
Introduction to SAT

Christoph Weidenbach

Winter Term 2007/2008

1

Part 1: Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• important for hardware applications (e. g., model checking)

2

1.1 Syntax

• propositional variables

• logical symbols

⇒ Boolean combinations

3

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.

4

Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= ⊥ (falsum)

| > (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

5

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only”

two truth values “true” and “false” which we shall denote,

respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

6

Valuations

A propositional variable has no intrinsic meaning. The meaning

of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

7

Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1}

is defined inductively over the structure of F as follows:

A∗(⊥) = 0

A∗(>) = 1

A∗(P) = A(P)

A∗(¬F) = B¬(A∗(F))

A∗(FρG) = Bρ(A
∗(F),A∗(G))

where Bρ is the Boolean function associated with ρ

defined by the usual truth table.

8

Truth Value of a Formula in A

For simplicity, we write A instead of A∗.

We also write ρ instead of Bρ, i. e., we use the same notation

for a logical symbol and for its meaning (but remember that

formally these are different things.)

9

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

10

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written

F |= G , if for all Π-valuations A, whenever A |= F then A |= G .

F and G are called equivalent, written F |=| G , if for all

Π-valuations A we have A |= F ⇔ A |= G .

Proposition 1.1:

F |= G if and only if |= (F → G).

Proposition 1.2:

F |=| G if and only if |= (F ↔ G).

11

Entailment and Equivalence

Extension to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:

if A |= G for all G ∈ N, then A |= F .

12

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 1.3:

F is valid if and only if ¬F is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it

is sufficient to design a checker for unsatisfiability.

13

Validity vs. Unsatisfiability

In a similar way, entailment N |= F can be reduced to

unsatisfiability:

Proposition 1.4:

N |= F if and only if N ∪ {¬F} is unsatisfiable.

14

Checking Unsatisfiability

Every formula F contains only finitely many propositional

variables. Obviously, A(F) depends only on the values of those

finitely many variables in F under A.

If F contains n distinct propositional variables, then it is

sufficient to check 2n valuations to see whether F is satisfiable

or not.

⇒ truth table.

So the satisfiability problem is clearly deciadable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than

truth tables to check the satisfiability of a formula. (later more)

15

1.4 Normal Forms

We define conjunctions of formulas as follows:
∧0

i=1
Fi = >.

∧1

i=1
Fi = F1.

∧
n+1

i=1
Fi =

∧
n

i=1
Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1
Fi = ⊥.

∨1

i=1
Fi = F1.

∨
n+1

i=1
Fi =

∨
n

i=1
Fi ∨ Fn+1.

16

Literals and Clauses

A literal is either a propositional variable P or a negated

propositional variable ¬P.

A clause is a (possibly empty) disjunction of literals.

17

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal

form), if it is a conjunction of disjunctions of literals (or in other

words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a

disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?

18

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of

DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and ¬P.

Conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary

literals P and ¬P.

On the other hand, checking the unsatisfiability of CNF formulas

or the validity of DNF formulas is known to be coNP-complete.

19

1.5 The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite

set N of clauses), check whether it is satisfiable (and optionally:

output one solution, if it is satisfiable).

Assumption:

Clauses contain neither duplicated literals nor

complementary literals.

Notation:

L is the complementary literal of L,

i. e., P = ¬P and ¬P = P.

20

Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .

21

Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations

(that is, partial mappings A : Π → {0, 1}).

Every partial valuation A corresponds to a set M of literals that

does not contain complementary literals, and vice versa:

A(L) is true, if L ∈ M.

A(L) is false, if L ∈ M.

A(L) is undefined, if neither L ∈ M nor L ∈ M.

We will use A and M interchangeably.

22

Partial Valuations

A clause is true under a partial valuation A

(or under a set M of literals) if one of its literals is true;

it is false (or “conflicting”) if all its literals are false;

otherwise it is undefined (or “unresolved”).

23

Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C ,

such that all literals but one in C are false under A, then the

following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

24

Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in

the unresolved clauses in N, then the following properties are

equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns true (false) to P.

