
Logic and Databases: A Deductive Approach

HERVI~ GALLAIRE

Compagnie G~n~rale d'I~lectricit~ Laboratoire de Marcoussis, Marcoussis, France

JACK MINKER

University of Maryland, Computer Science Department, College Park, Maryland

JEAN-MARIE NICOLAS

ONERA-CERT, D~partement d'In[ormatique, Toulouse, France

The purpose of this paper is to show that logic provides a convenient formalism for
studying classical database problems. There are two main parts to the paper, devoted
respectively to conventional databases and deductive databases. In the first part, we focus
on query languages, integrity modeling and maintenance, query optimization, and data
dependencies. The second part deals mainly with the representation and manipulation of
deduced facts and incomplete information.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Desigum
data models; H.2.3 [Database Management]: Languages--query languages; H.2.4
[Database Management]: Systems--query processing

General Terms: Deductive Databases, Indefinite Data, Logic and Databases, Null Values,
Relational Databases

INTRODUCTION
As emphasized by Codd [1982], theoretical
database studies form a fundamental basis
for the development of homogeneous and
sound database management systems
(DBMS), which offer sophisticated capa-
bilities for data handling. A comprehensive
study of the many problems that exist in
databases requires a precise formalization
so that detailed analyses can be carried out
and satisfactory solutions can be obtained.
Most of the formal database studies that
are under way at present are concerned
with the relational data model introduced
by Codd [1970], and use either a specially
developed database theory [Maier 1983;

Current address of Herv~ Gallaire and Jean-Marie
Nicolas: European Computer-Industry Research
Centre (ECRC), Arabellastrasse 17, D-8000 Miinchen
81, FRG.

Ullman 1982] or other formal theories such
as mathematical logic as their framework.
The purpose of this paper is to provide an
overview and a survey of a subfield of logic
as it is applied to databases. We are mostly
concerned with the application of logic to
databases, where logic may be used both as
an inference system and as a representation
language; we primarily consider relational
type databases. Some important efforts in
the application of other aspects of logic
theory to databases (e.g., see Maier [1983],
Ullman [1982], and the references provided
there) or those that deal with nonrelational
(i.e., hierarchical and network) databases
{e.g., see Jacobs [1982] and Jacobs et al.
[1982]) are not covered here.

The use of logic for knowledge represen-
tation and manipulation is primarily due to
the work of Green [1969]. His work was the
basis of various studies that led to so-called

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0360-0300/84/0600-0153 $00.75

Computing Surveys, Vol. 16, No. 2, June 1984

154

CONTENTS

• H. Gallaire, J. Minker, and J.-M. Nicolas

INTRODUCTION
1.1 Relational Model
1.2 Mathematical Logic
1.3 Databases Viewed through Logic

1. CONVENTIONAL DATABASES
1.1 Query Languages
1.2 Integrity Constraints
1.3 Query Optimization
1.4 Database Design

2. DEDUCTIVE DATABASES
2.1 Definition of Deductive

or Logic Databases
2.2 Definite Deductive Databases (DDDBs)
2.3 Indefinite Deductive Databases (IDDDBs)
2.4 Logic Databases

3. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

v

question-answering systems, which are
concerned mainly with a highly deductive
manipulation of a small set of facts, and
thus require an inferential mechanism pro-
vided by logic. Similar techniques have
been adapted to databases to handle large
sets of facts, negative information, open
queries, and other specific database topics.
These techniques have given rise to what
is called deductive databases. However, the
use of logic to study databases is not re-
stricted to providing deductive capabilities
in a DBMS; the pioneering work of Kuhns
[1967, 1970] also uses logic for conventional
databases to characterize answers to quer-
ies.

Aside from the introduction and conclu-
sion to this paper, there are two main sec-
tions, which are devoted respectively to
conventional databases and deductive da-
tabases. In this introduction we provide
background material to familiarize the
reader with the terminology used through-
out the paper, introducing the reader to
concepts in relational databases, to the area
of mathematical logic, and to the basic re-
lationships between logic and databases.
Section 1 is an extended and revised ver-
sion of material that appeared in GaUaire
[1981]. This material shows how logic pro-
vides a formalism for databases, and how
this formalism has been applied to conven-

tional databases. Its use in query languages,
integrity modeling and maintenance, query
evaluation, and database schema analysis
is described. In Section 2 we show how logic
extends relational databases to permit de-
duction and describe how logic provides a
sound basis for a proper treatment and
understanding of null values and incom-
plete information.

In the remainder of this introduction, we
first describe the main concepts of the re-
lational data model. Following this, we
specify what is meant by mathematical
logic, focusing on logic relevant to data-
bases rather than logic in general. Finally,
we briefly introduce two ways in which
databases can be considered from the view-
point of logic.

1.1 Relational Model

To define a relational model we need
some concepts. A domain is a usually finite
set of values. The Cartesian product of
domains D1 , Dn is denoted by D1
× . . . x Dn and is the set of all tuples
(Xl, . . . , x,) such that for any i, i = 1
n (xl ~ D1). A relation is any subset of the
Cartesian product of one or more domains.
A database {instance) is a finite set of finite
relations. By a finite relation we mean that
the extension of the relation {i.e., the total-
ity of all tuples that can appear in a rela-
tion) is finite. The arity of a relation R C
D1 × . . . × D, is n. One may envision a
relation to be a table of values. Names are
generally associated with the columns of
these tables; these names are called attri-
butes. Values of an attribute associated
with column i of a relation are taken from
domain Di. A relation R with attributes A1,
. . . . An defines a relation scheme denoted
as R(A1, . . . , An), whereas the specific re-
lation R (i.e., the relation with specified
tuples) is said to be an instance or extension
of the relation scheme.

Not all instances of a relation scheme
have meaningful interpretations; that is,
they do not correspond to valid sets of data
according to the intended semantics of the
database. One therefore introduces a set of
constraints, referred to as integrity con-
straints, associated with a relation scheme

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 155

to ensure that the database meets the in-
tended semantics. Integrity constraints
may involve interrelationships between re-
lations.

To summarize, a database scheme con-
sists of a collection of relation schemes
together with a set of integrity constraints.
A database instance, also called a database
state, is a collection of relation instances,
one for each relation in the database
scheme. A database state is said to be valid
if all relation instances that it contains
obey the integrity constraints. In this pa-
per, values in database/relation instances
are referred to as elements, constants, or
individuals, depending on the context.

To manipulate data in a relational data-
base, a language is introduced. One may
introduce an algebraic language based on
algebraic operators, or a calculus language,
which we discuss in the following section.
In an algebraic language we need only two
operators for our purposes: the project and
join operators. Given a relation R, and X a
set of attributes of R, then the projection of
R on X is {s[X][s E R}, where siX] is a
tuple constructed from s by keeping all and
only those components that belong to at-
tributes in X. Given two relations R and S,
the natural join R * S is formed by com-
puting the Cartesian product, R × S, se-
lecting out all tuples whose values on each
attribute common to R and S coincide, and
projecting one occurrence of each of the
common attributes. For a more thorough
presentation of the relational model, the
reader is referred to Date [1977, 1981] and
Ullman [1982]. See also Delobel [1980] and
Maier [1983] for an overview and a survey
of relational database theory.

1.2 Mathematical Logic

As is true for any formal system, mathe-
matical logic relies upon an object language,
a semantics or interpretation of formulas
in that language, and a proof theory.

As the object language we shall use a first-
order language such as that of the first-
order predicate calculus. Primitive symbols
of such a language are (1) parentheses, (2)
variables, constants, functions, and predi-
cate symbols, (3) the usual logical connec-

tors, -~ (not), & (and), V (or), --~ (implica-
tion), ~ (equivalence), and (4) quantifiers,
V (for all), 3 (there exists). Throughout the
paper we use lowercase letters from the
start of the alphabet to represent constants
(a, b, c), those from the end of the
alphabet to represent variables (u, v, w, x,
y, z), and letters such as (/, g, h, . . .) to
denote functions.

A term is defined recursively to be a
constant or a variable, or if f is an n-ary
function and tl, . . . , tn are terms, then
f (h , . . . , tn) is a term. There are no other
terms. We usually assume that a term in
the context of databases is function free;
that is, it is either a constant or a variable.

If P is an n-ary predicate symbol and tl,
. . . . tn are terms, then P(h, . . . , tn) is an
atomic formula. An atomic formula or its
negation is a literal. Well-formed formulas
(wffs) are defined recursively as follows. An
atomic formula is a wff. If Wl and w2 are
wffs, then -n(wl), (Wl) V (w2), (Wl) & (w2),
(wl) --~ (w2), and (Wl) ~ (We) are wffs. A
closed wff is one that does not contain any
free variable (i.e., it contains only quanti-
fied variables and constants).

In dealing with wffs it is sometimes con-
venient to place them in a normal form. A
wff is in prenex normal form if all quanti-
tiers appear in front of the formula. The
wff corresponding to the statement "Every
teacher has a diploma" is

(1) (Yx Vy)(TEACH(x, y)

--~ (3z)DIPLOMA(x, z)).

It is indeed possible to place all quantifiers
in front of the formula to achieve the pre-
nex normal form (see Chang and Lee [1973]
for details). When this is done, formula (1)
becomes formula (2):

(2) (Vx)(Vy)(3z)(~TEACH(x, y)

V DIPLOMA(x, z)).

Similarly, the prenex normal form of the
wff

(3) (Vx)(Yy)(((3z)(P(x, z) & P(y, z)))

(3u)Q(x, y, u))

Computing Surveys, Vol. 16, No. 2, June 1984

156

is

• H. Gallaire, J. Minker, and J.-M. Nicolas

(4) (Vx)(Vy)(Yz)(3u)

{'~P(x, z) V -uP(y, z)

V Q(x, y, u)).

A prenex formula is in Skolem normal form
when all existential quantifiers are elimi-
nated by replacing variables they quantify
with arbitrary functions of all universally
quantified variables that precede them in
the formula. These functions are called
Skolem functions; a Skolem function of 0
arguments is called a Skolem constant. A
clause is a disjunction of literals, all of
whose variables are implicitly universally
quantified. The Skolem normal form of (2)
is

{5) Vx Vy('~TEACH(x, y)

V DIPLOMA(x, f(x, y)),

where the existentially quantified variables
are eliminated and replaced by Skolem
functions. Similarly, the Skolem normal
form of (4) is

(6) (Yx)(Yy)(Vz)(~P(x, z) V ~P(y , z)

V Q(x, y, g(x, y, z))),

where the existentially quantified variable
u has been eliminated and replaced by the
Skolem function g(x, y, z). When a wff is
in Skolem normal form, all the quantifiers
remaining in the front of the formula may
be eliminated since all variables that re-
main are, by convention, universally quan-
tified. Formula (5), above, may be replaced
by

(7) -~TEACH(x, y)

V DIPLOMA(x, f(x, y)).

Thus

-~A1 V . . . V ~Am V B1 V . . . V Bn,

where the A1 and the Bj are positive literals,
is a clause. We shall write a clause in an
equivalent form as

Ai & . . . & Am--* B 1 V . . . V B n .

In a clause, whenever n is equal to 0 or 1,
the clause is said to be a Horn clause. If
both m and n are equal to 0, there are no

atoms on the left- or right-hand side of the
implication sign, and the clause is called
the empty clause. A clause (a literal) in
which no variables appear is called a ground
clause (ground literal). Every closed, well-
formed formula may be placed in clause
form. We note that the transformation of
a wff into prenex normal form preserves
equivalence, but this is not the case for
transformations into Skolem or clause
form. The latter transformations only pre-
serve satisfiability, which is sufficient for
provability purposes.

Two complementary aspects of wffs are
of interest. One deals with semantics (or
model theory), the specification of truth
values to wffs, whereas the other deals with
proof theory, the derivation of a wff from a
given set of wffs.

L2.1 Semantics: Model and Interpretation

In semantics we are concerned with inter-
pretations, where an interpretation of a set
of wffs consists of the specification of a
nonempty set (or domain) E, from which
constants and variables are given values.
Each n-ary function symbol is assigned a
function from E" to E. Each n-ary predicate
is assigned a relation on E ".

In an interpretation with domain E, a
closed wff is either true or false, whereas a
(open) wff with n (n >_ 1) free variables
determines a set of n-tuples (i.e., a relation)
on E ~. Each of these n-tuples is such that
when its components are substituted for
the corresponding free variables in the open
wff, then in this interpretation, the closed
wff that is obtained is true. If the set of n-
tuples is empty, then the open wff is said
to be false, and if the set of n-tuples coin-
cides with E ~, then the open wff is said to
be true. Broadly, the truth value of a closed
wff is obtained as follows. If R is the rela-
tion assigned to a n-place predicate symbol
P, then P(el, . . . , en) evaluates to true if
(el e,) ~ R; otherwise it evaluates to
false. Now, if Wl and w2 are closed wffs,
~wl evaluates to true if wl is false; other-
wise it evaluates to false, wl & we evaluates
to true if both w~ and w2 are true; otherwise
it evaluates to false, wl ~ w2 evaluates to
true if either wl is false or w2 is true; oth-

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach

erwise it evaluates to false. Well-formed
formulas constructed using the other logi-
cal symbols may be evaluated similarly.
Finally, if x is a variable in w, Vxw(x)
(respectively, 3xw(x)) evaluates to true if
for all elements el in E (respectively, there
is an element el E E such that) w(el) is
true; otherwise it evaluates to false.

A model of a set of wffs is an interpreta-
tion in which all wffs in the set are true. A
wff w is said to be a logical consequence of
a set of wffs W iff w is true in all models of
W. This is denoted by W ~ w.

1.2.2 Syntax: First-Order Theory

The first-order predicate calculus is a formal
system that has as object language a f irst-
order language, a set of axiom schemas (the
logical axioms), and two inference rules:
modus ponens and generalization.

When other wffs are added as axioms,
the formal system that is obtained is called
a first-order theory. The new axioms are
called nonlogical or (proper) axioms. A
first-order theory is essentially character-
ized by its nonlogical axioms. A set of non-
logical axioms could be, for example,

Man(Turing),

(Vx)(Man(x) --~ Mortal(x)).

A model of a theory is an interpretation in
which all axioms are true; logical axioms
are, in fact, chosen to be true in all inter-
pretations. For the above theory, setting

Man(Turing) = True,

Mortal(Turing) = True

yields a model since it makes all statements
in the above theory true. A wff w is deriv-
able from a set of wffs W in a theory
T(W b- w) iff w is deducible from W and
from the axioms of T by a finite application
of the inference rules.

Using the inference rule of modus po-
hens, which states that from p and p ~ q
one can conclude q, we obtain from the
above theory the derived result: Mor-
tal(Turing). If W is empty, then w is a
theorem of T (}--T W, or equivalently T b-
w). Whenever T is clear, we shall write W
I- w for W ~T W.

• 157

Inference rules other than modus ponens
and generalization can be used to derive
theorems; in fact most theorem-proving
techniques are based on the inference rule
termed the Robinson Resolution Principle
[Robinson 1965], which applies to wffs in
clausal form.

The Robinson Resolution Principle is a
rule of inference that permits a new clause
to be derived from two given clauses; fur-
ther, the derived clause is satisfiable (i.e.,
has a model) if the two given clauses are
satisfiable. In the context of databases as-
sumed to be function free, the principle can
be described in terms of the following ex-
ample. From

Ci: -TP(a, b, c) V Q(d, e), and

C2: P(x, y, z) V R(x, y),

one obtains the derived clause

C3: Q(d, e) V R(a, b).

The clause C3 is found by considering
the literals in the two clauses that have the
same predicate name, but one is negated
and the other is not. The only predicate of
this type is P. One then determines if the
two atoms {P(a, b, c), P(x, y, z)} can
be made identical by some substitution
to the variables, where a, b, and c are as-
sumed to be constants and x, y, and z are
assumed to be variables. The substitution
{a/x, b/y, c/z} is such a substitution, and is
to be read: Substitute a for x, b for y, and c
for z. One then eliminates the two literals
made identical by the substitution (said to
be unified) from each clause, forms the
disjunction of the remaining literals in the
two clauses, and applies the unifying sub-
stitution to the remaining literals to obtain
the derived clause. Thus in this example
the clause C3 is derived.

