
Automated Reasoning II

Uwe Waldmann

Summer Term 2024

1

Topics of the Course

Decision procedures:

equality (congruence closure),

algebraic theories,

combinations.

Satisfiability modulo theories (SMT):

CDCL(T),

dealing with universal quantification.

Superposition:

combining ordered resolution and completion,

optimizations,

integrating theories.

2

Part 1: Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is undecidable.

To get decidability results, we have to impose restrictions on

• signatures,

• formulas,

• and/or algebras.

3

1.1 Theories and Fragments

So far, we have considered the validity or satisfiability of “unstructured”

sets of formulas.

We will now split these sets of formulas into two parts:

a theory (which we keep fixed) and a set of formulas that we consider

relative to the theory.

4

Theories and Fragments

A first-order theory T is defined by

its signature Σ = (Ω,Π)

its axioms, that is, a set of closed Σ-formulas.

(We often use the same symbol T for a theory and its set of axioms.)

Note: This is the syntactic view of theories. There is also a semantic view,

where one specifies a class of Σ-algebras M and considers Th(M), that is,

all closed Σ-formulas that hold in the algebras of M.

5

Theories and Fragments

A Σ-algebra that satisfies all axioms of T is called a T -algebra

(or T -interpretation).

T is called consistent if there is at least one T -algebra.

(We will only consider consistent theories.)

6

Theories and Fragments

We can define models, validity, satisfiability, entailment, equivalence, etc.,

relative to a theory T :

A T -algebra that is a model of a Σ-formula F is also called a T -model of

F .

A Σ-formula F is called T -valid,

if A,β |= F for all T -algebras A and assignments β.

A Σ-formula F is called T -satisfiable,

if A,β |= F for some T -algebra and assignment β

(and otherwise T -unsatisfiable).

(T -satisfiability of sets of formulas, T -entailment, T -equivalence:

analogously.)

7

Theories and Fragments

A fragment is some syntactically restricted class of Σ-formulas.

Typical restriction: only certain quantifier prefixes are permitted.

8

1.2 Equality

Theory of equality:

Signature: arbitrary

Axioms: none

(but the equality predicate ≈ has a fixed interpretation)

Alternatively:

Signature contains a binary predicate symbol ∼ instead of the built-in ≈

Axioms: reflexivity, symmetry, transitivity, congruence for ∼

9

Equality

In general, satisfiability of first-order formulas w. r. t. equality is undecidable.

However, we will show that it is decidable for ground first-order formulas.

Note: It suffices to consider conjunctions of literals.

Arbitrary ground formulas can be converted into DNF;

a formula in DNF is satisfiable if and only if one of its conjunctions is

satisfiable.

10

Equality

Note that our problem can be written in several ways:

An equational clause

∀~x (A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bk) is T -valid

iff

∃~x (¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧ Bk) is T -unsatisfiable

iff

the Skolemized (ground!) formula

(¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧ Bk){~x 7→ ~c} is T -unsatisfiable

iff

(A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bk){~x 7→ ~c} is T -valid

11

Equality

Other names:

The theory is also known as EUF (equality with uninterpreted function

symbols).

The decision procedures for the ground fragment are called

congruence closure algorithms.

12

Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

u1 ≈ v1 ∧ . . . ∧ un ≈ vn ∧ ¬ s1 ≈ t1 ∧ . . . ∧ ¬ sk ≈ tk

Idea:

transform E = {u1 ≈ v1, . . . , un ≈ vn} into an equivalent convergent

TRS R and check whether si↓R = ti↓R .

if si↓R = ti↓R for some i :

si↓R = ti↓R ⇔ si ↔
∗
E ti ⇔ E |= si ≈ ti ⇒ unsat.

if si↓R = ti↓R for no i :

TΣ(X)/R = TΣ(X)/E is a model of the conjunction ⇒ sat.

13

Congruence Closure

In principle, one could use Knuth-Bendix completion to convert E into an

equivalent convergent TRS R.

If done properly (see exercises), Knuth-Bendix completion terminates for

ground inputs.

However, for the ground case, one can optimize the general procedure.