P is called a pure literal.

25

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true under M) return true;

elsif (some clause in N is false under M) return false;

elsif (N contains unit clause P) return DPLL(M ∪ {P}, N);

elsif (N contains unit clause ¬P) return DPLL(M ∪ {¬P}, N);

elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);

elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);

else {

let P be some undefined variable in N;

if (DPLL(M ∪ {¬P}, N)) return true;

else return DPLL(M ∪ {P}, N);

}

}

26

The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with an empty literal set and the clause

set N.

27

DPLL Iteratively

In practice, there are several changes to the procedure:

The pure literal check is often omitted (it is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one

level).

Information is reused by learning.

28

Branching Heuristics

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be

recomputed too frequently.

In general: choose variables that occur frequently.

29

The Deduction Algorithm

For applying the unit rule, we need to know the number of

literals in a clause that are not false.

Maintaining this number is expensive, however.

30

The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P, keep a list of all clauses in which P is

watched and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses

in which P (or ¬P) is watched and watch another literal (that

is true or undefined) in this clause if possible.

Watched literal information need not be restored upon

backtracking.

31

Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further

branches.

Method: Learning:

If a conflicting clause is found, derive a new clause from the

conflict and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them

afterwards to save space.

32

Backjumping

Related technique:

non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip

over that backtrack level.

33

Restart

Runtimes of DPLL-style procedures depend extremely on the

choice of branching variables.

If no solution is found within a certain time limit, it can be

useful to restart from scratch with another choice of branchings

(but learned clauses may be kept).

34

1.6 Splitting into Horn Clauses

• A Horn clause is a clause with at most one positive literal.

• They are typically denoted as implications: P1, . . . ,Pn → Q.

(In general we can write P1, . . . ,Pn → Q1, . . . ,Qm for

¬P1 ∨ . . . ∨ ¬Pn ∨ Q1 ∨ . . . ∨ Qm.)

• Compared to arbitrary clause sets, Horn clause sets enjoy

further properties:

– Horn clause sets have unique minimal models.

– Checking satisfiability is often of lower complexity.

35

Propositional Horn Clause SAT is in P

boolean HornSAT(literal set M, Horn clause set N) {

if (all clauses in N are supported by M) return true;

elsif (a negative clause in N is not supported by M) return false;

elsif (N contains clause P1, . . . , Pn → Q where

{P1, . . . , Pn} ⊆ M and Q 6∈ M)

return HornSAT(M ∪ {Q}, N);

}

A clause P1, . . . ,Pn → Q1, . . . ,Qm is supported by M if

{P1, . . . ,Pn} 6⊆ M or some Qi ∈ M. A negative clause consists

of negative literals only.

Initially, HornSAT is called with an empty literal set M.

36

Propositional Horn Clause SAT is in P

Lemma 1.5:

Let N be a set of propositional Horn clauses.Then:

(1) HornSAT(∅, N)=true iff N is satisfiable

(2) HornSAT is in P

37

SplitHornSAT

boolean SplitHornSAT(clause set N) {

if (N is Horn)

g return HornSAT(∅,N);

else {

select non Horn clause P1, . . . , Pn → Q1, . . . , Qm from N;

N
′ = N \ {P1, . . . , Pn → Q1, . . . , Qm};

if (SplitHornSAT(N ′ ∪ {P1, . . . , Pn → Q1})) return true;

else return

SplitHornSAT(N ′ ∪ {→ Q2, . . . , Qm} ∪
S

i
{→ Pi} ∪ {Q1 →});

}

}

38

SplitHornSAT

Lemma 1.6:

Let N be a set of propositional clauses. Then:

(1) SplitHornSAT(N)=true iff N is satisfiable

(2) SplitHornSAT(N) terminates

39

1.7 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a

fixed ordering on propositional variables,

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in

Computer Science: Modelling and Reasoning about Systems,

Cambridge Univ. Press, 2000.

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

40