The resolution principle is used mostly
to carry out refutation proofs: In order to
prove W F- w, one tries to show that W and
-~w are not simultaneously satisfiable. As
resolution preserves satisfiability, if one
can, by resolution from the clausal forms
of W and -~w, derive the empty clause, then
W and -~w cannot simultaneously be sat-
isfiable. For example, ~P(a, b, c) and

Computing Surveys, Vol. 16, No. 2, June 1984

158 • H. GaUaire, J. Minker, and J.-M. Nicolas

P(x, y, z), where x, y, and z are variables,
would resolve to yield the empty clause.

A resolution proof consists of applying
resolution to all clauses in the original set,
adding those newly deriv6d clauses to the
set, and iterating the process.

The most important relationships be-
tween the semantic and the syntactic ap-
proaches are soundness and completeness.
An inference system is sound iff for all W
and w, whenever W }-- w, it implies that
W ~ w; it is complete iff for all W and w,
whenever W ~ w, it implies that W ~ w.
The inference rules of modus ponens and
generalization are complete and sound for
the propositional calculus. Similarly, reso-
lution refutation is complete and sound for
first-order theories: The empty clause is
derived if and only if the initial clause
(which is negated to apply resolution) is a
theorem in the theory. However, there is
an element of undecidability; if the clause
proposed to be proved is not a theorem, the
inference process may never terminate.
Resolution refutation is also complete and
sound. The meaning of completeness and
soundness is that the same results are ob-
tained by using semantics, which deals with
truth assignments, and provability, which
deals with inference rules.

The reader should refer to Enderton
[1972] and Mendelson [1978] for general
background on logic and to Chang and Lee
[1973] and Loveland [1978] for more ma-
terial on the resolution principle.

1.3 Databases Viewed through Logic

Before considering the formalization of da-
tabases in terms of logic, we shall mention
some assumptions that govern query (and
integrity constraint) evaluation of data-
bases. On the one hand, these assumptions
express a certain implicit representation of
negative facts (e.g., "Paul is not the father
of Peter:" -~Father(Paul, Peter)) and, on
the other hand, they make precise the uni-
verse of reference to which queries refer.
There are three such assumptions:

(1) The closed world assumption (CWA),
also called convention for negative in-
formation, which states that facts not
known to be true are assumed to be

false (i.e., "~R(el en) is assumed to
be true iff the tuple (el, . . . , e,) fails
to be found in relation R).

(2) The unique name assumption, which
states that individuals with different
names are different.

(3) The domain closure assumption, which
states that there are no other individ-
uals than those in the database.

Answers to "For all" queries or queries
involving negation are obtained by using
the above hypotheses. For example, the
query, "Who is not a Full Professor?", ad-
dressed to a database whose current state
consists of

Full-Prof.(Jean),
Full-Prof.(Paul),
Associate -Prof. (Andre),
Assistant-Prof. (Pierre),

will get as an answer {Pierre, Andre}. In-
deed, the domain closure assumption re-
stricts the individuals to be considered to
the set {Jean, Paul, Pierre, Andre}. Fur-
thermore, according to the unique name
assumption, one gets the following: Pierre

Jean, Pierre ¢ Paul. Consequently,
Pierre q~ Full-Prof., which, according to the
closed world assumption, leads to "~Full-
Prof.(Pierre). The second element of the
answer, -~Full-Prof.(Andre), is obtained in
a similar way.

We note that one way to avoid calling for
the domain closure assumption is to con-
sider as acceptable queries (and integrity
constraints) only expressions that restrict
their own reference domain. This is the
case for any expression of the relational
algebra and for the so-called class of defi-
nite (or safe, or range-restricted) logical
formulas (see Section 1.1.1).

Although the query evaluation process in
any DBMS (implicitly) works under the
above hypotheses, these assumptions were
made explicit and clearly understood only
through a logical formalization of data-
bases.

As first characterized by Nicolas and
Gallaire [1978], a database can be consid-
ered from the viewpoint of logic in two
different ways: either as an interpretation
(of a first-order theory) or as a (first-order)
theory. When considered from the view-

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach

point of interpretations, queries (and integ-
rity constraints) are formulas that are to
be evaluated on the interpretation using
the semantic definition of truth. From the
viewpoint of a theory, queries and integrity
constraints are considered to be theorems
that are to be proved. The interpretation
viewpoint and the theory viewpoint respec-
tively formalize the concepts of conven-
tional and deductive databases.

Reiter [1984] and Kowalski [1981a] have
investigated these two approaches more
thoroughly. Reiter refers to the two ap-
proaches as the model-theoretic view and
the proo[- theoret ic view, respectively,
whereas Kowalski refers to them as the
relational structure view and the logic da-
tabase view.

The three terms "interpretation,"
"model," and "relational structure" are
closely related. A model is an interpretation
that makes all axioms true. The "relational
structure" view means that queries are
evaluated by assuming the database entries
to be true. All these terms relate to the
semantic definition of truth. We shall use
the term "model-theoretic view" for these
three terms throughout this paper. The
three terms "theory," "proof theoretic," and
"logic database" connote that, in order to
determine answers to queries, one derives
data from axioms. We use the term "proof
theoretic" for these terms throughout the
paper.

Both Kowalski and Reiter have shown
that, although conventional databases are
generally considered from a model-theo-
retic view, they can also be considered from
the proof-theoretic view and can thus be
considered as a particular logic database.

This section provides an intuitive char-
acterization of these two views of a data-
base through the perspective of logic. Fur-
ther details are provided in Section 2 of
this paper for the proof-theoretic view.

Let DB be an instance of a relational
database. Then DB consists of a set of
relations (i.e., a relation R for each relation
schema R(A1 An)) and a set of integ-
rity constraints, IC. Let D be the union of
the underlying domains of all attributes
that occur in the relation schema. Now
define a first-order language L to consist of

• 159

an n-place predicate symbol R for each n-
ary relation in DB and a set of constants,
one for each element in D; the language is
assumed to have no function symbols. DB
can be seen as an interpretation of formulas
of the language as defined in Section
1.2, and the formulas of L can be evalu-
ated in this interpretation as follows:
Variables range over the domain D, and
R (e l , . . . , en) is true iff (e l , . . . , en) E R. The
language can be extended to include arith-
metic comparison operators (<, =, >, _<, _>)
as particular predicate symbols, which are
assigned their usual interpretation.

If the integrity constraints in IC are ex-
pressed as formulas of L, then the database
DB will be a valid database state iff every
constraint in IC evaluates to true in DB,
that is, iff DB is a model of IC. We note
that, according to the very definition of an
interpretation, the evaluation of logical for-
mulas (on an interpretation) is done in
accord with the closed world, unique name,
and domain closure assumptions stated at
the beginning of this section.

The above constitutes a description of
the model-theoretic view of a database. The
proof-theoretic view of DB is obtained by
constructing a theory T that admits DB as
a unique model. Then for any wff w in L,
T ~-- w iff w is true in DB.

The process of defining T consists of
making its (proper) axioms precise. The
axioms (see Reiter [1984]) are of three
kinds:
(1) Assertions. For any relation R in DB

and any tuple (el, . . . , en) E R, an
axiom R(el, . . . , en) ~ T.

(2) Particularizat ion Axioms. Particu-
larization axioms explicitly state the
evaluation hypotheses that, in the
model-theoretic view, are conveyed by
the notion of interpretation:

(i) The completion axioms. There is
one such axiom for any relation
R in DB. I f (e l , . . . , e ?) ,

(e~ e~) are all the tuples in R,
it is written as

Vxl . . . Vx~(R(xl x~)

(xl = el & . . . & Xn = e~)

V . . . V (xl = e ~ & . . . & x = e~)).

Computing Surveys, Vol. 16, No. 2, June 1984

160 • H. Gallaire, J. Minker , and J . -M. Nicolas

The completion axiom effectively
states that the only values tuples
that the relation R can have are

(el e~), . . . , (evl, . . . , e$).

(ii) The unique name axioms. If el,
. . . . eq are all the individuals in DB,
the unique name axioms are

(el ~ e2) , (el ~ eq),

(e2 ~ e3) , (eq-1 ~ eq).

(iii) The domain closure axiom. This is

Vx((x = el) V (x = e2) V . . . Y (x = eq)) .

(3) Equali ty Axioms. Equality axioms are
needed since the axioms in (2) involve
the equality predicate. These axioms
specify the usual properties of equality:

• reflexivity:

V x (x = x) .

• symmetry:

Vx Vy((x = y) ~ (y = x)).

• transitivity:

Vx Vy Vz((x = y) & (y = z) ~ (x = z)).

• principle of substitution of equal terms:

~¢Xl " ' " V y n (P (x l , . . . , xn)

& (xx = Yl) & "'" & (xn = y~)

P(Y l , Yn)).

Let us briefly give the underlying reason
why T admits DB as a unique model (up to
an isomorphism). The only interpretation
of T in which the domain closure axioms
and the unique name axioms are all satis-
fied is such that their individuals are in
one-to-one correspondence with elements
in D. Thus all the possible models of T have
the same domain as DB (up to an isomorph-
ism). For any such model M, since its do-
main is fixed, in order to be different from
DB, it must assign to at least one R a
relation R ' different from R. But this is not
possible. Indeed, if a tuple (el, . . . , e,)
belongs to R but not to R' , then M does
not satisfy one of the axioms in (1). Con-
versely, if (e~ en) belongs to R' but

not to R, then M does not obey the comple-
tion axiom associated with R.

As defined above T provides the proof-
theoretic view of DB. According to this
view, DB satisfies a constraint w in IC iff
T I--- w. Furthermore, the answer to a query
formulated as W(x l , . . . , xp)--where Xl,
. . . . xp are the free variables in the formula
W--consists of those p-tuples (e l , . . . , ep)
such that T I- W(e l , %).

It is worth noting that, although accord-
ing to this view query (and integrity con-
straint) evaluation calls for proof tech-
niques, DB is and remains a conventional
(i.e., nondeductive) database. No other
(positive) facts than those explicitly stated
in (1) can be derived from T.

At this stage one may notice that the
above proof-theoretic view is not intended
to be used directly as a basis for a DBMS
implementation. The combinatorial com-
plexity of the particularization axioms
would lead to inefficient systems, but, as
emphasized by Reiter [1984], the value of
this view is found in the generalizations
that it suggests for databases: (1) Add some
disjunctive facts or existentially quantified
literals among the assertions and one ob-
tains a database with null values and in-
complete information; (2) suppress from
the set of ICs some of its formulas and add
those formulas as axioms to the theory and
one obtains a new theory that is a deductive
database. However, the formulation of the
completion axioms then has to be recon-
sidered, as is seen in Section 2. Except for
work in deductive databases, the applica-
tions of logic to databases has mainly re-
ferred, either explicitly or implicitly, to the
model-theoretic view. This work is reported
upon in Section 1.

1. CONVENTIONAL DATABASES

The goal of Section 1 is to show how logic
can provide formal support to study clas-
sical database problems, and in some cases,
how logic can go further, helping to com-
prehend and then to solve them. We de-
scribe contributions published in the liter-
ature that relate to logic and databases with
respect to query languages, integrity mod-

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 161

eling and maintenance, query evaluation,
and database schema analysis.

1.1 Query Languages

1.1.1 Toward Relational Calculus

One of the first impacts of logic on data-
bases was the use of its language as a basis
for defining assertional query languages.
This can be done in any one of four ways
[Pirotte 1976, 1978], depending on whether
one-sorted or many-sorted languages [En-
derton 1972] are used and whether tuples
of relations or elements of domains are
considered as primitive objects [Ullman
1980]. In fact, only two out of these four
possibilities have been truly exploited: the
so-called domain relational calculus (DRC,
one sorted/elements of domains) and the
tuple relational calculus (TRC, one sorted/
tuples of relations). Both of these languages
have the same expressive power [Ullman
1980]. The respective pioneering and fun-
damental efforts of Kuhns [1967] and Codd
[1972] are shown in each of these two cases.
We shall focus on the DRC.

As described in Section 1.3, the reason
for considering the language of logic as a
basis for defining query languages is that a
relational database (instance) can be
viewed as an interpretation of a first-order
language. Thus the answer to a formula
W(xl Xp), where xl , Xp are the free
variables in W, considered as a query, is the
set ofp-tuples (e~ , ep) E D R such that
W(el, . . . , ep) is true. However, when con-
sidered as queries, some formulas may be
"unreasonable" [Kuhns 1967], since their
answer may be different in two database
states, where the relations they refer to
are the same. A typical example is the for-
mula "~R(x~ x,), which character-
izes all tuples in D" except those that
are in R as opposed to P(xl , Xn) &
"~R(xl Xn).

A semantic characterization of formulas
that can be considered to be reasonable
queries led to the notions of definite for-
mulas [Kuhns 1967] and safe formulas fUll-
man 1980]. Roughly, such formulas are do-
main independent since they self-restrict
the range of the variables that they con-

tain. 1 However, once these classes were de-
fined, a new problem appeared, that of find-
ing machine-recognizable criteria for deter-
mining whether a given formula is definite
(or safe). Unfortunately, as proved by Di
Paola [1969] and Vardi [1981], the decision
problem for definite formulas is recursively
unsolvable. Thus what remained to be done
was to look for the largest of its subclasses
that was recursive. This was one of the
motivations for various authors who intro-
duced purely syntactically defined sub-
classes of definite formulas such as
"proper" [Kuhns 1970], range separable
[Codd 1972], acceptable [Artaud and No-
colas 1974], range restricted [Nicolas
1979a, 1979b], and evaluable [Demolombe
1982] formulas.

Using many-sorted logic as a basis for
defining query languages while considering
elements of domains as primitive objects
was exploited by Pirotte [1978] (see also
Minker [1978b] and Reiter [1978b]). In
such a case each sort is assigned to a data-
base domain, and the well formedness of
formulas is checked with regard to sort
requirements. Languages obtained in this
manner have the same expressive power as
the preceding ones.

Many-sorted languages offer a more
"precise" definition of the model, but they
freeze to some extent any evolution of the
application. In that respect one should note
how important the issue of knowledge rep-
resentation is to many applications, not
only in the database field, but also in arti-
ficial intelligence and programming lan-
guages. An important workshop sponsored
by SIGART, SIGMOD, and SIGPLAN
brought to light many points common to
these fields [Brodie and Zilles 1980] (see,
e.g., papers by Codd [1980], Lacroix and
Pirotte [1980], and Mylopoulos [1980]).

Two additional points indicating the im-
portance of a relational calculus language
are that Codd [1972] proposed it as a ref-
erence for measuring the "completeness"

1 It turns out, and it is not fortuitous, tha t "reasonable"
queries precisely correspond to formulas tha t avoid
calling for the domain closure assumption (see Section
1.3).

Computing Surveys, Vol. 16, No. 2, June 1984

162 • H. GaUaire, J. Minker, and J.-M. Nicolas

of query languages (discussed below), and
query languages known to be "user
friendly" (e.g., Query-by-example, Zloof
[1977] and Quel, Stonebraker et al.
[1976]) are based on it. However, improve-
ments to user interfaces are still required,
regardless of the query language.

1.1.2 Extensions to Query Languages

In this section we argue that logic supports
powerful extensions to basic query lan-
guages in two directions: natural languages
and programming languages. Logic lan-
guages are close to natural languages. In
addition to Codd [1972], who used this ar-
gument to support the relational calculus
as a yardstick to measure other languages,
many linguists have also made this obser-
vation; thus querying databases using nat-
ural language has been and is a subject of
active research [Colmerauer 1973; Colmer-
auer and Pique 1981; Dahl 1982; Moore
1981; Warren 1981; Woods 1967].

Several authors have questioned Codd's
proposal to "define" completeness (i.e., ex-
pressiveness) of query languages with ref-
erence to a language (relational calculus)
whose expressiveness had not been as-
sessed from a semantic viewpoint. This
proposal has also been questioned because
some well-known operations on data such
as the transitive closure of a relation [Aho
and Ullman 1979] and aggregation opera-
tions used to compute sums, averages, and
other operations are not expressible either
in the relational calculus or in the relational
algebra. This completeness notion has thus
attracted much discussion.

Bancilhon [1978] and Paredaens [1978]
have shown that, when restricted to finite
relations, the relational calculus and the
relational algebra are both complete in the
sense that for a given database they can
express all (and only those) relations whose
extension is definable over the set of all
domains of that database. This complete-
ness definition is still restrictive as one
cannot, for instance, express the transitive
closure of a relation with a single expres-
sion independently of the extension of that
relation. To attain such a capability, var-
ious authors proposed that the relational

calculus or relational algebra be embedded
in a host language [Aho and Ullman 1979;
Chandra and Harel 1979, 1980]. Such an
embedding will allow a simple expression
(i.e., a program in the host language) to
define an operator, for example, transitive
closure, from the primitive constructs of
the host language (such as iteration, recur-
sion, or least fixed points). In some cases,
all computable functions can be expressed;
this is the ultimate notion of completeness.

