
ties, but also with functions for integrity 
and maintenance of deduced facts. A logic 
database system would be obtained by com- 
bining the above-mentioned facilities with 
an efficient access method to a large num- 
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ber of facts. Such an integration can be 
realized in various ways (see Chakravarthy 
et al. [1982] and Gallaire [1983]). It should 
be clear that a logic database language 
could be continuously extended, by provid- 
ing extensions to negation as failure, incor- 
porating metalanguage capabilities and 
other capabilities. This could prove useful 
for databases, as argued by Kowalski 
[1981a]. 

3. CONCLUSION 

We have attempted to cover results ob- 
tained within the framework of mathemat- 
ical logic applied to databases mainly 
through the perspective of deductive data- 
bases. We have shown how logic applies to 
query languages, integrity modeling and 
maintenance, query evaluation, database 
design through dependencies, representa- 
tion and manipulation of deduced facts, and 
incomplete information. However, the field 
of logic and databases, as it is called, is far 
from closed; logic provides an appropriate 
framework for many database problems 
that still need to be investigated thor- 
oughly. We note some of these problems 
below. Many of the problems listed below 
as needing continued research have been 
drawn from a report to which the first and 
third authors of this paper contributed 
[Adiba et al. 1982] (see also Reiter [1984]): 

• Designing natural language query sys- 
tems, whatever "natural" means. 

• Optimizing query evaluation based on se- 
mantic knowledge, which is needed, in 
general, for interactive access to data- 
bases and especially in a natural language 
context. 

• Finding criteria and methods for choosing, 
between equivalent sets of integrity con- 
straints, a good set, where "good" means 
constraint sets that are easy to check and 
to maintain. 

• Finding criteria to decide which relations 
should be base relations and which should 
be derived or hybrid relations, in other 
words, what general knowledge should be 
used as integrity constraints and what 
should be used as deduction rules. 

• Finding more efficient means for detecting 
the violation of integrity constraints. 

• Synthesizing a program preserving integ- 
rity from transaction specifications and 
integrity constraints, both expressed in 
logic. Since such a program could also 
be written in logic (programming), the 
field of logic and databases appears to be 
particularly well suited here. 

• Relaxing some of the conditions for a for- 
mula to be an integrity constraint and 
investigating the interest of such less 
stringent definitions. 

• Embedding data manipulation languages 
in programming languages. In deductive 
databases one usually considers the de- 
ductive component to be part of the 
DBMS. However, it is possible to inter- 
face a (conventional or deductive) DBMS 
with a logic programming language, for 
example, PROLOG. Such an integration 
is accomplished most easily when the 
DBMS language is predicate calculus ori- 
ented; a full integration could result in 
which the DBMS appears as the part of 
the programming system specialized to 
the manipulation of facts. 

• Looking for practical solutions to handle 
general forms of incomplete informa- 
tion. Although satisfactory solutions 
have been found for some incomplete in- 
formation problems, major developments 
are needed to be able to handle practical 
problems. It will be necessary to investi- 
gate the concepts of circumscription and 
protected circumscription to expand their 
applicability to databases. The investi- 
gation of incomplete information is inti- 
mately connected with null value prob- 
lems. 

• Investigating how logic can help in defin- 
ing the so-called semantic models, which 
appear as competitors to the relational 
model both for classical database appli- 
cations and for more ambitious applica- 
tions, where various types of data must 
be handled (e.g., text, computer-assisted 
design data, graphics). Such research will 
pursue problems identical to those in 
knowledge representation. 

As we have attempted to demonstrate in 
this survey article, the field of logic and 
databases is important both to conven- 
tional and deductive databases. In this con- 
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nection we note that "logic and databases" 
as have been described in this paper con- 
stitute the core of the work in Japan in the 
field of knowledge bases in their "Fifth- 
Generation Project." 

Logic, we believe, provides a firm theo- 
retical basis upon which one can pursue 
database theory in general. There are many 
research areas that remain to be investi- 
gated in addition to those listed above be- 
fore a full understanding of databases is 
achieved. We believe that the field of logic 
and databases will contribute significantly 
to such an understanding. At the same 
time, we believe that logic databases may 
be made practical and efficient, as has been 
described by the many developments re- 
ported on in this survey. 
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