14

Congruence Closure

First step:

Flatten terms:

Introduce new constant symbols c1, c2, . . . for all subterms:

g(a, h(h(b))) ≈ h(a)

is replaced by

a ≈ c1 ∧ b ≈ c2 ∧ h(c2) ≈ c3 ∧ h(c3) ≈ c4

∧ g(c1, c4) ≈ c5 ∧ h(c1) ≈ c6 ∧ c5 ≈ c6

15

Congruence Closure

Result: only two kinds of equations left.

D-equations: f (ci1 , . . . , cin) ≈ ci0 for f /n ∈ Ω, n ≥ 0.

C-equations: ci ≈ cj .

⇒ efficient indexing (e. g., using hash tables),

obvious termination for D-equations.

16

Inference Rules

The congruence closure algorithm is presented as a set of inference rules

working on a set of equations E and a set of rules R:

E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ . . .

At the beginning, E = E0 is the set of C-equations and R = R0 is the set

of D-equations oriented left-to-right. At the end, E should be empty; then

R is the result.

Notation: The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

17

Inference Rules

Simplify:

E ∪ {c
.

≈ c ′}, R ∪ {c → c ′′}

E ∪ {c ′′
.

≈ c ′}, R ∪ {c → c ′′}

Delete:

E ∪ {c ≈ c}, R

E , R

Orient:

E ∪ {c
.

≈ c ′}, R

E , R ∪ {c → c ′}
if c ≻ c ′

18

Inference Rules

Collapse:

E , R ∪ {t[c]p → c ′, c → c ′′}

E , R ∪ {t[c ′′]p → c ′, c → c ′′}
if p 6= ε

Deduce:

E , R ∪ {t → c , t → c ′}

E ∪ {c ≈ c ′}, R ∪ {t → c}

Note: for ground rewrite rules, critical pair computation does not involve

substitution. Therefore, every critical pair computation can be replaced by

a simplification, either using Deduce or Collapse.

19

Inference Rules

Theorem 1.1:

Let E0 be a finite set of C-equations, let R0 be a finite set of D-equations

oriented left-to-right w.r.t. ≻, and let ≻ be a total ordering on constants.

Then the inference system terminates with a final state (En,Rn) where

En = ∅, Rn is terminating and confluent, and ≈E0∪R0
equals ≈Rn

.

20

Strategy

The inference rules are applied according to the following strategy:

(1) If there is an equation in E , use Simplify as long as possible for this

equation, then use either Delete or Orient. Repeat until E is empty.

(2) If Collapse is applicable, apply it, if now Deduce is applicable, apply it

as well. Repeat until Collapse is no longer applicable.

(3) If E is non-empty, go to (1), otherwise return R.

21

Implementation

Instead of fixing the ordering ≻ in advance, it is preferable to define it on

the fly during the algorithm:

If we orient an equation c ≈ c ′ between two constant symbols, we try to

make that constant symbol larger that occurs less often in R

⇒ fewer Collapse steps.

Additionally:

Use various index data structures so that all the required operations can

be performed efficiently.

Use a union-find data structure to represent the equivalence classes

encoded by the C-rules.

22

Implementation

Average runtime for an implementation using hash tables:

O(m logm), where m is the number of edges in the graph representation of

the initial C and D-equations.

23

One Small Problem

The inference rules are sound in the usual sense: The conclusions are

entailed by the premises, so every T -model of the premises is a T -model of

the conclusions.

For the initial flattening, however, we get a weaker result: We have to

extend the T -models of the original equations to obtain models of the

flattened equations.

That is, we get a new algebra with the same universe as the old one, with

the same interpretations for old functions and predicate symbols, but with

appropriately chosen interpretations for the new constants.

24

One Small Problem

Consequently, the relations ≈E and ≈R for the original E and the final R

are not the same. For instance, c3 ≈E c7 does not hold, but c3 ≈R c7 may

hold.

On the other hand, the model extension preserves the universe and the

interpretations for old symbols. Therefore, if s and t are terms over the old

symbols, we have s ≈E t iff s ≈R t.

This is sufficient for our purposes: The terms si and ti that we want to

normalize using R do not contain new symbols.

25

Other Predicate Symbols

If the initial ground conjunction contains also non-equational literals

[¬]P(t1, . . . , tn), treat these like equational literals [¬]P(t1, . . . , tn) ≈ true.