Of course, the host language can be a
logic programming language. Its expressive
power attains completeness, according to
Cooper [1980], or can be limited to subsets
of computable functions. But logic offers
an alternative way to provide extensions
such as those that motivate the embedding
of the query language (logic) in a host pro-
gramming logic language. Indeed, the same
effect is obtained by extending the repre-
sentation and manipulation capabilities of
the database system itself (rather than of
the query language); this is precisely the
idea of the deductive database system,
where the database system is a theory, usu-
ally first order, with nonunit axioms (e.g.,
see Gallaire and Minker [1978]).

Accepting the view that a database sys-
tem consisting of a theory that contains
nonunit axioms is similar to extending the
host language of a database system may not
be entirely apparent. Harel [1980], in a
review of the book edited by Gallaire and
Minker [1978], attempts to refute the above
view, but provides no convincing argu-
ments. The database theory view has many
theoretical advantages, if not practical
ones, which are developed in Section 2 of
the paper. Harel [1980] provided another
critique of the work presented by Gallaire
and Minker [1978], namely that some quer-
ies are not characterizable in first-order
logic and hence the language must be ex-
tended to a higher order language. Although
it is true that such extensions may yield
answers to queries, that is, relation exten-
sions that may not be first-order definable
(e.g., the transitive closure of a relation),
the query language remains precisely first
order in the database-theoretic view, and
may possibly remain first order in a model-
theoretic view, depending on the choice of

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 163

the host logic programming language. Thus
the second critique need not apply. The
possible failure to note the distinction be-
tween regarding a database an an interpre-
tation or as a theory may have been the
cause for the comments by Harel as conjec-
tured by Kowalski [1981b].

1.1.3 Null Values

Null values are a special case of the incom-
plete information problem that is addressed
further in Section 2. Null values have been
investigated in the ANSI /X3/SPARC
[1975] report. Although many different
meanings can be ascribed to missing or null
values in the instance of a relation, most
researchers have dealt primarily with "at-
tributes applicable but values are un-
known," whereas only a few deal with
"value does not exist" [Zaniolo 1981]. An
unknown value can be represented readily
in a database, but problems arise with re-
spect to its manipulation and interpreta-
tion in a query language.

A model-theoretic approach is to define
a three-valued logic [Codd 1979], based on
the truth values {true, false, undefined}.
The logical connectors truth definition is
extended appropriately: Should any com-
ponent in a tuple be unknown, the corre-
sponding literal has the truth value true,
false, or undefined, depending on whether
one obtains a literal that is systematically
true, systematically false, or either true or
false when substituting any value for un-
known. This approach has been criticized
by several authors [Grant 1977; Vassiliou
1979] because the theory does not provide
for several unknown values. Some of the
unknown values may be known to be equal
even though their precise values are un-
known. Furthermore, an expression should
be evaluated globally, and not recursively
in terms of its subexpressions, in order to
infer some of the externa! knowledge from
the incomplete internal knowledge. As a
typical example, if the age of John is un-
known, the expression

3x(Age(John, x) & x < 60)

V (Age(John, x) & x _> 60)

should receive the value true although both
operands of the disjunction have value un-
defined.

Lipski [1979] defines information which
surely, alternatively possibly, can be ex-
tracted from a database in the presence of
unknown values. He then defines a query
language that encompasses such modal op-
erators. Although such an approach has
been criticized on grounds of efficiency
[Vassiliou 1980], where a denotational se-
mantics approach is specified, Imielinski
and Lipski [1981] improve upon Lipski's
earlier approach and define systems capa-
ble of handling null values when subsets of
the relational operators are used.

Where does logic stand in tackling this
problem? As already noted, Codd's ap-
proach can be considered to be a model-
theoretic approach. Other approaches that
use logic as a basis and are more general
encompass more forms of incomplete infor-
mation such as indefinite data. Data are
said to be indefinite if they are of the form
P(a) V Q(b), and it is unknown whether
P(a) is true, Q(b) is true, or both are true.
Reiter [1983, 1984] gives precise solutions
to some of these issues on the basis of the
proof-theoretic view of databases with null
value and indefinite data. The theory that
models such a database is obtained from
the theory given for a standard database in
Section 1.3 by the addition of a new class
of axioms that stand for facts with null
values (Skolem constants in logical terms)
and for indefinite data and by a reformu-
lation of the particularization axioms that
account for the presence of these new ax-
ioms. For details on these axioms see Reiter
[1984]. Grant and Minker [1983] provide a
precise algorithm to answer queries on such
databases for a subclass of such data when
null values are contained within the given
domain of elements and only positive
ground clauses are permitted.

Three additional approaches to the prob-
lem of null values use a tool from metalan-
guage techniques. In Levesque [1981] a
language is defined that extends predicate
calculus in that one can refer to the state
of the database and thus to what is cur-
rently known. Both the semantics and
proof theory are covered, cases where one

Computing Surveys, Vol. 16, No. 2, June 1984

164 • H. Gallaire, J. Minker, and J.-M. Nicolas

can fall back on predicate calculus are stud-
ied, and connections with nonmonotonic
logic (described in Section 2) are stressed
and shown to yield a simpler semantics of
the concept of nonmonotonicity. It be-
comes possible to specify that not all tuples
of a relation are known and to query a
database as to what is known and what is
not known. A slightly different framework
is provided by Konolige [1981], who uses a
metalanguage based on first-order logic to
describe information known about the do-
main of discourse (i.e., the actual world)
and the database language. Queries are
specified in the metalanguage. Some quer-
ies can be translated into a database lan-
guage and hence can be evaluated. Others
cannot be answered from the database; that
is, they have no equivalent answer because
of the incompleteness of the data. Both of
these approaches can be dealt with within
a general framework investigated by Bowen
and Kowalski [1982]. They consider predi-
cate logic as an object language and as a
metalanguage where the provability rela-
tion of the object language can be formu-
lated in the metalanguage. One can reason
at the metalanguage level and at the same
time provide answers at the object language
level.

At this time the results discussed above
tend to be more theoretical than practical.
In the case of null values, a more practical
solution combining logic and relational al-
gebra has been studied by Biskup [1981],
who also further investigates Codd's pro-
posals, providing them with a sound foun-
dation and arguing for their practical ap-
plicability [Biskup 1982]. In the case of
more general incomplete information, we
mention here the work by Bossu and Siegel
[1981], where a promising approach based
on model theory is taken, and the work by
Minker [1982]. Finally, an interesting com-
plement to logic for handling null values
can be found in Siklossy and Lauriere
[1982]. As mentioned above, work in arti-
ficial intelligence that deals with nonmono-
tonic logics is relevant to this topic. The
interested reader is referred to papers in
the 1980 special issue of the Artificial In-
telligence Journal on nonmonotonic logic
[AIJ 1980].

1.2 Integrity Constraints

1.2.1 Formulation and Enforcement

Database consistency is enforced by integ-
rity constraints, which are assertions that
database instances (states) are compelled
to obey. Integrity constraints have been
classified according to various criteria. The
first criterion distinguishes between state
constraints, which characterize valid data-
base states, and transition constraints,
which impose restrictions on the possible
state transitions of a database. Among state
constraints different subclasses can be iso-
lated: for example, type constraints, which
require the arguments of relations to be-
long to specified domains, or dependency
constraints, which are discussed in Sec-
tion 1.4.

As stated by Ullman [1980], a fundamen-
tal idea concerning integrity constraints is
that query languages can be used to express
them, although transition constraints re-
quire special attention [Casanova and
Bernstein 1979; Florentin 1974; Nicolas
and Yazdanian 1978]. It is therefore not
surprising that various authors have used a
first-order language to study integrity con-
straints and have appealed to both the
model-theoretic and the proof-theoretic
logical views.

The model-theoretic view is exploited by
Nicolas and Yazdanian [1978] for charac-
terizing those integrity constraints in a da-
tabase that might be falsified by a given
update, and must consequently be evalu-
ated to determine whether the resulting
database state is valid. Once such a con-
straint, say C, has been selected, one can
take advantage of the fact that C is known
to be satisfied in the state before the up-
date, in order to derive (according to the
update) a simplified form of C, say S(C),
such that S(C) is satisfied in the new da-
tabase state iff C is satisfied, and the eval-
uation cost of S(C) is less than or equal to
the evaluation cost of C. Then the evalua-
tion of S(C) can be substituted for the
evaluation of C, thus reducing the cost of
integrity constraint checking. Such a sim-
plification method, which relies upon truth,
preserving instantiations of formulas, is de-
fined by Nicolas [1979a, 1979b] for con-

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 165

straints expressed in the domain relational
calculus.

An implementation of this simplifica-
tion method is reported upon by Homeier
[1981]. A similar method was also intro-
duced later by Blaustein [1981] for con-
straints expressed in the tuple relational
calculus. Finally, in Casanova and Bern-
stein [1979] the same database logical view
is used to define a data manipulation lan-
guage with a logic system that permits one
to prove whether or not a transaction pre-
serves consistency (see Section 1.2.2).

In addition, Henschen et al. [1984] de-
scribe a technique for extracting integrity
tests from database constraints expressed
as first-order formulas. The tests can be
generated at database design time and are
applied when updates to the database ap-
pear. Of particular interest in this approach
is that tests are applied before the update
is made.

An alternative formulation of integrity
constraints as first-order formulas has been
exploited by McSkimin [1976], McSkimin
and Minker [1977], Minker [1978b], and
Reiter [1981]. Although their work was
done in the context of deductive databases,
it can be applied equally well to integrity
checking in conventional databases. Both
approaches consider a (principal) database
augmented with a type database. Types are
distinguished by unary relations (or Boo-
lean combinations of them); a type data-
base is a set of formulas (represented as a
semantic graph in Minker [1978b]), ex-
pressing relations among types (e.g., inclu-
sion, and disjointness) and also the inclu-
sion of certain data values to a particular
type. The connection between both data-
bases is made via type integrity constraints
that force arguments of relations to be of
the same type.

Minker uses these integrity constraints
to reject queries that are not well formed,
such as a query that requires two relations
to be joined on attributes that belong to
disjoint types. A refutation-like procedure
checks the well formedness of a query by
using type constraints and the type data-
base.

Reiter [1981] addresses the problem of
detecting the violation of these constraints

when the database is updated. Both inser-
tions of data and of general laws are con-
sidered (integrity constraints on standard
databases, axioms in a deductive database).
The method relies upon a transformation
of these general laws, which are universally
quantified formulas, into a form for which
simple criteria for the detection of type
constraint violations are proposed.

1.2.2 Proving Consistency of Transactions

It is clearly easier to prove the consistency
of transactions when data is defined in a
formal framework, and integrity con-
straints and database transactions (which
retrieve, insert, delete, and update infor-
mation) are stated formally and in the same
language. Starting from a database state
that complies with given constraints, con-
sistency of transactions is proved when the
state arrived at after the transaction has
been executed also complies with these con-
straints. In order to prove consistency, a
formal system can be provided whose ob-
jects are the transactions: A syntax, seman-
tics, and proof theory for reasoning about
objects are needed. A transaction is expres-
sible in a programming language, including
expressions used to define sets of data upon
which the transaction acts; thus transac-
tion languages include data definition lan-
guages. If the data definition language itself
is endowed with a proof theory, the trans-
action formal system can use it. This is the
case with the logic interpretation of data-
bases.

Casanova and Bernstein [1979, 1980] of-
fer an elegant, albeit theoretical, answer to
these problems. The data definition lan-
guage, viewed through its logic perspective,
includes the integrity constraints as axioms
of a first-order theory. The transaction lan-
guage then is embedded in regular programs
[Pratt 1976], supported by a formal system,
first-order dynamic logic (DL). This
embedding is accomplished by expressing
the operations of retrieve, insert, delete,
and update in terms of assignment, tests,
random tuple selection, union, composi-
tion, and iteration operators, the semantics
of which encompass that of all computable
queries (Section 1.1.2). Regular first-order

Computing Surveys, VoL 16, No. 2, June 1984

166 • H. GaUaire, J. Minker, and J.-M. Nicolas

DL [Harel 1979] then is extended to a
system called modal dynamic logic (MDL)
to reason about such programs. MDL is
shown to have the necessary power to prove
most essential database questions: consist-
ency, transaction, and serializability of
transactions. One should note that this
work was also extended to deal with aggre-
gate operators (Section 1.1.2). This ap-
proach obviously needs a more practical
counterpart. Gardarin and Melkanoff
[1979] offer a partial answer, using Hoare's
logic rather than dynamic logic.

1.3 Query Optimization

Optimization of query evaluation, or im-
provement of query evaluation as it might
better be termed, has been attacked in
many different ways. A traditional ap-
proach is to use low-level information such
as statistical information about various
costs to access individual relations. Sys-
tems that have been implemented, for ex-
ample, System R [Chamberlin et al. 1981;
Selinger et al. 1979] and more experimental
systems [Demolombe 1980; Grant and
Minker 1981], have demonstrated that sig-
nificant gains in efficiency can be achieved
by using such information. However, it is
clear that additional gains can be obtained
by using higher level information, whether
syntactic or semantic.

Syntactic transformations, yielding a
logical equivalent of the initial query have
been studied by Aho et al. [1979] and Chan-
dra and Merlin [1976]. For example, the
query

(3u, v, w, y, z)R(x, v, w)

& R(x, z, w) & S(u, w)

& S(u, v) & S(y, w)

& S(y, v) & S(y, z),

where x is a free variable, can be shown to
be equivalent to

3u, v, w R(x, v, w) & S(u, v).

But perhaps the most promising technique
is found in the so-called semantic transfor-
mations. A first step in that direction was
taken by McSkimin [1976] and McSkimin

and Minker [1977], who used a form of
integrity constraint that describes domains
of relations and relates them to each other.
Additional information, which takes into
account the cardinality of intersections or
unions of domains, is used to simplify quer-
ies and also to interrupt the process of
extracting an answer whenever the addi-
tional information justifies it.

A more general approach, related to
global problem-solving strategies [Kowal-
ski 1979], is described by King [1981] and
Hammer and Zdonik [1980], where the idea
of query modification based on general
rules is addressed. A set of general rules
(integrity constraints and/or deductive
laws--see Section 2) such as "a ship carries
no more cargo than its rated capacity" or
"the only ships whose deadweight exceeds
150 thousand tons are supertankers" [King
1981] can also be used to transform a query
submitted by a user into a query less costly
to evaluate, eliminating unnecessary rela-
tions or propagating constraints. This pro-
cess then interacts with, and uses infor-
mation from, a more classical optimizer,
which can take into account such factors
as indexing of attributes. Obviously a major
problem is to control the derivation of quer-
ies from the original query. This is a clas-
sical problem in artificial intelligence sys-
tems, and has been studied by King, who
derived a set of heuristics and specified and
implemented a plan-generate-test process
that gives interesting and practical results.
Logic is seen at its best in such applica-
tions. Much remains to be done in this
important area.

A different use of logic is reported by
Warren [1981] in relation to the applica-
tion of natural language database querying.
The underlying database is relational, and
logic is used to (1) write a translator from
natural language input to an internal rep-
resentation, (2) represent the internal form
of queries as logic formulas, (3) write an
optimizer O f the querying process, which
analyzes the query and uses the traditional
type of statistical information already re-
ferred to above, to modify the query, and
(4) evaluate the query (which could be in-
terfaced to the access level of a standard
database management system). The per-

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 167

formance of the overall process is very ac-
ceptable; the interested reader is referred
to Warren [1981] for further details. War-
ren's approach to optimization is similar
to the approach taken by Selinger et al.
[1979]. See Chakravarthy et al. [1982] for
a discussion of how a logic database may
be interfaced with a relational database and
related work by Kunifuji and Yokota [1982]
and Yokota et al. [1983].

Before leaving this extremely promising
field, we note another use of constraints or
general laws describing the domain of dis-
course in the query interpretation process.
As discussed by Janas [1979, 1981], when-
ever a query has an empty answer, a rea-
sonable set of subqueries can be con-
structed whose failure explains the empty
answer of the original query; this reasona-
ble set is obtained by taking particular in-
tegrity constraints into account. A reason
for not having an answer is that no tuples
that currently exist in the database satisfy
the query, in which case the subquery that
fails can be identified or the constraints of
the database are such that no answers that
satisfy the query will ever be possible from
the database. Such information could be of
considerable value to a user. See also De-
molombe [1981] for related work.

