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Part 1: Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• important for hardware applications (e. g., model checking)
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1.1 Syntax

• propositional variables

• logical symbols

⇒ Boolean combinations
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Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.

4



Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= ⊥ (falsum)

| > (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G ) (conjunction)

| (F ∨ G ) (disjunction)

| (F → G ) (implication)

| (F ↔ G ) (equivalence)
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1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only”

two truth values “true” and “false” which we shall denote,

respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.
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Valuations

A propositional variable has no intrinsic meaning. The meaning

of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.
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Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1}

is defined inductively over the structure of F as follows:

A∗(⊥) = 0

A∗(>) = 1

A∗(P) = A(P)

A∗(¬F ) = B¬(A∗(F ))

A∗(FρG ) = Bρ(A
∗(F ),A∗(G ))

where Bρ is the Boolean function associated with ρ

defined by the usual truth table.
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Truth Value of a Formula in A

For simplicity, we write A instead of A∗.

We also write ρ instead of Bρ, i. e., we use the same notation

for a logical symbol and for its meaning (but remember that

formally these are different things.)
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1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F ) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).
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Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written

F |= G , if for all Π-valuations A, whenever A |= F then A |= G .

F and G are called equivalent, written F |=| G , if for all

Π-valuations A we have A |= F ⇔ A |= G .

Proposition 1.1:

F |= G if and only if |= (F → G ).

Proposition 1.2:

F |=| G if and only if |= (F ↔ G ).
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Entailment and Equivalence

Extension to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:

if A |= G for all G ∈ N, then A |= F .
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 1.3:

F is valid if and only if ¬F is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it

is sufficient to design a checker for unsatisfiability.
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Validity vs. Unsatisfiability

In a similar way, entailment N |= F can be reduced to

unsatisfiability:

Proposition 1.4:

N |= F if and only if N ∪ {¬F} is unsatisfiable.
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Checking Unsatisfiability

Every formula F contains only finitely many propositional

variables. Obviously, A(F ) depends only on the values of those

finitely many variables in F under A.

If F contains n distinct propositional variables, then it is

sufficient to check 2n valuations to see whether F is satisfiable

or not.

⇒ truth table.

So the satisfiability problem is clearly deciadable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than

truth tables to check the satisfiability of a formula. (later more)
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1.4 Normal Forms

We define conjunctions of formulas as follows:
∧0

i=1
Fi = >.

∧1

i=1
Fi = F1.

∧
n+1

i=1
Fi =

∧
n

i=1
Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1
Fi = ⊥.

∨1

i=1
Fi = F1.

∨
n+1

i=1
Fi =

∨
n

i=1
Fi ∨ Fn+1.
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Literals and Clauses

A literal is either a propositional variable P or a negated

propositional variable ¬P.

A clause is a (possibly empty) disjunction of literals.
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CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal

form), if it is a conjunction of disjunctions of literals (or in other

words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a

disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?

18



CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of

DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and ¬P.

Conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary

literals P and ¬P.

On the other hand, checking the unsatisfiability of CNF formulas

or the validity of DNF formulas is known to be coNP-complete.
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1.5 The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite

set N of clauses), check whether it is satisfiable (and optionally:

output one solution, if it is satisfiable).

Assumption:

Clauses contain neither duplicated literals nor

complementary literals.

Notation:

L is the complementary literal of L,

i. e., P = ¬P and ¬P = P.
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Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .
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Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations

(that is, partial mappings A : Π → {0, 1}).

Every partial valuation A corresponds to a set M of literals that

does not contain complementary literals, and vice versa:

A(L) is true, if L ∈ M.

A(L) is false, if L ∈ M.

A(L) is undefined, if neither L ∈ M nor L ∈ M.

We will use A and M interchangeably.
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Partial Valuations

A clause is true under a partial valuation A

(or under a set M of literals) if one of its literals is true;

it is false (or “conflicting”) if all its literals are false;

otherwise it is undefined (or “unresolved”).
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Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C ,

such that all literals but one in C are false under A, then the

following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.
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Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in

the unresolved clauses in N, then the following properties are

equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns true (false) to P.