Then use the same algorithm as before.

26

History

Congruence closure algorithms have been published, among others, by

Shostak (1978). by Nelson and Oppen (1980), and by Downey, Sethi and

Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a

completion procedure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the

Downey/Sethi/Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the

presentation of Bachmair and Tiwari.

27

1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature:

Σ = ({0/0, 1/0,+/2}, {</2})

and the pre-defined binary predicate ≈.

28

Linear Rational Arithmetic

The equational part of linear rational arithmetic is described by the theory

of divisible torsion-free abelian groups:

∀x , y , z (x + (y + z) ≈ (x + y) + z) (associativity)

∀x , y (x + y ≈ y + x) (commutativity)

∀x (x + 0 ≈ x) (identity)

∀x ∃y (x + y ≈ 0) (inverse)

For all n ≥ 1: ∀x (x + · · ·+ x
︸ ︷︷ ︸

n times

≈ 0 → x ≈ 0) (torsion-freeness)

For all n ≥ 1: ∀x ∃y (y + · · ·+ y
︸ ︷︷ ︸

n times

≈ x) (divisibility)

¬ 1 ≈ 0 (non-triviality)

29

Linear Rational Arithmetic

Note: Quantification over natural numbers is not part of our language. We

really need infinitely many axioms for torsion-freeness and divisibility.

30

Linear Rational Arithmetic

By adding the axioms of a compatible strict total ordering, we define

ordered divisible abelian groups:

∀x (¬ x < x) (irreflexivity)

∀x , y , z (x < y ∧ y < z → x < z) (transitivity)

∀x , y (x < y ∨ y < x ∨ x ≈ y) (totality)

∀x , y , z (x < y → x + z < y + z) (compatibility)

0 < 1 (non-triviality)

31

Linear Rational Arithmetic

Note: The second non-triviality axiom renders the first one superfluous.

Moreover, as soon as we add the axioms of compatible strict total orderings,

torsion-freeness can be omitted. Every ordered divisible abelian group is

obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered

(F.-W. Levi 1913).

Examples: Q, R, Qn, Rn, . . .

32

Linear Rational Arithmetic

The signature can be extended by further symbols:

≤/2, >/2, ≥/2, 6≈/2: defined using < and ≈

−/1: Skolem function for inverse axiom

−/2: defined using +/2 and −/1

divn/1: Skolem functions for divisibility axiom for all n ≥ 1.

multn/1: defined by ∀x (multn(x) ≈ x + · · ·+ x
︸ ︷︷ ︸

n times

) for all n ≥ 1.

multq/1: defined using multn, divn, − for all q ∈ Q.

(We usually write q · t or q t instead of multq(t).)

q/0 (for q ∈ Q): defined by q ≈ q · 1.

33

Linear Rational Arithmetic

Note: Every formula using the additional symbols is ODAG-equivalent to a

formula over the base signature.

When · is considered as a binary operator, (ordered) divisible torsion-free

abelian groups correspond to (ordered) rational vector spaces.

34

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination: every formula ∃x F

or ∀x F in linear rational arithmetic can be converted into an equivalent

formula without the variable x .

The method was discovered in 1826 by J. Fourier and re-discovered by T.

Motzkin in 1936.

35

Fourier-Motzkin Quantifier Elimination

Observation: Every literal over the variables x , y1, . . . , yn can be converted

into an ODAG-equivalent literal x ∼ t[~y] or 0 ∼ t[~y], where ∼ ∈

{<,>,≤,≥,≈, 6≈} and t[~y] has the form
∑

i qi · yi + q0.

In other words, we can either eliminate x completely or isolate in on one

side of the literal, and we can replace every negative ordering literal by a

positive one.

Moreover, we can convert every 6≈-literal into an ODAG-equivalent

disjunction of two <-literals.