1.4 Database Design

There is an area where logic plays an in-
creasing role in the specification of data
models. In general, there are several meth-
ods of formal specification and several for-
malisms for each method; databases are but
one kind of object to formalize, and tech-
niques developed for programming lan-
guages in general can be applied. We have
seen in Section 1.2.2 how such a specifica-
tion can be used for a precise purpose:
proving the consistency of a transaction.
Veloso et al. [1981] provide a comprehen-
sive review of these techniques, for a large
part on the basis of logic (see also Borgida
and Wong [1981], where logic is used to
define the formal semantics of the Taxis
data model). Logic is a very important tool
in this area, if only because it blends nicely
with all the other tools described in this
paper for different purposes.

We now turn to data dependencies, a
concept central to database design. Data
dependencies are special cases of integrity
constraints that express structural proper-
ties of relations and permit relations to be
decomposed, and retain certain properties
described below. A number of dependencies
of various kinds have been characterized
and studied in the literature (see Delobel
[1980] and Maier [1983] for comprehensive
surveys on dependencies). In this section
we see how logic has been used to study the
properties of some of these dependencies
and, in some cases, define them. We also
note that special formal systems have been
developed for that purpose (e.g., see Arm-
strong [1974]). This section is divided into
two parts; the first is concerned with stud-
ies involving propositional logic, and the
second with studies involving first-order
logic.

1.4.1 Propositional Logic and Dependencies

Delobel, Fagin, Parker, and Sagiv [Delobel
and Parker 1978; Sagiv and Fagin 1979;
Sagiv et al. 1981] have shown that an equiv-
alence exists between some dependencies
and a fragment of the propositional logic.
They have shown that functional depend-
encies (FDs) [Codd 1970] and multivalued
dependencies (MVDs) [Fagin 1977b; Zan-
iolo 1976] can be associated with proposi-
tional logic statements. The equivalence
developed between these dependencies and
propositional logic extends earlier results
of Fagin [1977a] and also Delobel and
Casey [1973] that relate FDs to the theory
of Boolean switching functions.

The above-mentioned equivalence pro-
vides new techniques for proving properties
of FDs and MVDs, and for solving the
membership problem for those dependen-
cies. Additionally, shorter and simpler
proofs have been obtained for important
theorems about FDs and MVDs, and strat-
egies developed for special-purpose theo-
rem provers provide efficient algorithms for
the membership problem. Furthermore, on
the basis of a proof of this equivalence, a
characterization of the dependency basis in
terms of truth assignments has been given
by Fagin [1977b]. This has led to the de-

Computing Suzveys, Vol. 16, No. 2, June 1984

168 . H. Gallaire, J. Minker, and J.-M. Nicolas

velopment of an efficient membership al-
gorithm for FDs and MVDs by Sagiv
[1980], which has been supplanted by a
faster algorithm by Galil [1982]. As another
application of this equivalence, Parker and
Delobel [1979] have developed an algo-
rithm to determine whether a set of attri-
butes is a key for a relation, that is, whether
a set of attributes uniquely determines a
tuple in the relation and is itself not con-
tained i n a n y other set of attributes that
uniquely determines a tuple.

The equivalence, first established for
FDs, was extended later to include MVDs
[Sagiv et al. 1981]. It has also been ex-
tended to other kinds of dependencies, for
example, Boolean dependencies, which are
expressions of attributes built using the
Boolean operators &, V, -~. For example,
A V (B & -~C) is a Boolean dependency
whose meaning is "for every pair of tuples,
either the two tuples agree on attribute A,
or the two tuples agree on attribute B and
disagree on attribute C." However, al-
though this shows that the equivalence can
be extended to some generalization of FDs,
it cannot be extended to embedded MVDs
(MVDs that hold for a projection of a re-
lation) or to mutual dependencies for which
the inferential structure of propositional
logic seems to be too weak [Delobel 1978].
Nicolas [1978] was the first to suggest that
first-order logic be used. However, before
considering first-order logic, we note a sim-
ilar equivalence result between FDs ob-
tained by Vassiliou [1980], who redefined a
FDs interpretation in order to account for
null values, and implicational statements
of a model propositional logic system. Vas-
siliou exploited this equivalence, notably,
for proving the completeness of a set of
inference rules for those "newly inter-
preted" FDs.

1.4.2 First-Order Logic and Dependencies

By considering dependencies as first-order
formulas, one provides advantages similar
to those sketched for propositional logic;
results from proof theory and model theory
can be used to study their properties.

Dependency statements can be expressed
as first-order formulas. For example, given
a relation scheme R(ABCD), the FD C --~ D

and the MVD A ~ ~ B are, respectively,
equivalent to the following two first-order
formulas:

Vx . . . Vv ' (R(x , y, z, v)

& R(x ' , y' , z, v') ~ (v = v')),

Vx . . . Vv ' (R(x , y, z ' , v ')

& R(x, y ' , z, v) ~ R(x, y, z, v)).

New kinds of dependencies have been
characterized and defined directly as par-
ticular first-order formulas. Typical of this
are generalized dependency statements
(GDs) and their embedded version (EGDs)
[Grant and Jacobs 1982], implicational de-
pendencies (IDs) and their embedded ver-
sion (EIDS), and extended embedded IDs
(XEIDs) [Fagin 1980, 1982], and tuple- and
equality-generating dependencies [Beeri
and Vardi 1980, 1981]. We briefly specify
the main results related to these depend-
encies below.

Essentially, generalized dependencies are
Horn clauses that contain no function sym-
bols; they capture FDs, MVDs, JDs {join
dependencies), IDs, and some other con-
straints. Horn clauses are defined in Sec-
tion 1.2 and in Section 2. After studying the
implication problem for GDs, Grant and
Jacobs [1982] proposed a decision proce-
dure for determining whether a GD is a
logical consequence of a set of GDs. This
procedure is related to both techniques
from automatic theorem proving and the
"chase method," a decision procedure for
dependencies described by Maier et al.
[1979] on the basis of the tableau formalism
of Aho and Ullman [1979].

Horn clauses were also used to define
EIDs, which were studied to "help bring
order to the chaos by presenting certain
mathematical properties shared by all (the
previously defined) dependencies" [Fagin
1980, 1982]. Among these properties are
domain independence, which means that
whether or not a dependency holds for a
relation can be determined independently
of the underlying domains of the attributes
in the relation, satisfiability on empty rela-
t/ons (i.e., relations with no tuples), and
faithfulness with regard to a version of the
Cartesian product called direct product.

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 169

As principle results for EIDs, Chandra et
al. [1981] have shown that any set D of
EIDs admits an Armstrong relation (i.e., a
relation that obeys all.dependencies in D - -
and their consequences--but no others)
and that the decision problem for this class
of dependencies is undecidable. However, a
complete set of inference rules has been
given for the equivalent class of algebraic
dependencies [Yannakakis and Papadimi-
triou 1982].

On the basis of the formulation of de-
pendencies as first-order formulas, Beeri
and Vardi [1980, 1981] have studied the
implication problem for a general class of
dependencies, the tuple- and equality-gen-
erating dependencies (tgds and eqds), and
for some of its subclasses. These depend-
encies, which, in fact, correspond to EIDs,
intuitively require that, "if some tuples ful-
filling certain conditions exist in the data-
base, then either some other tuples (possi-
bly with unknown values), fulfilling certain
conditions, must also exist in the database
(tgds), or some values in the given tuples
must be equal (eqds)" [Beeri and Vardi
1980, 1981].

In the same work Beeri and Vardi pro-
posed an extension to the chase method
(see also Sadri and Ullman [1980, 1982]),
which provides a proof procedure for these
dependencies and a decision procedure for
total dependencies (i.e., nonembedded). A
decision procedure is guaranteed to termi-
nate in any case, whereas a proof procedure
is not guaranteed to terminate when D does
not imply d. It is worth noting that, when
described in the formalism of logic, the
chase method corresponds to a well-known
theorem-proving procedure by refutation
(using resolution and paramodulation)
[Beeri and Vardi 1981].

We have described results by using logic
that relates to conventional relational da-
tabases; in the following section, we de-
scribe how logic extends conventional da-
tabases to permit deduction and sheds new
insight into problems concerning negative
and incomplete information.

2. DEDUCTIVE DATABASES

A deductive database is a database in which
new facts may be derived from facts that

were explicitly introduced. We consider
such databases here from a proof-theoretic
viewpoint as a special first-order theory. In
this framework, we focus upon several sub-
jects: the manner in which negative data
are to be treated in a database, the null
value problem in which the value of a data
item is missing, and indefinite data in which
one knows, say P(a) V P(b) is true, but one
does not know if P(a) is true, P(b) is true,
or both are true.

We first provide the background for de-
fining deductive databases, and then treat
two different kinds of deductive databases:
definite and indefinite. It will be seen that
assumptions generally made with respect
to definite databases do not apply directly
to indefinite databases. Finally, we briefly
discuss other extensions to deductive da-
tabases and logic databases.

For additional material on the subjects
of deductive databases or logic and data-
bases not covered in this survey article, see
Gallaire et al. [1984], the Proceedings of the
First Conference on Logic Programming
[1982], the Logic Programming Workshop
Proceedings [1983], the International Joint
Conference on Artificial Intelligence [1983],
the International Symposium on Logic Pro-
gramming [1984], and other conferences
devoted to artificial intelligence and logic
programming.

2.1 Definition of Deductive or Logic
Databases

In general, we shall consider a database
to consist of a finite set of constants, say
{cl . . . cn}, and a set of first-order clauses
without function symbols (see Section 1.2).
Functions are excluded in order to have
finite and explicit answers to queries. Ini-
tially our theory precludes null values that
arise in a database when one has state-
ments such as (3x)P(a, x), that is, linked
to "a" in the predicate P there is a value,
but its precise value is unknown. When one
skolemizes the formula (3x)P(a, x) and
places it in clause form, the clause P(a, ~o)
results, where o0 is a Skolem constant (i.e.,
a constant whose value is otherwise uncon-
strained).

Computing Surveys, Voi. 16, No. 2, June 1984

170 • H. GaUaire, J . M i n k e r , and J . - M . Nicolas

The general form of clauses that will
represent facts and deductive laws is

P i & P2 & . . . & Ph---~R1V . . . V Rq.

It is equivalent to the clause

~P1 V . . . V -~Pk V R1 V . . . V Rq.

The conjunction of the Pi is referred to
as the left-hand side of the clause and the
disjunction of the Rj as the right-hand side.
Since the clauses that we will consider are
function free, terms that are arguments of
the Pi and Rj are either constants or vari-
ables. Whenever any variable that occurs
in the right-hand side of a clause also occurs
in the left-hand side, the clause is said to
be range restricted. We shall briefly discuss
various types of clauses depending on the
respective values of k and q, as in Minker
[1983]:

Type 1: k = 0, q = 1. Clauses have the
form

P (t l , . . . , tm).

(a) If the ti are constants, Cil, . . . , Cim,
then one has

P(c i l , . . . , Vim),

which represents an assertion or a fact in
the database. The set of all such assertions
for the predicate letter P corresponds to a
"table" in a relational database. The arrow
preceding an assertion will generally be
omitted.

(b) When some, or all, of the ti are vari-
ables, the clause corresponds to a general
statement in the database. For example,

Ancestor(Adam, x),

states that Adam is an ancestor of all in-
dividuals in the database (the database con-
sists only of human beings). Clearly, such
data, which are not range-restricted clauses
and therefore assume that all the individ-
uals in the database are of the same "type,"
appear very seldom.

Type 2: k = 1, q = 0. Clauses have the
form

P(t l tin) ---~.

(a) When all of the ti are constants, then
we have

P(Cil, • . . , Cim) ~ ,

which stands for a negative fact. Negative
statements may seem peculiar since rela-
tional databases do not contain negative
data. We shall return to this topic in a later
section.

(b) Some of the ti are variables. This may
either be thought of as an integrity con-
straint (as a particular Type 3 clause; see
below), or as the "value does not exist"
meaning for null values (see Section 1.1.3).

T y p e 3: k > 1, q = 0. Clauses have the
form

PI & " '" & Pk ' -~ .

Such axioms may be thought of as integrity
constraints. That is, data to be added to a
database must satisfy the laws specified by
the integrity condition to be allowed in the
database. For example, one may specify an
integrity law that states that "no individual
can be both a father and a mother of an-
other individual." This may be specified as

FATHER(x, y) & MOTHER(x, y) --~.

If FATHER(JACK, SALLY) is already in
the database, an at tempt to enter
MOTHER(JACK, SALLY) into the data-
base should lead to an integrity violation.
This does not rule out other kinds of integ-
rity constraints.

T y p e 4: k _> 1, q = 1. Clauses have the
• form

P I & P2 & "'" & P k i > R1.

The clause may be considered to be either
an integrity constraint or a definition of
the predicate R1 in terms of the predicates
P1 Pk (such a definition is a deductive
law).

Type 5: k = 0, q > 1. Clauses have the
form

- - ~ R i V R 2 V . . . VR1.

If the xi, i = 1, . . . , n are constants, then
we have an indef in i te assert ion. That is, any
combination of one or more Ri is true, but
we do not know which ones are true.

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach

Type 6: k _> 1, q > 1. Clauses have the
form

PI & P2 & . . . & Ph--~ R1V R2 V . . . V Rq.

The clause may be interpreted as either an
integrity constraint or the definition of in-
definite data. An integrity constraint that
states that each individual has at most two
parents may be written as

P(x~, Yl) & P(Xl, Y2) & P(Xl, y3)

--~ (yl = y2) V (yl = y3) V (Y2 ~- Y3).

As a general rule of deduction we might
have

Parent(x, y) --~ Mother(x, y)

V Father(x, y).

This general law could also be inter-
preted as an integrity constraint.

Finally, a clause where k = 0, q = 0 (the
empty clause) denotes falsity and should
not be part of a database. Furthermore, we
shall call a clause definite if its right-hand
side consists of exactly one atom (i.e., Type
lb or Type 4).

All the types of clauses defined above,
except ground facts (Type la), are treated
as integrity constraints in conventional da-
tabases. In a deductive database some of
them may be treated as deductive laws. We
shall distinguish two classes of databases:
definite databases in which no clauses of
either Type 5 or Type 6 appear and indef-
inite databases in which such clauses do
appear.

2.2 Definite Deductive Databases (DDDBs)

2.2. I A Formal Definition of DDDBs

A definite deductive database is defined as
a particular first-order theory (together
with a set of integrity constraints). This
theory is obtained from the theory given
for conventional databases in Section 1.3
by the addition of a new class of axioms,
which stand for the deductive laws, and by
a reformulation of the completion axioms,
which account for the presence of these new
axioms. More precisely, a definite deductive
database consists of the following:

• 171

(1) A theory T whose proper axioms a r e

• Axioms 1 (the particularization axioms):
the domain closure axiom, the unique
name axioms, the equality axioms (as
given in Section 1.3), and the completion
axioms (one for each predicate in T)
whose formulation is given below.

• Axioms 2 (the elementary facts): a set
of ground atomic formulas defined by
clauses of Type la in Section 2.1.

• Axioms 3 (the deductive laws): a set of
function-free definite clauses of Type 4
(or Type lb) in Section 2.1.

(2) A set of integrity constraints IC,
which consists of any closed formulas.

The completion axiom for a predicate P
is now not only built from the facts related
to P (which occur in Axioms 2), but also
from the "only if" missing part of the def-
inite clauses defining P (which occur in
Axioms 3). For example, let P have the
following assertions in T:

P(ci, cj),

P(%, Cq),

and let

Q(x, y) & R(y, z) --0 P(x, z),

and

S(x, y) ~ P(x, y),

be all the clauses in Axioms 3 that imply
P; then, the completion axiom for P is

P(x, y) --~ ((x = Cl) & (y = cj))

V ((x = Cp) & (y = Cq))

V (Q(x, y) & R(y, z))

V (S(x, y)).

Such a completion axiom permits one to
derive a negative fact ~P(d, e) whenever
P(d, e) is neither in Axioms 2 nor derivable
through Axioms 3. Thus from the database
just specified we can derive ~P(ci, Cp).