P is called a pure literal.
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The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true under M) return true;

elsif (some clause in N is false under M) return false;

elsif (N contains unit clause P) return DPLL(M ∪ {P}, N);

elsif (N contains unit clause ¬P) return DPLL(M ∪ {¬P}, N);

elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);

elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);

else {

let P be some undefined variable in N;

if (DPLL(M ∪ {¬P}, N)) return true;

else return DPLL(M ∪ {P}, N);

}

}
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The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with an empty literal set and the clause

set N.
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DPLL Iteratively

In practice, there are several changes to the procedure:

The pure literal check is often omitted (it is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one

level).

Information is reused by learning.
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Branching Heuristics

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be

recomputed too frequently.

In general: choose variables that occur frequently.
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The Deduction Algorithm

For applying the unit rule, we need to know the number of

literals in a clause that are not false.

Maintaining this number is expensive, however.
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The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P, keep a list of all clauses in which P is

watched and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses

in which P (or ¬P) is watched and watch another literal (that

is true or undefined) in this clause if possible.

Watched literal information need not be restored upon

backtracking.
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Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further

branches.

Method: Learning:

If a conflicting clause is found, derive a new clause from the

conflict and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them

afterwards to save space.
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Backjumping

Related technique:

non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip

over that backtrack level.
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Restart

Runtimes of DPLL-style procedures depend extremely on the

choice of branching variables.

If no solution is found within a certain time limit, it can be

useful to restart from scratch with another choice of branchings

(but learned clauses may be kept).
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1.6 Splitting into Horn Clauses

• A Horn clause is a clause with at most one positive literal.

• They are typically denoted as implications: P1, . . . ,Pn → Q.

(In general we can write P1, . . . ,Pn → Q1, . . . ,Qm for

¬P1 ∨ . . . ∨ ¬Pn ∨ Q1 ∨ . . . ∨ Qm.)

• Compared to arbitrary clause sets, Horn clause sets enjoy

further properties:

– Horn clause sets have unique minimal models.

– Checking satisfiability is often of lower complexity.
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Propositional Horn Clause SAT is in P

boolean HornSAT(literal set M, Horn clause set N) {

if (all clauses in N are supported by M) return true;

elsif (a negative clause in N is not supported by M) return false;

elsif (N contains clause P1, . . . , Pn → Q where

{P1, . . . , Pn} ⊆ M and Q 6∈ M)

return HornSAT(M ∪ {Q}, N);

}

A clause P1, . . . ,Pn → Q1, . . . ,Qm is supported by M if

{P1, . . . ,Pn} 6⊆ M or some Qi ∈ M. A negative clause consists

of negative literals only.

Initially, HornSAT is called with an empty literal set M.
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Propositional Horn Clause SAT is in P

Lemma 1.5:

Let N be a set of propositional Horn clauses.Then:

(1) HornSAT(∅, N)=true iff N is satisfiable

(2) HornSAT is in P
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SplitHornSAT

boolean SplitHornSAT(clause set N) {

if (N is Horn)

g return HornSAT(∅,N);

else {

select non Horn clause P1, . . . , Pn → Q1, . . . , Qm from N;

N
′ = N \ {P1, . . . , Pn → Q1, . . . , Qm};

if (SplitHornSAT(N ′ ∪ {P1, . . . , Pn → Q1})) return true;

else return

SplitHornSAT(N ′ ∪ {→ Q2, . . . , Qm} ∪
S

i
{→ Pi} ∪ {Q1 →});

}

}
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SplitHornSAT

Lemma 1.6:

Let N be a set of propositional clauses. Then:

(1) SplitHornSAT(N)=true iff N is satisfiable

(2) SplitHornSAT(N) terminates
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1.7 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a

fixed ordering on propositional variables,

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in

Computer Science: Modelling and Reasoning about Systems,

Cambridge Univ. Press, 2000.

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.
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