36

Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation x ≈ t[~y], we can eliminate the

quantifier ∃x by substitution:

∃x (x ≈ t[~y] ∧ F)

is equivalent to

F {x 7→ t[~y]}

37

Fourier-Motzkin Quantifier Elimination

If x occurs only in inequations, then

∃x
(
∧

i x < si (~y) ∧
∧

j x ≤ tj(~y)

∧
∧

k x > uk(~y) ∧
∧

l x ≥ vl (~y) ∧
∧

m 0 ∼m wm(~y)
)

is equivalent to

∧

i

∧

k si (~y) > uk(~y) ∧
∧

j

∧

k tj(~y) > uk(~y)

∧
∧

i

∧

l si (~y) > vl (~y) ∧
∧

j

∧

l tj(~y) ≥ vl (~y)

∧
∧

m 0 ∼m wm(~y)

Proof: (⇒) by transitivity;

(⇐) take 1

2
(min{si , tj}+max{uk , vl}) as a witness.

38

Fourier-Motzkin Quantifier Elimination

Extension to arbitrary formulas:

Transform into prenex formula;

if innermost quantifier is ∃: transform matrix into DNF and move ∃ into

disjunction;

if innermost quantifier is ∀: replace ∀x F by ¬∃x ¬F , then eliminate ∃.

39

Fourier-Motzkin Quantifier Elimination

Consequence: every closed formula over the signature of ODAGs is

ODAG-equivalent to either ⊤ or ⊥.

Consequence: ODAGs are a complete theory, i. e., every closed formula over

the signature of ODAGs is either valid or unsatisfiable w. r. t. ODAGs.

40

Fourier-Motzkin Quantifier Elimination

Consequence: every closed formula over the signature of ODAGs holds

either in all ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of

ODAGs.

(These properties do not hold for extended signatures!)

41

Fourier-Motzkin: Complexity

One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

m quantifiers ∃ . . . ∃:

naive implementation produces a doubly exponential number of

inequations, therefore needs O(n2
m

) runtime

(the number of necessary inequations grows only exponentially, though).

m quantifiers ∃∀∃∀ . . . ∃:

CNF/DNF conversion (exponential!) required after each step;

therefore non-elementary runtime.

42

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic

was developed by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution

method”.

43

Loos-Weispfenning Quantifier Elimination

For simplicity, we consider only one particular ODAG, namely Q (as we

have seen above, the results are the same for all ODAGs).

44

Loos-Weispfenning Quantifier Elimination

Let F (x ,~y) be a positive boolean combination of linear (in-)equations

x ∼i si (~y) and 0 ∼j s
′

j (~y) with ∼i ,∼j ∈ {≈, 6≈,<,≤,>,≥}, that is, a

formula built from linear (in-)equations, ∧ and ∨ (but without ¬).

Goal: Find a finite set T of “test points” so that

∃x F (x ,~y) |=|
∨

t∈T

F (x ,~y) {x 7→ t}

In other words: We want to replace the infinite disjunction ∃x by a finite

disjunction.

45

Loos-Weispfenning Quantifier Elimination

If we keep the values of the variables ~y fixed, then we can consider F as a

function F : x 7→ F (x ,~y) from Q to {0, 1}.

The value of each of the atoms si (~y) ∼i x changes only at si (~y), and the

value of F can only change if the value of one of its atoms changes.

46

Loos-Weispfenning Quantifier Elimination

Let δ(~y) = min{ |si (~y)− sj (~y)| | si (~y) 6= sj(~y) }

F is a piecewise constant function; more precisely, the set of all x with

F (x ,~y) = 1 is a finite union of intervals. (The union may be empty, the

individual intervals may be finite or infinite and open or closed.)

Moreover, each of the intervals has either length 0 (i. e., it consists of one

point), or its length is at least δ(~y).

47

Loos-Weispfenning Quantifier Elimination

If the set of all x for which F (x ,~y) is 1 is non-empty, then

(i) F (x ,~y) = 1 for all x ≤ r(~y) for some r(~y) ∈ Q

(ii) or there is some point where the value of F (x ,~y) switches from 0 to 1

when we traverse the real axis from −∞ to +∞.

We use this observation to construct a set of test points.

We start with some “sufficiently small” test point r(~y) to take care of

case (i).