In such a deductive database the defini-
tion of answers to queries and of the satis-
fiability of integrity constraints is equiva-
lent to their definition in a conventional
database viewed from the proof-theoretic

Computing Surveys, V01.16, No. 2, June 1984

172 • H. Gallaire, J. Minker , and J . -M. Nicolas

perspective. An answer to a query W (x l ,
. . . . x~), where xl, . . . , xp are free variables
in W, is the set of tuples (cil %) such
that T ~ W(cil, . . . , %). Now, a deductive
database obeys the integrity constraints in
IC iff for any formula ¢ in IC T I- ¢.

An alternative definition can be given for
the satisfiability of integrity constraints: A
deductive database obeys the integrity con-
straints in IC iff T U IC (the axioms in T
together with the formulas in IC) is con-
sistent [Kowalski 1979]. Since the theory
T, as defined above for a definite deductive
database, is complete (i.e., for any closed
formula W, either T I- W or T ~ -7 W), both
definitions are equivalent in that case.
However, for more general deductive data-
bases whose corresponding theory is not
complete, the second definition is less strin-
gent than the first and its impact is worth
investigating.

Deductive laws (in Axioms 3) that imply
a relation R provide an extended definition
for R. The tuples <cil, . . . , cim) that "sat-
isfy" R are not only those tuples such that
R(cil cim) is a fact in Axioms 2, but
also those tuples such that R(ca , . . . , ci,~)
is derivable through the deductive laws.
Relations that are jointly defined by deduc-
tive laws and elementary facts in a deduc-
tive database, called derived relations, con-
stitute a generalization of relations defined
as "views" in a conventional database. A
"view" is a relation, not stored in the da-
tabase, that is defined in terms of database
relations or other views by a relational al-
gebra (or calculus) expression. A derived
relation reduces to a view when

(i) there are no elementary facts in Ax-
ioms 2 related to this relation, and

(ii) no recursive deductive law or cycle ap-
pears among the deductive laws that
imply this relation in Axioms 3.

In such a case, if E1 --~ R , . . . , Eq ~ R are
all the deductive laws that imply R, this
derived relation corresponds to the view
V = E~ V . . . V Eq. We note that Point (i)
is not significant since two different names
may be given to the "explicit part" and the
"derived part" of a relation. However, Point
(ii) has more impact. Some relations may
be defined as derived relations, whereas

strictly, they cannot be defined as views. A
typical example is the Ancestor relation,
which is the transitive closure of the Parent
relation. Incidentally, we note that the re-
lational calculus (or algebra) may be ex-
tended (or embedded into another lan-
guage) in order to be able to define such a
relation as a view. However, since from a
model-theoretic viewpoint the transitive
closure of a relation is not first-order defin-
able, one has to call for languages that are
more powerful than first-order language.
But, in a (definite) deductive database de-
fined from a proof-theoretic point of view
as above, the Ancestor relation can easily
be defined as a derived relation in terms of
two deductive laws:

(Parent(x, y) --~ Ancestor(x, y),

Ancestor(x, y) & Parent(y, z)

Ancestor(x, z)),

and strictly remain in the context of first-
order logic (see Section 1.1.2).

Clearly, on considering the combinatorial
complexity of the particularization axioms
(Axioms 1), it would be quite inefficient to
implement a (definite) deductive DBMS,
while clinging to the formal definition of a
DDDB given here, namely, to implement
such a DBMS as a standard theorem prover
that treats axioms in Axioms 1 in the same
way as axioms in Axioms 2 or Axioms 3.
The solution is similar to what is done for
conventional DBMSs. It consists of substi-
tuting adequate metarules (or metaconven-
tions) for the particularization axioms, thus
obtaining a so-called operational definition
of a DDDB. The following section is de-
voted to this issue.

2.2.2 An Operational Definition of DDDBs

Particularization axioms may be elimi-
nated for DDDBs in a way that is similar
to conventional databases, thus providing
a convenient way to implement correspond-
ing systems. First, calling for the domain
closure axiom may be avoided by dealing
with range-restricted formulas for query,
integrity constraint, and deductive law for-
mulation (see Section 1.1.1). Then, as dis-
cussed by Kowalski [1978, 1979] and

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 173

proved by Clark [1978], the unique name
and completion axioms may be removed,
provided that negation is interpreted as
{finite) failure (see also Jaffar et al. [1983]
for a stronger result). The metarule of ne-
gation as failure states that for any positive
literal P, ~ -~P iff F- P; that is, failure to
prove P permits one to infer "~P. Finite
failure further requires that all proof at-
tempts terminate. Finally, since the equal-
ity axioms were needed only for the pres-
ence of the equality predicate in the above
axioms, they are no longer required.

To summarize, keeping in mind that any
formula now has to be range restricted,
from an operational point of view a DDDBs
consists of the following:

(1) A set of axioms: Axioms 2 (elementary
facts) U Axioms 3 {deductive laws).

(2) A set of integrity constraints: IC.
(3) A metarule: negation as finite failure

(nff).

Query answering and integrity constraint
satisfiability remain defined as in Section
1.3.1 except that, now "~" has to be inter-
preted as "provable under nff."

Negation as finite failure generalizes in
the deductive databases case to the usual
assumption underlying conventional data-
bases for negative facts (see Section 1.3).
The use of this concept was discussed as
the "convention for negative information
representation" by Nicolas and Syre [1974]
and Nicolas and Gallaire [1978], and also
described as the "closed world assumption"
(CWA) 2 by Reiter [1978a, 1980]. This con-
cept is also used in the artificial intelligence
languages PLANNER [Hewitt 1972] and
PROLOG [Roussel 1975].

The syntactic definition (i.e., according
to proof theory) of negation as failure given
above has a semantic {i.e., according to
model theory) counterpart. Let G be the set
of all possible ground {positive) atomic for-
mulas constructible from the symbols in a
given set of definite clauses. A Herbrand
model for this set of clauses is a subset of

2 There is the open world assumption (OWA) corre-
sponding to the CWA that provides a standard inter-
pretation of negation as given with a full first-order
theory.

G that makes all the clauses true. It has
been shown [Van Emden and Kowalski
1976] that the intersection of all such
models is itself a model, and indeed is the
minimal model {i.e., it contains the mini-
mal number of atomic formulas). If one
substracts the set of atomic formulas in the
minimal model from G, the remaining set
of atomic formulas is the set of all formulas
whose negations may be assumed to be true.
These are the same atomic formulas ob-
tained by the CWA. This shows that the
CWA and negation as failure assume com-
plete knowledge, and there are no unknown
facts. A discussion of the semantic defini-
tion of negation as failure can be found in
Minker [1982] and Van Emden [1978].

Although the formal and operational def-
initions of a DDDB are equivalent in the
sense that they will give the same answers
to queries, they are in fact not strictly
equivalent. The formal definition is stated
in standard first-order logic, which is mon-
otonic, whereas the use of negation as fail-
ure in the operational definition leads to a
nonmonotonic logic. A logic is said to be
monotonic if one is given a theory T (i.e., a
set of axioms) in which a formula w can be
proved (i.e., T t - w), then the addition to T
of an axiom A still permits one to prove
w; that is, T U {A} ~ w. According to nega-
tion as failure, -~P(b) can be inferred from
{P(a), Q(b)} but not from {P(a), Q(b)} U
{P(b)}; thus we have a nonmonotonic logic.
For an analysis of the relation between
predicate completion and work in artificial
intelligence on nonmonotonic logic, the
reader is referred to Reiter [1982].

Finally, we note that, as shown by Nico-
las and Gallaire [1978] and formally proved
by Reiter [1978a], a definite deductive da-
tabase is always consistent under the CWA.
The intuitive reason is that definite clauses
preclude the derivation of positive facts
from negative facts. We see in Section 2.3
that this is not the case when indefinite
clauses are accepted as deductive laws.

2.2.3 Deductive Laws and Integrity Constraints

Both deductive laws in Axioms 3 and integ-
rity constraints in IC correspond to general
knowledge of the world modeled by the

Computing Surveys, Voi. 16, No. 2, June 1984

174 * H. GaUaire, J. Minker, and J.-M. Nicolas

database. Given such general knowledge,
we might inquire as to the basis on which
one can decide to consider a general rule as
a deductive law, and thus incorporate it in
Axioms 3, or as an integrity constraint, and
thus incorporate it as part of the IC. There
is no final answer to this (database design)
question, but some suggestions are provided
by Nicolas and Gallaire [1978] and Reiter
[1978a, 1984]. They are briefly stated be-
low.

(i) If one wants to obtain finite and
explicit answers to queries (i.e., sets
of tuples of elements in the data-
base), deductive laws have to be
function free. Thus general knowl-
edge that corresponds to formulas
that do not fulfill this constraint
should be treated as integrity con-
straints. For example, the general
knowledge "every teacher has a di-
ploma,"

(Vx Vy(TEACH(x, y)

(3z)DIPLOMA(x, z))),

should be treated as an integrity
constraint since the clause form of
the axiom contains a Skolem func-
tion.

(ii) In order to avoid inconsistency with
the CWA, one retains as deductive
laws only general knowledge that
corresponds to definite clauses (and
thus use the other clauses as integ-
rity constraints). However, as we
shall see in Section 2.3, there is an-
other possibility, which consists of
modifying the CWA.

(iii) Since purely negative clauses (i.e.,
clauses of Type 3 in Section 2.1)
will never produce new facts (under
the CWA), they need only be used
as integri ty cons t ra in ts [Reiter
1978a].

(iv) General knowledge that implies in-
stances of a relation that is com-
pletely defined independently of it
will not, if used as a deductive law,
produce any new valid facts and
should be used as an integrity con-
straint.

For example, the general knowledge, "the
age of any person is less than 150,"

(Vx Vy)(Age(x, y) ~ (y < 150)),

used as a deductive law, would always pro-
duce facts which are either inconsistent
(e.g., 180 < 150) or redundant (e.g., 35 <
150). A functional dependency statement
such as

(Vx Vx' Vy)(Father(x, y) & Father(x' , y)

(x = x')),

is another example of this kind. Hence
these rules are best used as integrity con-
straints.

In the two examples above, the implied
relations are of a particular kind, and it is
generally agreed that they are defined in-
dependently of any reference to a specific
database. For more standard relations, it is
a matter of choice (dependent upon data-
base design) to decide what general knowl-
edge and which assertions will participate
in the complete definition of a relation. As
an extreme ease, in a conventional database
it is (implicitly) assumed that every relation
(other than views) is completely defined in
terms of elementary facts (the tuples in the
corresponding table), and thus all general
knowledge is used as integrity constraints.

As noted by Kowalski [1979] and as we
shall emphasize here, a deductive database
can be viewed as a logic program that pro-
duces facts (the facts in the minimal model
characterized in Section 2.2.2) and whose
integrity constraints are the program prop-
erties. Modifications to the program (viz.
database updates involving either deduc-
tion laws or elementary facts) must pre-
serve those properties.

When general knowledge has been par-
titioned between deductive laws and integ-
rity constraints, they have to be exploited
conjointly. Integrity checking in a deduc-
tive context is discussed by Nicolas and
Yazdanian [1978] and Reiter [1981], and a
methodology for updating databases with
integrity constraints and deductive laws
was suggested by Fagin et al. [1983]. Fur-
ther, query evaluation and update handling
are uniformly treated by dos Santos et al.

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 175

[1981], where deduction provides either a~
analysis of a state of the database, that is,
an answer to a query, or a plan, that is, a
sequence of database modifications to reach
a desired state. We now focus on deductive
laws.

As mentioned in the preceding section,
the theory that constitutes a definite de-
duciive database admits a (unique) mini-
mal model. This (minimal) model consists
of a set of facts that connotes that these
are the facts that are true. These facts
constitute the conventional database
(CDB) underlying the deductive database.
Now, one can choose to exploit the deduc-
tive database in either of two ways. The
underlying CDB can be kept implicit, in
which case the deductive laws, or their com-
piled form (see Section 2.2.4.2), have to be
run at query evaluation time to find the
(implicit) deducible facts. The alternative
consists of making the underlying CDB
explicit. To do so, deductive laws have to
be run when new facts are inserted into the
database to make explicit the deducible
facts. Then query evaluation can be done
as in a conventional database. In the first
case deductive laws are said to be used as
derivation rules, whereas in the second
case, they are said to be used as generation
rules [Nicolas and Gallaire 1978]. The re-
spective advantages of derivation and gen-
eration rules are discussed by Nicolas and
Gallaire [1978] and Nicolas and Yazdanian
[1982]. We only mention here that, as op-
posed to derivation paths, "generation
paths" stop naturally even when recursive
rules or cycles among the rules appear. The
interested reader will find a description of
a prototype deductive DBMS by using gen-
eration rules in Nicolas and Yazdanian
[1982].

Finally, we note that exploiting deductive
laws as generation rules can be viewed as
an automatic revalidation of integrity con-
straints in a conventional database. This
can also be viewed as providing a gener-
alization of "concrete views" [Blaustein
1981], that is, views whose corresponding
set of tuples is explicitly stored.

In the following section we focus on
proof-theoretic techniques used for exploit-
ing derivation rules.

2.2.4 Inference Methods and Database Access

We shall describe two ways to perform the
inference process: the interpretive and the
compiled methods.

The interpretive method works with a
problem solver, using the deductive laws
and interleaves search of the extensional
DB (which contains the elementary facts,
i.e., Axioms 2). In the compiled approach,
the problem solver uses all of the deductive
laws until a point is reached at which either
the problem is solved or all that remains is
to search for facts in the extensional DB.
Both methods work well when deductive
laws are assumed to be free of cycles, that
is, when there are no recursive axioms.
Otherwise, both have difficulties handling
the termination problem, that is, detecting
at which point no new solutions will be
found. However, it should be possible to
find such termination conditions, as only a
finite number of tuples can be generated as
answers to any query to a definite deductive
database (function free, with a finite set of
constants and consisting of only definite
clauses). This problem has been studied by
a number of authors [Chang 1981; Kunifuji
and Yokota 1982; Minker and Nicolas 1982;
Naqvi and Henschen 1984; Reiter 1978c;
Shapiro and McKay 1980; Yokota et al.
1983].

2.2.4.1 Interpretive Method o[Deduc-
tion. We shall describe the interpretive
method for the following simple database.
Let the facts in the database (the exten-
sional DB) be

F(e, b~) M(c, e)
F(e, b2) M(c,[)
F(e, b3) M(c,g)

M(g, d)

H(a, c)

where F, M, and H stand, respectively, for
Father, Mother, and Husband. Let the de-
ductive laws be

(A1) M(x, y) & M(y, z) ~ GM(x, z),

(A2) M(x, y) & F(y, z) ~ GM(x, z),

(A~) GM(z, y) & H(x, z) ~ GF(x, y).

Relation GM (Grandmother) is said to be
intensionally defined in terms of the exten-

Computing Surveys, Vol. 16, No. 2, June 1984

176 • H. GaUaire, J. Minker, and J.-M. Nicolas

sional relations F and M. Relation GF
(Grandfather) is intensionally defined in
terms of the extensional relation H and
intensional relation GM, and hence in
terms of the extensional relations F and M
as well. There is no loss of generality in
assuming that no relation is hybrid; that is,
all relations are either (purely) intensional
or (purely) extensional (e.g., see Minker
[1982]). We illustrate the interpretive ap-
proach, starting from a query GF(a, y):

(1) GF(a, y),

and applying A3, using the Robinson Res-
olution Principle (Section 1.2) yields

(2) GM(z, y) & H(a, z)

as the subproblems to be solved. At this
point a selection function could be used to
provide advice to solve H(a, z) first. The
reason for selecting H(a, z) first is that it
contains a constant and is presumably eas-
ier to satisfy than the case where one ar-
bitrarily looks for a tuple that satisfies
GM(z, y) and hopes that the value of z,
when substituted into H(a, z), will be in the
database. By accessing the database, we
find that H(a, c) is in the database and z is
bound to c. Now, the subproblem

(3) GM(c, y)

remains to be solved. Since there are two
ways to solve this last goal on the DB
(Axioms A1 and A2), a choice is made to
select Rule A2, yielding

(4) M(c, Yl) & F(yl, y),

which now must be solved. These subprob-
lems may be solved in two steps, to obtain
one answer, {bl}. However, the process is
not finished, and backtracking at previous
choice points will yield {b2, b3, d} as further
answers. So, for the sake of efficiency, at
each step one has to involve a selection
function and a choice function. Some of the
variants of this basic method have explored
the idea of obtaining the whole set of an-
swers at each access to the DB, rather than
one at a time [Chakravarthy et al. 1982;
Minker 1975a, 1975b, 1978a, 1978b]. AI-

though no termination conditions are
known in the general case, one should note
that this problem also exists in logic pro-
gramming, where it is left up to the skill of
the programmer to specify a termination
condition.