48

Loos-Weispfenning Quantifier Elimination

For case (ii), we observe that F (x ,~y) can only switch from 0 to 1 if one

of the atoms switches from 0 to 1. (We consider only positive boolean

combinations of atoms, and ∧ and ∨ are monotonic w. r. t. truth values.)

x ≤ si (~y) and x < si (~y) do not switch from 0 to 1 when x grows.

x ≥ si (~y) and x ≈ si (~y) switch from 0 to 1 at si (~y)

⇒ si (~y) is a test point.

x > si (~y) and x 6≈ si (~y) switch from 0 to 1 “right after” si (~y)

⇒ si (~y) + ε (for some 0 < ε < δ(~y)) is a test point.

49

Loos-Weispfenning Quantifier Elimination

If r(~y) is sufficiently small and 0 < ε < δ(~y), then

T := {r(~y)} ∪ { si (~y) | ∼i ∈ {≥, =} }

∪ { si (~y) + ε | ∼i ∈ {>, 6=} }.

is a set of test points.

Problem:

We don’t know how small r(~y) has to be for case (i), and we don’t know

δ(~y) for case (ii).

50

Loos-Weispfenning Quantifier Elimination

Idea:

We consider the limits for r → −∞ and for ε ց 0, that is, we redefine

T := {−∞} ∪ { si (~y) | ∼i ∈ {≥, =} }

∪ { si (~y) + ε | ∼i ∈ {>, 6=} }.

How can we eliminate the infinitesimals ∞ and ε when we substitute

elements of T for x ?

51

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(~y)) {x 7→ −∞} := lim
r→−∞

(r < s(~y)) = ⊤

(x ≤ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≤ s(~y)) = ⊤

(x > s(~y)) {x 7→ −∞} := lim
r→−∞

(r > s(~y)) = ⊥

(x ≥ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≥ s(~y)) = ⊥

(x ≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r 6≈ s(~y)) = ⊤

52

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε < s(~y)) = (u < s(~y))

(x ≤ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε ≤ s(~y)) = (u < s(~y))

(x > s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε > s(~y)) = (u ≥ s(~y))

(x ≥ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε ≥ s(~y)) = (u ≥ s(~y))

(x ≈ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε 6≈ s(~y)) = ⊤

53

Loos-Weispfenning Quantifier Elimination

We have traversed the real axis from −∞ to +∞. Alternatively, we can

traverse it from +∞ to −∞. In this case, the test points are

T ′ := {+∞} ∪ { si (~y) | ∼i ∈ {≤, =} }

∪ { si (~y)− ε | ∼i ∈ {<, 6=} }.

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T ′ and take the smaller set.

54

Loos-Weispfenning Quantifier Elimination

For a universally quantified formulas ∀x F , we replace it by ¬∃x ¬F , push

inner negation downwards, and then continue as before.

Note that there is no CNF/DNF transformation required. Loos-Weispfenning

quantifier elimination works on arbitrary positive formulas.

55

Loos-Weispfenning: Complexity

One LW-step for ∃ or ∀:

as the number of test points is at most one plus the number of atoms

(one plus half of the number of atoms, if there are only ordering literals),

the formula size grows quadratically; therefore O(n2) runtime.

56

Loos-Weispfenning: Complexity

Multiple quantifiers of the same kind:

∃x2 ∃x1. F (x1, x2,~y)

❀ ∃x2.
(∨

t1∈T1
F (x1, x2,~y) {x1 7→ t1}

)

❀

∨

t1∈T1
(∃x2. F (x1, x2,~y) {x1 7→ t1})

❀

∨

t1∈T1

∨

t2∈T2
(F (x1, x2,~y) {x1 7→ t1} {x2 7→ t2})

57

Loos-Weispfenning: Complexity

m quantifiers ∃ . . . ∃ or ∀ . . . ∀:

formula size is multiplied by n in each step, therefore O(nm+1) runtime.

m quantifiers ∃∀∃∀ . . . ∃:

doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant;

so an efficient implementation must make heavy use of simplification

techniques.

58

1.4 Existentially-quantified LRA

So far, we have considered formulas that may contain free, existentially

quantified, and universally quantified variables.

For the special case of conjunction of linear inequations in which all

variables are existentially quantified, there are more efficient methods

available.

Main idea: reduce satisfiability problem to optimization problem.

59

Linear Optimization

Goal:

Solve a linear optimization (also called: linear programming) problem for

given numbers aij , bi , cj ∈ R:

maximize
∑

1≤j≤n cjxj

for
∧

1≤i≤m

∑

1≤j≤n aijxj ≤ bi

or in vectorial notation:

maximize ~c ⊤~x

for A~x ≤ ~b

60

Linear Optimization

Simplex algorithm:

Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is

exponential, though.

Interior point methods:

First algorithm by Karmarkar (1984).

Polynomial-time worst-case complexity (but large constants).

In practice: no clear winner.

61

Linear Optimization

Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.

62

Linear Optimization

Main idea of Simplex:

A~x ≤ ~b describes a convex polyhedron.

Pick one vertex of the polyhedron,

then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global

optimum.

Details: see special lecture on optimization.

63

Linear Optimization

Using an optimization procedure for checking satisfiability:

Goal: Check whether A~x ≤ ~b is satisfiable.

To use the Simplex method, we have to transform the original (possibly

empty) polyhedron into another polyhedron that is non-empty and for

which we know one initial vertex.

Every real number can be written as the difference of two non-negative

real numbers.

Use this idea to convert A~x ≤ ~b into an equisatisfiable inequation system

~y ≥ ~0, B~y ≤ ~b for new variables ~y .

64

Linear Optimization

Multiply those inequations of the inequation system B~y ≤ ~b in which

the number on the right-hand side is negative by −1. We obtain two

inequation systems D1~y ≤ ~g1, D2~y ≥ ~g2, such that ~g1 ≥ ~0, ~g2 > 0.

Now solve

maximize ~1⊤(D2~y − ~z)

for ~y ,~z ≥ ~0

D1~y ≤ ~g1

D2~y − ~z ≤ ~g2

where ~z is a vector of new variables with the same size as ~g2.

65

Linear Optimization

Observation 1:
~0 is a vertex of the polyhedron of this optimization problem.

Observation 2:

The maximum is ~1⊤~g2 if and only if ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a

solution.

(⇒): If ~1⊤(D2~y − ~z) = ~1⊤~g2 for some ~y ,~z satisfying D2~y − ~z ≤ ~g2,

then D2~y − ~z = ~g2, hence D2~y = ~g2 + ~z ≥ ~g2.

(⇐): ~1⊤(D2~y − ~z) can never be larger than ~1⊤~g2. If ~y ≥ ~0,

D1~y ≤ ~g1, D2~y ≥ ~g2 has a solution, choose ~z = D2~y − ~g2; then
~1⊤(D2~y − ~z) = ~1⊤~g2.

66

Linear Optimization

A Simplex variant:

Transform the satisfiability problem into the form

A~x = ~0

~l ≤ ~x ≤ ~u

(where li may be −∞ and ui may be +∞).

Relation to optimization problem is obscured.

But: More efficient if one needs an incremental decision procedure, where

inequations may be added and retracted (Dutertre and de Moura 2006).

67

1.5 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear real

arithmetic (or more generally, for real-closed fields).

His algorithm had non-elementary complexity, however.

An improved algorithm by Collins (1975) (with further improvements

by Hong) has doubly exponential complexity: Cylindrical algebraic

decomposition (CAD).

Implementation: QEPCAD.

68

Cylindrical Algebraic Decomposition

Given: First-order formula over atoms of the form fi (~x) ∼ 0, where the

fi are polynomials over variables ~x .

Goal: Decompose Rn into a finite number of regions such that all

polynomials have invariant sign on every region X :

∀i (∀~x ∈ X . fi (~x) < 0

∨ ∀~x ∈ X . fi (~x) = 0

∨ ∀~x ∈ X . fi (~x) > 0)

Note: Implementation needs exact arithmetic using algebraic numbers

(i. e., zeroes of univariate polynomials with integer coefficients).

69

1.6 Real Arithmetic incl. Transcendental Fctns.

Real arithmetic with exp/log: decidability unknown.

Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if x ∈ Z:

∃y (sin(y) = 0 ∧ 3 < y ∧ y < 4 ∧ sin(x · y) = 0)

(note that necessarily y = π).

Consequence: Peano arithmetic (which is undecidable) can be encoded

in real arithmetic with trigonometric functions.