2.2.4.2 Compilation Method of Deduc-
tion. Access to the database is delayed in
the deductive process until all the work
remaining to be done for query evaluation
is to access the database. This should allow
the possibility for global optimizations of
DB accesses. The method was basically
described by Chang [1978], Furukawa
[1977], Kellogg et al. [1978], Kellogg and
Travis [1981], and Reiter [1978b]. Two pos-
sible techniques can be used. In the first
technique, which could be called a pseudo-
compilation technique, only one path at a
time i s pursued. That is, a single expression
involving only extensional relations is pro-
duced at a given time; backtracking then
produces further expressions. This is
clearly a source of redundant work. With
the above deductive laws, first one would
get the expression

M(z, Yl) & M(yl, y) & H(a, z),

which would be passed over to the DB
evaluator, and along a second path one
might generate the expression

M(z, Yl) & F(yl, y) & H(a, z),

which has obvious redundancies with the
previous expression [Chakravarthy et al.
1982; Kunifuji and Yokota 1982]. The sec-
ond technique aims at producing an itera-
tive program that synthesizes the set of all
retrieval expressions. Let us illustrate it by
extending the deductive laws of our pre-
vious example to the following intensional
recursive relation (Ancestor):

F(x, y) & A(y, z) ~ A(x, z),

M(x, y) ~ A(x, y).

In this case, a method described by Naqvi
and Henschen [1980, 1984] would produce
the following program from an initial query
A(?, a).

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 177

Z2 :'~- a

eval(F(y2, yl) & M(yl, z~))
/likely to access M first/

print(y1) /there may be several values of yl/
enque(S, yl)

/put in set S those values not already put into
it/

while(S ~ empty) do
y2 := deque(S) /take the first element/
eval(F(y3, y2))
print(y3)
enque(S, y3)
end

This method is general but suffers from
some drawbacks in that some redundancy
may still remain. The enque process may
be time consuming and the program gen-
erated depends on the initial query.

2.3 Indefinite Deductive Databases (IDDDBs)

An indefinite deductive database differs
from a definite deductive database (refer-
ring to its operational definition) in Axioms
3 and the metarule to handle negation. The
difference in Axioms 3, although seemingly
minor, will be seen to be substantial. We
define Axioms 3' as follows:
• Axioms 3': a set of function-free definite

or indefinite clauses. An indefinite
clause is to the form given by Type 5 or
Type 6 in Section 2.1, for example,

P(a, b) V Q(c, d, e),
o r

R(x, y) & T(y, z)
P(x, z) V Q(x, y, z).

More precisely, an indefinite deductive da-
tabase consists of
(1) A set of axioms T, where T = Axioms

2 U Axioms 3'.
(2) A set of integrity constraints IC.
(3) A metarule: generalized negation as

failure, described below.

The addition of indefinite clauses
changes matters radically. Methods and re-
sults that apply to definite deductive data-
bases do not apply to indefinite deductive
databases. For example, an indefinite
database may be inconsistent under the
CWA. Consider a database that consists of
a single fact,

cat(felix),

and of a single deductive law,

cat(x) ~ black(x) V white(x).

Since black(felix) cannot be proved, appli-
cation of the CWA leads to

}- -%lack(felix).

Similarly, one can also conclude

}- -~white(felix).

But the set

{cat(x) --~ black(x)

V white(x), cat(felix),

-Tblack(felix), -Twhite(felix) }

is obviously inconsistent. Hence the closed
world assumption (negation as failure) as
defined for definite databases is not appli-
cable to indefinite databases.

The concept of a CWA can be extended
to achieve a generalized closed world as-
sumption (GCWA) as follows. Let E be the
set of all purely positive (possibly empty)
clauses not provable. Then assert ~P(x) iff
P(x) V C is not provable for any C in E.
We also refer to this as generalized negation
as failure. As in the case of definite data-
bases, one can obtain a semantic interpre-
tation of generalized negation as failure.
But, whereas in a definite database there is
a unique minimal model, in an indefinite
database a set of minimal models arises.
The GCWA as defined above was intro-
duced by Minker [1982]. In the case where
no general axioms appear other than defi-
nite ground clauses, Grant and Minker
[1983] have developed an algorithm on the
basis of the GCWA to compute answers to
queries. Although the GCWA provides a
sound formal basis, this notion has not yet
been shown to be sufficiently efficient when
general axioms are permitted to be directly
usable in practice. A variant that may be
more promising from a practical point of
view was introduced independently, and
widely studied by Bossu and Siegel [1981].

The GCWA treats null values correctly,
where it is meant here that the null value
is among the constants already known in
the database. Let the database consist of
{P(o~), Q(a), Q(b)}, where '00' is a null value,

Computing Surveys, Vol. 16, No. 2, June 1984

178 • H Gallaire, J. Minker, and J.-M. Nicolas

or Skolem constant that arises from the
statement 3xP(x). If the domain D consists
only of {a, b}, then the existentially quan-
tified statement corresponds to

(3xP(x)) ~ P(a) V P(b).

Hence P(~) is a shorthand notation for
P(a) V P(b). If one were to replace the entry
P(o~) with P(a) V P(b), and the database
were treated under the GCWA, one could
not conclude ~P(a) from this database. The
null value is then treated correctly. A dis-
advantage to this approach is that of having
to list a potentially long disjunction for a
database with many constants in its do-
main.

Another major difference is that the de-
duction mechanism needs to be more com-
plex for indefinite databases than for defi-
nite deductive databases. Indeed, proof
strategies such as input resolution [Chang
1970] and LUSH resolution [Hill 1974],
although complete for Horn clauses, are not
complete for non-Horn clauses. When deal-
ing with indefinite clauses, a complete
proof strategy such as linear resolution
[Loveland 1969, 1970; Reiter 1971], linear
resolution with selection function (SL)
[Kowalski and Kuehner 1971], or linear
resolution with unrestricted selection func-
tion based on trees (LUST) [Minker and
Zanon 1982] is required.

Answers in an indefinite deductive da-
tabase are no longer definite. That is, if the
entire database consists of the single entry
P(a) V P(b), then the answer to the query
P(x)? is x = a + b, which denotes that
either x = a or x = b or both satisfy the
query. The problem of indefinite answers
is addressed by Reiter [1978b] and Grant
and Minker [1983].

Minker and Perlis [1983, 1984] treat a
different kind of indefiniteness. Users may
know that some of their facts are correct.
They may also know that they are not
willing to make statements about other
facts. That is, the facts may or may not be
true. In either a conventional or a deductive
database there is no facility available to
store facts and specify to the user that these
facts may or may not be true. To account
for this possibility Minker and Perlis have
generalized the concept of circumscription

developed by McCarthy [1980] to what they
call protected circumscription. They have
shown that the user can then obtain an-
swers of the form yes, no, and unknown.
Efficient computational techniques are re-
quired to make the approach practical.
They have also developed a completeness
and soundness result for protected circum-
scription in the case of finitary data, and
hence for cases of interest to databases.

2.4 Logic Databases

The presentation of deductive databases
given in the preceding sections essentially
reflects a view from the perspective of con-
ventional databases, that is, a "DB field"
view. Starting with a conventional DB, one
introduces some ad hoc deductive capabil-
ities while keeping (as far as possible) the
usual DB conventions. For example, only
function-free formulas are retained, but
clearly, authorizing functions allows more
general forms of data to be manipulated
(i.e., general terms instead of only con-
stants and variables), which eventually give
a different conceptual model to the user
(e.g., semantic networks; see Deliyanni and
Kowalski [1979] for a discussion as to how
semantic networks can be represented in
logic). We do not consider an (extended)
deductive database as an unconstrained
first-order theory because its implementa-
tion would be extremely inefficient.

Introducing functions into DB Horn
clauses takes the deductive database field
closer to the field of logic programming. It
is thus not surprising to see the same en-
hancements carried out for both fields.
Horn clauses augmented with negation as
failure led to the PROLOG language, which
has been demonstrated to be efficient
[Roussel 1975]. A PROLOG program is
quite similar to a definite deductive data-
base (up to functions). However, this does
not mean that a standard interpreter for
such a language constitutes a DDBMS that
must not only provide us with query facili-
ties, but also with functions for integrity
and maintenance of deduced facts. A logic
database system would be obtained by com-
bining the above-mentioned facilities with
an efficient access method to a large num-

Computing Surveys, Vol, 16, No. 2, June 1984

Logic and Databases: A Deductive Approach • 179

ber of facts. Such an integration can be
realized in various ways (see Chakravarthy
et al. [1982] and Gallaire [1983]). It should
be clear that a logic database language
could be continuously extended, by provid-
ing extensions to negation as failure, incor-
porating metalanguage capabilities and
other capabilities. This could prove useful
for databases, as argued by Kowalski
[1981a].

3. CONCLUSION

We have attempted to cover results ob-
tained within the framework of mathemat-
ical logic applied to databases mainly
through the perspective of deductive data-
bases. We have shown how logic applies to
query languages, integrity modeling and
maintenance, query evaluation, database
design through dependencies, representa-
tion and manipulation of deduced facts, and
incomplete information. However, the field
of logic and databases, as it is called, is far
from closed; logic provides an appropriate
framework for many database problems
that still need to be investigated thor-
oughly. We note some of these problems
below. Many of the problems listed below
as needing continued research have been
drawn from a report to which the first and
third authors of this paper contributed
[Adiba et al. 1982] (see also Reiter [1984]):

• Designing natural language query sys-
tems, whatever "natural" means.

• Optimizing query evaluation based on se-
mantic knowledge, which is needed, in
general, for interactive access to data-
bases and especially in a natural language
context.

• Finding criteria and methods for choosing,
between equivalent sets of integrity con-
straints, a good set, where "good" means
constraint sets that are easy to check and
to maintain.

• Finding criteria to decide which relations
should be base relations and which should
be derived or hybrid relations, in other
words, what general knowledge should be
used as integrity constraints and what
should be used as deduction rules.

• Finding more efficient means for detecting
the violation of integrity constraints.

• Synthesizing a program preserving integ-
rity from transaction specifications and
integrity constraints, both expressed in
logic. Since such a program could also
be written in logic (programming), the
field of logic and databases appears to be
particularly well suited here.

• Relaxing some of the conditions for a for-
mula to be an integrity constraint and
investigating the interest of such less
stringent definitions.

• Embedding data manipulation languages
in programming languages. In deductive
databases one usually considers the de-
ductive component to be part of the
DBMS. However, it is possible to inter-
face a (conventional or deductive) DBMS
with a logic programming language, for
example, PROLOG. Such an integration
is accomplished most easily when the
DBMS language is predicate calculus ori-
ented; a full integration could result in
which the DBMS appears as the part of
the programming system specialized to
the manipulation of facts.

• Looking for practical solutions to handle
general forms of incomplete informa-
tion. Although satisfactory solutions
have been found for some incomplete in-
formation problems, major developments
are needed to be able to handle practical
problems. It will be necessary to investi-
gate the concepts of circumscription and
protected circumscription to expand their
applicability to databases. The investi-
gation of incomplete information is inti-
mately connected with null value prob-
lems.

• Investigating how logic can help in defin-
ing the so-called semantic models, which
appear as competitors to the relational
model both for classical database appli-
cations and for more ambitious applica-
tions, where various types of data must
be handled (e.g., text, computer-assisted
design data, graphics). Such research will
pursue problems identical to those in
knowledge representation.

As we have attempted to demonstrate in
this survey article, the field of logic and
databases is important both to conven-
tional and deductive databases. In this con-

Computing Surveys, Vol. 16, No. 2, June 1984

180 * H. Gallaire, J. Minker, and J.-M. Nicolas

nection we note that "logic and databases"
as have been described in this paper con-
stitute the core of the work in Japan in the
field of knowledge bases in their "Fifth-
Generation Project."

Logic, we believe, provides a firm theo-
retical basis upon which one can pursue
database theory in general. There are many
research areas that remain to be investi-
gated in addition to those listed above be-
fore a full understanding of databases is
achieved. We believe that the field of logic
and databases will contribute significantly
to such an understanding. At the same
time, we believe that logic databases may
be made practical and efficient, as has been
described by the many developments re-
ported on in this survey.

ACKNOWLEDGMENTS

We thank Bob Kowalski and Ray Reiter, whose work
in the field of logic and databases has been very
influential, and for the many discussions that we have
had with them over the past several years. The com-
ments of the referees, the ACM technical editor, and
Joachim Biskup on an earlier version of this paper
were greatly appreciated.

Support for the work on this paper was received by
Herv~ Gallaire from Compagnie G~n~rale d'l~lectricit~
(CGE), by Jack Minker from the Air Force Office of
Scientific Research (AFOSR) under Grant 82-0303,
the National Aeronautics and Space Administration
(NASA) under Grant NAG-I-51, and the National
Science Foundation (NSF) under Grants MCS-
7919418 and MCS-8305992, by Jean-Marie Nicolas
from the Direction des Recherches, Etudes et Tech-
niques d'Armements (DRET), the Centre National de
la Recherche Seientifique (CNRS-APT Intelligence
Artificielle), and the Institut National de la Recherche
en Informatique et Automatique (INRIA). We grate-
fully acknowledge the support that made this work
possible.

REFERENCES

ADIBA, M., et al. 1982. Bases de donnes: Nouvelles
perspectives. Rapport du groupe BD3 ADI-IN-
RIA, Paris.

AHO, A. V., AND ULLMAN, J. D. 1979. Universality
of data retrieval languages. In Proceedings of the
6th ACM Symposium on Principles of Program-
ming Languages (San Antonio, Tex., Jan. 29-31).
ACM, New York, pp. 110-120.

AHO, A. V., SAGIV, Y., AND ULLMAN, J. D. 1979.
Equivalences among relational expressions.
SIAM J. Comput. 8, 2 (May), 218-246.

ANSI/X3/SPARC 1975. Study Group on DBMS In-
terim Report. SIGMOD FDT Bull. 7, 2, 1975.

ARMSTRONG, W. W. 1974. Dependency structures of
database relationships. In Proceedings of IFIP 74.
Elsevier North-Holland, New York, pp. 580-583.

ARTIFICIAL INTELLIGENCE JOURNAL 1980. 13, 1, 2;
Special issue on nonmonotonic logic.

ARTRAUD, A., AND NICOLAS, J.-M. 1974. An exper-
imental query system: SYNTEX. In Proceedings
of the International Computing Symposium 73.
Elsevier North-Holland, New York, pp. 557-563.

BANCILHON, F. 1978. On the completeness of query
languages for relational databases. In Proceedings
of the 7th Symposium on Mathematical Founda-
tions of Computer Science. Springer-Verlag, Ber-
lin and New York, pp. 112-123.

BEERI, C., AND VARDI, M. Y. 1980. A proof proce-
dure for data dependencies. Tech. Rep., Com-
puter Science Dept., Hebrew Univ., Jerusalem
(Aug.).

BEERI, C., AND VARDI, M. Y. 1981. The implication
problem for data dependencies. In Proceedings of
the 8th Colloquium on Automata, Languages, and
Programming ACTC (AKKO). Springer-Verlag,
Berlin and New York, pp. 73-85.

BISKUP, J. A. 1981. A formal approach to null values
in database relations. In Advances in Database
Theory, vol. 1, H. Gallaire, J. Minker, and J.-M.
Nicolas, Eds. Plenum, New York, pp. 299-341.

BISKUP, J. A. 1982. A foundation of Codd's rela-
tional maybe-operations. Tech. Rep., Computer
Science Dept., Univ. of Dortmund, West Ger-
many.

BLAUSTEIN, B. T. 1981. Enforcing database asser-
tions: Techniques and applications, Ph.D. disser-
tation, Computer Science Dept., Harvard Univ.,
Cambridge, Mass. (Aug.).

BORGIDA, A., AND WONG, H. K. T. 1981. Data
models and data manipulation languages: Com-
plementary semantics and proof theory. In Pro-
ceedings of the 7th Conference on Very Large Data
Bases (Cannes, France, Sept. 9-11). IEEE, New
York, pp. 260-271.

Sossu , G., AND SIEGEL, P. 1981. La saturation au
secours de la non-monotonicite. These de 3eme
Cycle, D~partment d'Informatiques, Universit~
d'Aix- Marseille-Luminy, Marseille, France
(June).

BOWEN, K. A., AND KOWALSKI, R. A. 1982.
Amalgamating language and metalanguage in
logic programming. In Logic Programming, K. L.
Clark and S. A. Tarnlund, Eds. Academic Press,
New York, pp. 153-172.