70

Real Arithmetic incl. Transcendental Fctns.

However, real arithmetic with transcendental functions is decidable for

formulas that are stable under perturbations, i. e., whose truth value does

not change if numeric constants are modified by some sufficiently small ε.

Example:

Stable under perturbations: ∃x x2 ≤ 5

Not stable under perturbations: ∃x x2 ≤ 0

(Formula is true, but if we subtract an arbitrarily small ε > 0 from the

right-hand side, it becomes false.)

71

Real Arithmetic incl. Transcendental Fctns.

Unsatisfactory from a mathematical point of view, but sufficient for

engineering applications (where stability under perturbations is necessary

anyhow).

Approach:

Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are stable under

perturbations; may loop forever if the formula is not stable under

perturbations.

72

1.7 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic.

Decidable (Presburger, 1929), but quantifier elimination is only possible if

additional divisibility operators are present:

∃x (y = 2x) is equivalent to divides(2, y) but not to any quantifier-free

formula over the base signature.

Cooper (1972): Quantifier elimination procedure,

triple exponential for arbitrarily quantified formulas.

73

The Omega Test

Omega test (Pugh, 1991): variant of Fourier–Motzkin for conjunctions of

(in-)equations in linear integer arithmetic.

Idea:

• Perform easy transformations, e. g.:

3x + 6y ≤ 8 7→ 3x + 6y ≤ 6 7→ x + 2y ≤ 2

3x + 6y = 8 7→ ⊥

(since 3x + 6y must be divisible by 3).

• Eliminate equations

(easy, if one coefficient is 1; tricky otherwise).

74

The Omega Test

• If only inequations are left:

no real solutions → unsatisfiable for Z

“sufficiently many” real solutions → satisfiable for Z

otherwise: branch

75

The Omega Test

What does “sufficiently many” mean?

Consider inequations ax ≤ s and bx ≥ t with a, b ∈ N>0 and

polynomials s, t.

If these inequations have real solutions, the interval of solutions ranges

from 1

b
t to 1

a
s.

The longest possible interval of this kind that does not contain any

integer number ranges from i + 1

b
to i + 1− 1

a
for some i ∈ Z;

it has the length 1− 1

a
− 1

b
.

76

The Omega Test

Consequence:

If 1

a
s > 1

b
t + (1− 1

a
− 1

b
), or equivalently, bs ≥ at + ab − a − b + 1 is

satisfiable, then the original problem must have integer solutions.

It remains to consider the case that bs ≥ at is satisfiable

(hence there are real solutions) but bs ≥ at + ab − a − b + 1 is not

(hence the interval of real solutions need not contain an integer).

77

The Omega Test

In the latter case, bs ≤ at + ab − a − b holds, hence for every solution of

the original problem:

t ≤ bx ≤ b
a
s ≤ t + (b − 1− b

a
)

and if x is an integer, t ≤ bx ≤ t +
⌊
b − 1− b

a

⌋

⇒ Branch non-deterministically:

Add one of the equations bx = t + i

for i ∈ {0, . . . , ⌊b − 1− b
a

⌋
}.

Alternatively, if b > a:

Add one of the equations ax = s − i

for i ∈ {0, . . . , ⌊a− 1− a
b

⌋
}.

78

The Omega Test

Note: Efficiency depends highly on the size of coefficients.

In applications from program verification, there is almost always some

variable with a very small coefficient.

If all coefficients are large, the branching step gets expensive.

79

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to

optimization problem (like Simplex).

ILP, MILP: (mixed) integer linear programming.

80

Branch-and-Cut

Two basic approaches:

Branching:

If the simplex algorithm finds a solution with x = 2.7, add the inequation

x ≤ 2 or the inequation x ≥ 3.

Cutting planes:

Derive an inequation that holds for all real solutions, then round it to

obtain an inequation that holds for all integer solutions, but not for the

real solution found previously.

81

Branch-and-Cut

Example:

Given: 2x − 3y ≤ 1

2x + 3y ≤ 5

−5x − 4y ≤ −7

Simplex finds an extremal solution x = 3

2
, y = 2

3
.