BRODIE, M. L., AND ZILLES, S. N., Eds. 1980.
Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modeling (Pingree
Park, Colo., June). ACM SIGMOD Rec. 11, 2
(Feb.).

CASANOVA, M. A., AND BERNSTEIN, P. A. 1979. The
logic of a relational data manipulation language.
In Proceedings of the 6th ACM Symposium on

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach * 181

Principles of Programming Languages (San An-
tonio, Tex., Jan. 29-31). ACM, New York, pp.
101-109.

CASANOVA, M. A., AND BERNSTEIN, P. A. 1980. A
formal system for reasoning about programs ac-
cessing a relational database. ACM Trans. Pro-
gram. Lang. Syst. 2, 3 (July), 386-414.

CHAKRAVARTHY, U. S., MINKER, J., AND TRAN, D.
1982. Interfacing predicate logic languages and
relational databases. In Proceedings of the 1st
Conference on Logic Programming (Marseille,
France, Sept.). Universit~ d'Aix-Marseille-Lu-
miny, Marseille, France, pp. 91-98.

CHAMBERLIN, D. D., ASTRAHAN, U. U., BLASGEN,
M. W., GRAY, J. N., KING, W. F., LINDSAY, B.
G., LORIE, R., MEHL, J. W., PRICE, T. G., PUT-
ZOLU, F., SEL1NGER, P. G., SCHKOLNICK, M.,
SLUTZ, D. R., TRAIGER, L L., WADE, B. W., AND
YOST, R. A. 1981. A history and evaluation of
System R. Commun. ACM 24, 10 (Oct.)632-
646.

CHANDRA, A. K., AND HAREL, D. 1979. Computable
queries for relational data bases. In Proceedings
of the 11th ACM Symposium on Theory of Com-
puting (Atlanta, Ga., Apr. 30-May 2). ACM, New
York, pp. 309-318.

CHANDRA, A. K., AND HAREL, D. 1980. Structure
and complexity of relational queries. In Proceed-
ings of the 21st IEEE Symposium on Foundations
of Computer Science (Syracuse, N.Y., Oct.). IEEE,
New York, pp. 333-347. Also in J. Comput. Syst.
Sci. 25, 1 (Aug. 1982), 99-128.

CHANDRA, A. K., AND MERLIN, P. M. 1976. Optimal
implementation of conjunctive queries in rela-
tional data bases. In Proceedings of the 9th ACM
Symposium on Theory of Computing (Boulder,
Colo., May 2-4). ACM, New York, pp. 77-90.

CHANDRA, A. K., LEWIS, H. R., AND MAKOWSKY, J.
A. 1981. Embedded implicational dependencies
and their inference problem. In Proceedings of
the 13th ACM Symposium on Theory of Comput-
ing (Milwaukee, Wis., May 11-13). ACM, New
York, pp. 342-354.

CHANG, C. L. 1970. The unit proof and the input
proof in theorem proving. J. ACM 17, 4 (Oct.)
698-707.

CHANG, C. L. 1978. DEDUCE 2: Further investiga-
tions of deduction in relational databases. In
Logic and Databases, H. Gallaire and J. Minker,
Eds. Plenum, New York, pp. 201-236.

CHANG, C. L. 1981. On evaluation of queries con-
taining derived relations in a relational database.
In Advances in Database Theory, vol. 1, H. Gal-
laire, J. Minker, and J.-M. Nicolas, Eds. Plenum,
New York, pp. 235-260.

CHANG, C. L., AND LEE, R. C. T. 1973. Symbolic
Logic and Mechanical Theorem Proving. Aca-
demic Press, New York.

CLARK, K. L. 1978. Negation as failure. In Logic and
Databases, H. Gallaire and J. Minker, Eds.
Plenum, New York, pp. 293-322.

CODD, E. F. 1970. A relational model of data for
large shared data banks. Commun. ACM 13, 6
(June), 377-387.

CODD, E. F. 1972. Relational completeness of data-
base sublanguages. In Data Base Systems, R. Rus-
tin, Ed. Prentice-Hall, New York, pp. 65-98.

CODD, E. F. 1979. Extending the relational database
model to capture more meaning. ACM Trans.
Database Syst. 4, 4 (Dec.), 397-434.

CODD, E. F. 1980. Data models in database manage-
ment. In Proceedings of the Workshop on Data
Abstraction, Databases and Conceptual Modeling
(Pingree Park, Colo., June), pp. 112-114; ACM
SIGMOD Rec. 11, 2 (Feb.).

CODD, E. F. 1982. Relational database: A practical
foundation for productivity. Commun. ACM 25,
2 (Feb.), 109-117.

COLMERAUER, A. 1973. Un systeme de communica-
tion homme-machine en francais. Rapport,
Groupe Intelligence Artifieielle, Universit~ d'Aix-
Marseille-Luminy, Marseilles, France.

COLMERAUER, A., AND PIQUE, J. F. 1981. About
natural logic. In Advances in Database Theory
vol. 1, H. Gallaire, J. Minker, and J.-M. Nicolas,
Eds. Plenum, New York, pp. 343-365.

COOPER, E. C. 1980. On the expressive power of
query languages for relational databases. Tech.
Rep. 14-80, Computer Science Dept., Harvard
Univ., Cambridge, Mass.

DAHL, V. 1982. On database systems development
through logic. ACM Trans. Database Syst. 7, 1
(Mar.), 102-123.

DATE, C. J. 1977. An Introduction to Database Sys-
tems. Addison-Wesley, Reading, Mass.

DATE, C. J. 1981. An Introduction to Database Sys-
tems, 3rd ed. Addison-Wesley, Reading, Mass.

DELIYANNI, A., AND KOWALSKI, R. A. 1979. Logic
and semantic networks. Commun. ACM 22, 3
(Mar.), 184-192.

DELOEEL, C. 1978. Normalization and hierarchical
dependencies in the relational data model. ACM
Trans. Database Syst. 3, 3 (Sept.), 201-222.

DELOBEL, C. 1980. An overview of the relational
data theory. In Proceedings o[IFIP 80. Elsevier
North-Holland, New York, pp. 413-426.

DELOBEL, C., AND CASEY, R. G. 1973. Decom-
position of a database and the theory of Boolean
switching functions. IBM J. Res. Dev. 17, 5
(Sept.), 484-485.

DELOBEL, C., AND PARKER, D. S. 1978. Functional
and multivalued dependencies in a relational
database and the theory of boolean switching
functions. Tech. Rep. 142, Universit~ de Greno-
ble, Grenoble, France (Nov.).

DEMOLOMBE, R. 1980. Estimation of the number of
tuples satisfying a query expressed in predicate
calculus language. In Proceedings of the 6th In-
ternational Conference on Very Large Data Bases
(Montreal, Oct. 1-3). IEEE, New York, pp. 55-
63.

Computing Surveys, Vol. 16, No. 2, June 1984

182 • H. GaUaire, J. Minker, and J.-M. Nicolas

DEMOLOMBE, R. 1981. Assigning meaning to ill-de-
fined queries expressed in predicate calculus lan-
guage. In Advances in Database Theory, vol. 1, H.
Gallaire, J. Minker, and J.-M. Nicolas, Eds.
Plenum, New York, pp. 367-395.

DEMOLOMEE, R. 1982. Utilization du calcul des pre-
dicats eomme langage d'interrogation des bases
de donn~es. These de doctorat d'~tat, ONERA-
CERT, Toulouse, France (Feb.).

DI PAOLA, R. A. 1969. The recursive unsolvability
of the decision problem for the class of definite
formulas. J. ACM 16, 2 (Apr.), 324-327.

DOS SANTOS, C. S., MAIBAUM, T. S. E., AND FURTADO,
A. L. 1981. Conceptual modeling of database
operations. Int. J. Comput. Inf. Sci. 10, 5, 299-
314.

ENDERTON, H. B. 1972. A Mathematical Introduc-
tion to Logic. Academic Press, New York.

FAGIN, R. 1977a. Multivalued dependencies and a
new normal form for relational databases. ACM
Trans. Database Syst. 2, 3 (Sept.), 262-278.

FAGIN, R. 1977b. Functional dependencies in a re-
lational database and propositional logic. IBM J.
Res. Dev. 21, 6 (Nov.), 534-544.

FAGIN, R. 1980. Horn clauses and data base depend-
encies. In Proceedings of the 12th Annual ACM-
SIGACT Symposium on Theory of Computing.
ACM, New York, pp. 123-134.

FAGIN, R. 1982. Horn clause and database depend-
encies. J. ACM 29, 4 (Oct.), 952-985.

FAG|N, R., ULLMAN, J. D., AND VARDI, M. Y.
1983. On the semantics of updates in databases.
In Proceedings of the 2nd ACM Symposium on
Principles of Database Systems (Atlanta, Ga.,
Mar. 21-23). ACM, New York, pp. 352-365.

FLORENTIN, J. J. 1974. Consistency auditing of data
bases. Comput. J. 17, 1, 52-58.

FURUKAWA, K. 1977. A deductive question-answer-
ing system on relational databases. In Proceed-
ings of the 5th International Joint Conference on
Artificial Intelligence (Cambridge, Mass., Aug.),
pp. 59-66.

GALIL, Z. 1982. An almost linear-time algorithm for
computing a dependency basis in a relational
database. J. ACM 29, 1 (Jan.), 96-102.

GALLAIRE, H. 1981. Impacts of logic on data bases.
In Proceedings of the 7th International Conference
on Very Large Data Bases (Cannes, France, Sept.
9-11). IEEE, New York, pp. 248--259.

GALLAIRE, H. 1983. Logic databases vs. deductive
databases. Logic Programming Workshop (Albu-
feira, Portugal). University of Lisboa, Lisbon,
Portugal, pp. 608-622.

GALLAIRE, H., AND M1NKER, J., Eds. 1978. Logic and
Data Bases. Plenum, New York.

GALLAIRE, H., MINKER, J., AND NICOLAS, J.-M., Eds.,
1981a. Advances in Data Base Theory, vol. 1.
Plenum, New York.

GALLAIRE, H., MINKER, J., AND NICOLAS, J.-M.
1981b. Background for advances in data base
theory. In Advances in Data Base Theory, vol. I,

H. Gallaire, J. Minker, and J.-M. Nicolas, Eds.
Plenum, New York, pp. 3-21.

GALLMRE, H., MINKER, J., AND NICOLAS, J.-M., Eds.
1984. Advances in Data Base Theory, voL 2.
Plenum, New York.

GARDARIN, G., AND MELKANOFF, M. 1979. Proving
consistency of database transactions. In Proceed-
ings of the 5th International Conference on Very
Large Data Bases (Rio de Janeiro, Oct. 3-5).
IEEE, New York, pp. 291-298.

GRANT, J. 1977. Null values in a relational data base.
Inf. Process. Lett. 6, 5, 156-157.

GRANT, J., AND JACOBS, B. E. 1982. On the family
of generalized dependency constraints. J. ACM
29, 4 (Oct.), 986-997.

GRANT, J., .~ND MINKER, J. 1981. Optimization in
deductive and conventional relational database
systems. In Advances in Data Base Theory, vol.
1, H. Gallaire, J. Minker, and J.-M. Nicolas, Eds.
Plenum, New York, pp. 195-234.

GRANT, J., AND MINKER, J. 1983. Answering queries
in indefinite databases and the null value prob-
lem. Tech. Rep. 1374, Computer Science Dept.,
University of Maryland, College Park.

GREEN, C. 1969. Theorem proving by resolution as
a basis for question-answering systems. In Ma-
chine Intelligence 4, B. Meltzer and D. Miehie,
Eds. Elsevier North-Holland, New York, pp. 183-
205.

HAMMER, M. T., AND ZDONIK, S. B., JR. 1980.
Knowledge-based query processing. In Proceed-
ings of the 6th International Conference on Very
Large Data Bases (Montreal, Oct. 1-3). IEEE,
New York, pp. 137-147.

HAREL, D. 1979. First order dynamiclogic. In/Lec-
ture Notes in Computer Science, vol. 68. Springer-
Verlag, Berlin and New York.

HAREL, D. 1980. Review of Logic and Databases, H.
Gallaire and J. Minker. Comput. Rev. 21, 8 (Aug.),
367-369.

HENSCHEN, L. J., McCUNE, W. W., AND NAQVl, S.
A. 1984. Compiling constraint checking pro-
grams from first order formulas. In Advances in
Database Theory, vol. 2, H. Gallaire, J. Minker,
and J.-M. Nicolas, Eds. Plenum, New York, pp.
145-169.

HEwrrr, C. 1972. Description and theoretical anal-
ysis (using schemata) of PLANNER: A language
for proving theorems and manipulating models
in a robot. AI Memo No. 251, MIT Project MAC,
Cambridge, Mass.

HILL, R. 1974. LUSH resolntion and its complete-
ness. DCS Memo, No. 78. University of Edin-
burgh, School of Artificial Intelligence.

HOMEIER, P. V. 1981. Simplifying integrity con-
straints in a relational database: An implemen-
tation. M.Sc. thesis, Computer Science Dept.,
University of California, Los Angeles.

IMIELINSKI, W., AND LIPSKI, W. 1981. On represent-
ing incomplete information in a relational data-
base. In Proceedings of the 7th International Con-
ference on Very Large Data Bases (Cannes,

Computing Surveys, Vo|. 16, No. 2, June 1984

Logic and Databases: A Deductiv¢ Approach

France, Sept. 9-11). IEEE, New York, pp. 389-
397.

INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL
INTELLIGENCE 1983. August, 8-12, 1983, Karls-
ruhe, West Germany.

INTERNATIONAL SYMPOSIUM ON LOGIC PROGRAM-
MING 1984. Feb. 6-9, 1984, Atlantic City, N.J.

JACOBS, B. E. 1982. On database logic. J. ACM 29,
2 (Apr.), 310-332.

JACOBS, B. E., ARONSON, A. R., AND KLUG, A. C.
1982. On interpretations of relational languages
and solutions to the implied constraint problem.
ACM Trans. Database Syst. 7, 2 (June), 291-315.

JAFFAR, J., LASSEZ, J. L., AND LLOYD, J. 1983.
Completeness of the negation by failure rule. In
Proceedings of the 8th International Joint Confer-
ence on Artificial Intelligence (Karlsruhe, W. Ger-
many, Aug.), pp. 500-506.

JANAS, J. M. 1979. Towards more informative user
interfaces. In Proceedings of the 5th International
Conference on Very Large Data Bases (Rio de
Janeiro, Oct. 3-5}. IEEE, New York, pp. 17-23.

JANAS, J. M. 1981. On the feasibility of informative
answers. In Advances in Data Base Theory, vol.
1, H. Gallaire, J. Minker, and J.-M. Nicolas, Eds.
Plenum, New York, pp. 397-414.

KELLOGG, C., AND TRAVlS, L. 1981. Reasoning with
data in a deductively augmented data manage-
ment system. In Advances in Data Base Theory,
vol. 1, H. Gallaire, J. Minker, and J.-M. Nicolas,
Eds. Plenum, New York, pp. 261-295.

KELLOGG, C., KLHAR, P., AND TRAVlS, L. 1978.
Deductive planning and path finding for rela-
tional data bases. In Logic and Databases, H.
Gallaire and J. Minker, Eds. Plenum, New York,
pp. 179-200.

KING, J. J. 1981. QUIST: A system for semantic
query optimization in relational databases. In
Proceedings of the 7th International Conference
on Very Large Data Bases (Cannes, France, Sept.
9-11). IEEE, New York, pp. 510-517.

KONOL1GE, K. 1981. A metalanguage representation
of databases for deductive question-answering
systems. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence (Van-
couver, B.C., Aug.), pp. 469-503.

KOWALSKI, R. A. 1978. Logic for data description.
In Logic and Data Bases, H. Gallaire and J.
Minker, Eds. Plenum, New York, pp. 77-103.

KOWALSKI, R. A. 1979. Logic for Problem Solving.
ElseVier North-Holland, New'York.

KOWALSKI, R. A. 1981a. Logic as a data base lan-
guage. In Proceedings of the Advanced Seminar
on Theoretical Issues in Data Bases (Cetraro,
Italy, Sept.).

KOWALSKI, R. A. 1981b. Personal communication.
KOWALSKI, R. A., AND KUEHNER, D. 1971. Linear

resolution with selection function. Artif. Intell. 2,
3/4, 227-26O.

KUHNS, J. L. 1967. Answering questions by com-
puters--A logical study. Rand Memo RM 5428
PR, Rand Corp., Santa Monica, Calif.

• 183

KUHNS, J. L. 1970. Interrogating a relational data
file: Remarks on the admissibility of input que-
ries. Tech. Rep. TR-511-PR, Rand Corp., Santa
Monica, Calif. (Nov.).

KUNIFUJI, S., AND YOKOTA, H. 1982. Prolog and
relational databases for the fifth generation com-
puter system. ICOT Rep. D02, Institute for New
Generation Computer Technology, Tokyo.

LACROIX, M., AND PIROTTE, A. 1980. Associating
types with domains of relational databases. In
Workshop on Data Abstraction, Databases and
Conceptual Modeling (Pingree Park, Colo., June).
ACM SIGMOD Rec. 11, 2 (Feb.), 144-146.

LEVESQUE, H. J. 1981. The interaction with incom-
plete knowledge bases: a formal treatment. Pro-
ceedings of the 7th International Joint Conference
on Artificial Intelligence (Vancouver, B.C., Aug.),
pp. 240-245.

LIPSK1, W. 1979. On semantic issues connected with
incomplete information systems. A C M Trans.
Database Syst. 4, 3 (Sept.), 262-296.

LOGIC PROGRAMMING WORKSHOP PROCEEDINGS
1983. June 26-July, 1, 1983, Praia da Falesia,
Algarve, Portugal. Dept. of Computer Science,
University of Lisboa, Lisbon, Portugal.

LOVELAND, D. 1969. Theorem provers combining
model elimination and resolution. In Machine
Intelligence, vol. 4. B. Meltzer and D. Michie,
Eds. Elsevier North-Holland, New York, pp. 73-
86.

LOVELAND, D. 1970. A linear format for resolution.
Proceedings of the IRIA Symposium on Automatic
Demonstration. Springer-Verlag, Berlin and New
York, pp. 147-162.

LOVELAND, D. 1978. Automated Theorem Proving: A
Logical Basis. Elsevier North-Holland, New York.

MAIER, D. 1983. The Theory of Relational Databases.
Computer Science Press, Rockville, Md.

MAIER, D., MENDELZON, A. O., AND SAGIV, Y.
1979. Testing implications of data dependen-
cies. ACM Trans. Database Syst. 4, 4 (Dec.), 455-
469.

MCCARTHY, J. 1980. Circumscription--A form of
non-monotonic reasoning. Artif. Intell. 13, 27-39.

MCSKIMIN, J. 1976. Techniques for employing se-
mantic information in question-answering sys-
tems. Ph.D. dissertation, Dept. of Computer Sci-
ence, University of Maryland, College Park.

MCSKIMIN, J., AND MINKER, J. 1977. The use of a
semantic network in a deductive question-an-
swering system. In Proceedings of the 5th Inter-
national Joint Conference on Artificial Intelligence
(Cambridge, Mass., Aug.), pp. 50-58.

MENDELSON, E. 1978. Introduction to Mathematical
Logic, 2nd ed. Van Nostrand-Reinhold, New
York.

MINKER, J. 1975a. Performing inferences over rela-
tional data bases. In ACM SIGMOD International
Conference on Management of Data (San Jose,
Calif., May 14-16). ACM, New York, pp. 79-91.

MINKER, J. 1975b. Set operations and inferences
over relational databases. In Proceedings of the

Computing Surveys, Vol. 16, No. 2, June 1984

184 * Ho Gallaire, J. Minker, and J.-M. Nicolas

4th Texas Conference on Computing Systems
(Nov.). Univ. of Texas, Austin, pp. 5Al.l-5Al.10.

MINKER, J. 1978a. Search strategy and selection
function for an inferential relational system.
ACM Trans. Database Syst. 3, 1 (Mar.), 1-31.

MINKER, J. 1978b. An experimental relational data
base system based on logic. In Logic and Data-
bases, H. Gallaire and J. Minker, Eds. Plenum,
New York, pp. 107-147.

MINKER, J. 1982. On indefinite databases and the
closed world assumption. In Proceedings of the
6th Conference on Automated Deduction (New
York). Springer-Verlag Lecture Notes in Com-
puter Science, No. 138. Springer-Verlag, Berlin
and New York, pp. 292-308.

MINKER, J. 1983. On deductive relational databases.
In Proceedings of the 5th International Conference
on Collective Phenomena (July), J. L. Lebowitz,
Ed., Annals of the New York Academy of Sciences,
vol. 10. New York Academy of Science, New
York, pp. 181-200.

MINKER, J., AND NICOLAS, J. M. 1982. On recursive
axioms in deductive databases. Inf. Syst. 8, 1
(Jan.), 1-13.

MINKER, J., AND PERLIS, D. 1983. On the semantics
of circumscription. Tech. Rep., Computer Science
Dept., Univ. of Maryland, College Park.

MINKER, J., AND PERLIS, D. 1984. Applications of
protected circumscription. In Proceedings of the
Conference on Automated Deduction 7 (Napa,
Calif., May). Springer-Verlag, Berlin and New
York, pp. 414-425.

M1NKER, J., AND ZANON, G. 1982. An extension to
linear resolution with selection function. Inf.
Process. Lett. 14, 4 (June), 191-194.

MOORE, R. C. 1981. Problems in logical form. In
Proceedings of the 19th Annual Meeting of the
Association for Computational Linguistics (June).
Association for Computational Linguistics, pp.
117-124.

MYLOPOULOS, J. 1980. An overview of knowledge
representation. In Proceedings of the Workshop
of Data Abstraction, Databases, and Conceptual
Modeling, M. Brodie and S. N. Zilles, Eds. (Pin-
gree Park, Colo., June). ACM SIGMOD Rec. 11,
2 (Feb.), 5-12.

NAQVI, S. A., AND HENSCHEN, L. J. 1980. Per-
forming inferences over recursive data bases. In
Proceedings of the 1st Annual National Confer-
ence on Artificial Intelligence (Stanford, Conn.,
Aug.). AAAI, Palo Alto, Calif., pp. 263-265.

NAQVI, S. A., AND HENSCHEN, L. J. 1984. On com-
piling queries in recursive first-order databases.
J. ACM 31, 1 (Jan.), 47-85.

NICOLAS, J.-M. 1978. First order logic formalization
for functional, multivalued and mutual depend-
encies. In Proceedings of ACM-SIGMOD Inter-
national Conference on Management of Data
(Austin, Tex., June 1, 2). ACM, New York, pp.
40-46.

NICOLAS, J.-M. 1979a. A property of logical formulas
corresponding to integrity constraints on data-
base relations. In Proceedings of the Workshop on

Formal Bases for Data Bases (Toulouse, France).
ONERA-CERT, Toulouse, France.

NICOLAS, J.-M. 1979b. Logic for improving integrity
checking in relational databases. Tech. Rep.
ONERA-CERT, Toulouse, France (Feb.). Also in
Acta Inf. 18, 3 (Dec.), 227-253.

NICOLAS, J.-M., AND GALLAIRE, H. 1978. Database:
Theory vs. interpretation. In Logic and Databases,
H. Gallaire and J. Minker, Eds. Plenum, New
York, pp. 33-54.

NICOLAS, J.-M., AND SYRE, J. C. 1974. Natural ques-
tion answering and automatic deduction in the
system SYNTEX. In Proceedings of IFIP 1974.
North-Holland, Amsterdam, pp. 595-599.

NICOLAS, J.-M., AND YAZDANIAN, K. 1978. Integrity
checking in deductive databases. In Log/c and
Databases, H. Gallaire and J. Minker, Eds.
Plenum, New York, pp. 325-346.

NICOLAS, J.-M., AND YAZDANIAN, K. 1982. An out-
line of BDGEN: A deductive DBMS. Tech. Rep.
TR-ONERA-CERT, Toulouse, France (Oct.).
Also in Proceedings of IFIP 83 Congress. North-
Holland, Amsterdam, 1983, pp. 711-717.

PAREDAENS, J. 1978. On the expressive power of
relational algebra. Inf. Process. Lett. 7, 2 (Feb.),
107-111.

PARKER, D. S., AND DELOBEL, C. 1979. Algorithmic
applications for a new result on multivalued de-
pendencies. In Proceedings of the 5th Conference
on Very Large Data Bases (Rio de Janeiro, Oct.
3-5). IEEE, New York, pp. 67-74.

PIROTTE, A. 1976. Explicit description of entities
and their manipulation in languages for the re-
lational database model. Th6se de doctorat, Uni-
versit6 libre de Bruxelles, Brussells, Belgium
(Dec.).

PIROTTE, A. 1978. High level data base query lan-
guages. In Logic and Data Bases, H. Gallaire and
J. Minker, Eds. Plenum, New York, pp. 409-436.

PRATT, V. R. 1976. Semantical considerations on
Floyd-Hoare logic. In Proceedings of the 17th
IEEE Symposium Foundations of Computer Sci-
ence (Oct.). IEEE, New York, pp. 409-120.

PROCEEDINGS OF THE IST CONFERENCE ON LOGIC
PROGRAMMING 1982. Marseille, France (Sept.),
Universit6 d'Aix-Marseille-Luminy, Marseille.

REITER, R. 1971. Two results on ordering for reso-
lution with merging and linear format. J. ACM
18, 4 (Oct.), 630-646.

REITER, R. 1978a. On closed world databases. In
Logic and Databases, H. Gallaire and J. Minker,
Eds. Plenum, New York, pp. 56-76.

RELIER, R. 1978b. Deductive question-answering on
relational databases. In Logic and Data Bases, H.
Gallaire and J. Minker, Eds. Plenum, New York,
pp. 149-178.

REITER, R. 1978c. On structuring a first-order
database. In Proceedings of the 2nd Canadian
Society for Computer Science National Confer-
ence, Canada (July).

RE1TER, R. 1980. Equality and domain closure in
first-order databases. J. ACM 27, 2 (Apr.), 235-
249.

Computing Surveys, Vol. 16, No. 2, June 1984

Logic and Databases: A Deductive Approach

REITER, R. 1981. On the integrity of first-order
databases. In Advances in Data Base Theory, vol.
1, H. Gallaire, J. Minker, and J.-M. Nicolas, Eds.
Plenum, New York, pp. 137-158.

REITER, R. 1982. Circumscription implies predicate
completion {sometimes). In Proceedings of the
American Association for Artificial Intelligence 82
Conference {Pittsburgh, Pa., Aug.). AAAI, Menlo
Park, Calif., pp. 418-420.

REITER, R. 1983. A sound and sometimes complete
query evaluation algorithm for relational data-
bases with null values. Tech. Rep. 83-11, Com-
puter Science Dept., University of British Colum-
bia, Canada {June).

REITER, R. 1984. Towards a logical reconstruction
of relational database theory. In On Conceptual
Modeling, M. Brodie, J. Mylopoulos, and J. W.
Schmidt, Eds. Springer-Verlag, Berlin and New
York.

ROBINSON, J. A. 1965. A machine oriented logic
based on the resolution principle. J. ACM 12, 1
{Jan.), 23-41.

ROUSSEL, P. 1975. PROLOG: Manuel de reference
et d'utilisation. Tech. Rep., D~partement d'Infor-
matiques, Universit~ d'Aix-Marseille-Luminy,
Marseille, France (Sept.).

SADRI, F., AND ULLMAN, J. D. 1980. A complete
axiomatization for a large class of dependencies
in relational databases. In Proceedings of the ! 7th
Annual ACM-SIGACT Symposium on Theory of
Computing. ACM, New York, pp. 117-122.

SADRI, F., AND ULLMAN, J. D. 1982. Template de-
pendencies: A large class of dependencies in re-
lational databases and its complete axiomatiza-
tion. J. ACM 29, 2 {Apr.), 363-372.

SAGIV, Y. 1980. An algorithm for inferring multival-
ued dependencies with an application to propo-
sitional logic. J. ACM 27, 2 (Apr.), 250-262.

SAGIV, Y., AND FAGIN, R. 1979. An equivalence be-
tween relational database dependencies and a
subset of propositional logic. Res. Rep. R J2500,
IBM Research Laboratories, San Jose, Calif.
(Mar.).

SAGIV, Y., DELOBEL, C., PARKER, D. S., JR., AND
FAGIN, R. 1981. An equivalence I:~etween rela-
tional database dependencies and a subclass of
propositional logic. J. ACM 28, 3 {July), 435-453.

SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLIN,
D. D., LORIE, R. A., AND PRICE, T. G. 1979.
Access path selection in a relational database
management system. In Proceedings ACM-SIG-
MOD International Conference on Management
of Data {Boston, May 30-June 1). ACM, New
York, pp. 23-34.

SHAPIRO, S. E., AND MCKAY, D. P. 1980. Inference
with recursive rules. In Proceedings of the 1st
Annual National Conference on Artificial Intelli-
gence. AAA|, Palo Alto, Calif.

SIKLOSSY, L., AND LAURIERE, J.-L. 1982. Removing
restrictions in the relational database model: an
application of problem solving techniques. In
Proceedings of the American Association for Arti-
ficial Intelligence 82 Conference (Pittsburgh, Pa.,
Aug.). AAAI, Menlo Park, Calif., pp. 310-313.

• 1 8 5

STONEBRAKER, M. R., WONO, E., AND KEEPS, P.
1976. The design and implementation of
INGRES. ACM Trans. Database Syst. 1, 3 (Sept.),
189-222.

ULLMAN, J. D. 1980. Principles of Database Systems.
Computer Science Press, Potomac, Md.

ULLMAN, J. D. 1982. Principles of Database Systems,
2nd ed. Computer Science Press, Potomac, Md.

VAN EMDEN, M. H. 1978. Computation and deduc-
tive information retrieval. In Formal Description
of Programming Concepts, E. J. Neuhold, Ed.
Elsevier North-Holland, New York, pp. 421-440.

VAN EMDEN, M. H., AND KOWALSKI, R. A. 1976.
The semantics of predicate logic as a program-
ming language. J. ACM 23, 4 (Oct.), 733-742.

VARDI, M. Y. 1981. The decision problem for data-
base dependencies. Inf. Process. Lett. 12, 5 (Oct.),
251-254.

VASSILIOU, Y. 1979. Null values in data base man-
agement--A denotational semantics approach. In
Proceedings of the ACM-SIGMOD International
Conference on the Management of Data (Boston,
May 30-June 1). ACM, New York, pp: 162-169.

VASSILIOU, Y. 1980. Functional dependencies and
incomplete information. In Proceedings of the 6th
International Conference on Very Large Data
Bases {Montreal, Oct. 1-3). IEEE, New York, pp.
260-269.

VELOSO, P. A. S., DE CASTILHO, J. M. V., AND FUR-
TADO, A. L. 1981. Systematic derivation of com-
plementary specifications. In Proceedings of the
7th International Conference on Very Large Data
Bases {Cannes, France, Sept. 9-11). IEEE, New
York, pp. 409-421.

WARREN, D. H. D. 1981. Efficient processing of in-
teractive relational database queries expressed in
logic. In Proceedings of the 7th International Con-
ference on Very Large Data Bases (Cannes,
France, Sept. 9-11). IEEE, New York, pp. 272-
281.

WOODS, W. A. 1967. Semantics for question-an-
swering systems. Ph.D. dissertation, Rep. NSF-
19, Aiken Computation Laboratory, Harvard
University, Cambridge, Mass.

YANNAKAKIS, M., AND PAPADIMITRIOU, C. 1982. Al-
gebraic dependencies. J. Comput. Syst. Sci. 25, 1
(Aug.), 2-41.

YOKOTA, H., KUNIFUJI, S., KAKUTA, T., MIYAZAKI,
N., SHIBAYAMA, S., AND MURAKAMI, K. 1983.
An enhanced inference mechanism for generating
relational algebra queries. Tech. Rep. 026, ICOT
Research Center, Institute for New Generation
Computer Technology, Tokyo, Japan.

ZANIOLO, C. 1976. Analysis and design of relational
schemata for data base system. Tech. Rep. UCLA
Eng. 7769, Dept. of Computer Science, University
of California, Los Angeles.

ZANIOLO, C. 1981. Incomplete database information
and null values: An overview. In Proceedings of
the Advanced Seminar on Theoretical Issues in
Data Bases (Cetraro, Italy, Sept.).

ZLOOF, M. M. 1977. Query-by-example: A data base
language. IBM Syst. J. 16, 4, 324-343.

Received February 1983; final revision accepted July 1984. Computing Surveys, Vol. 16, No. 2, June 1984