From the first two inequations, we see that 4x ≤ 6,

hence x ≤ 3

2
. If x ∈ Z, we conclude x = ⌊x⌋ ≤ ⌊ 3

2
⌋ = 1.

⇒ Add the inequation x ≤ 1, which holds for all integer solutions, but

cuts off the solution (3
2
, 2
3
).

82

Branch-and-Cut

In practice:

Use both: Alternate between branching and cutting steps.

Better performance than the individual approaches.

83

1.8 Difference Logic

Difference Logic (DL):

Fragment of linear rational or integer arithmetic.

Formulas: conjunctions of atoms x − y < c or x − y ≤ c ,

x , y ∈ X , c ∈ Q (or c ∈ Z).

One special variable x0 whose value is fixed to 0 is permitted;

this allows to express atoms like x < 3 in the form x − x0 < 3.

84

Difference Logic

Solving difference logic:

Let F be a conjunction in DL.

For simplicity: only non-strict inequalities.

Define a weighted graph G :

Vertices V : Variables in F .

Edges E : x − y ≤ c ❀ edge (x , y) with weight c .

Theorem: F is unsatisfiable iff G has a negative cycle.

Can be checked in O(|V | · |E |) using the Bellman-Ford algorithm.

85

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2n),

in device drivers also combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant,

Kroening, et al.): successful.

86

1.10 Decision Procedures for Data Structures

There are decision procedures for, e. g.,

Arrays (read, write)

Lists (car, cdr, cons)

Sets or multisets with cardinalities

Bitvectors

Note: There are usually restrictions on quantifications. Unrestricted

universal quantification can lead to undecidability.

87

1.11 Combining Decision Procedures

Problem:

Let T1 and T2 be first-order theories over the signatures Σ1 and Σ2.

Assume that we have decision procedures for the satisfiability of

existentially quantified formulas (or the validity of universally quantified

formulas) w. r. t. T1 and T2.

Can we combine them to get a decision procedure for the satisfiability of

existentially quantified formulas w. r. t. T1 ∪ T2 ?

88

Combining Decision Procedures

General assumption:

Σ1 and Σ2 are disjoint.

The only symbol shared by T1 and T2 is built-in equality.

We consider only conjunctions of literals.

For general formulas, convert to DNF first and consider each conjunction

individually.

89

Abstraction

To be able to use the individual decision procedures, we have to transform

the original formula in such a way that each atom contains only symbols of

one of the signatures (plus variables).

This process is known as variable abstraction or purification.

90

Abstraction

We apply the following rule as long as possible:

∃~x (F [t])

∃~x , y (F [y] ∧ t ≈ y)

if the top symbol of t belongs to Σi and t occurs in F directly below a

Σj -symbol or in a (positive or negative) equation s ≈ t where the top

symbol of s belongs to Σj (i 6= j), and if y is a new variable.

It is easy to see that the original and the purified formula are equivalent.

91

Stable Infiniteness

Problem:

Even if the Σ1-formula F1 and the Σ2-formula F2 do not share any

symbols (not even variables), and if F1 is T1-satisfiable and F2 is

T2-satisfiable, we cannot conclude that F1 ∧ F2 is (T1 ∪ T2)-satisfiable.

92

Stable Infiniteness

Example:

Consider

T1 = {∀x , y , z (x ≈ y ∨ x ≈ z ∨ y ≈ z)}

and

T2 = {∃x , y , z (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}.

All T1-models have at most two elements, and all T2-models have at

least three elements.

Since T1 ∪ T2 is contradictory, there are no (T1 ∪ T2)-satisfiable formulas.

93

Stable Infiniteness

To ensure that T1-models and T2-models can be combined to (T1 ∪ T2)-

models, we require that both T1 and T2 are stably infinite.

A first-order theory T is called stably infinite, if every existentially quantified

formula that has a T -model has also a T -model with a (countably) infinite

universe.

Note: By the Löwenheim–Skolem theorem, “countable” is redundant here.

94

Shared Variables

Even if ∃~x F1 is T1-satisfiable and ∃~x F2 is T2-satisfiable, it can happen that

∃~x (F1 ∧ F2) is not (T1 ∪ T2)-satisfiable,

for instance because the shared variables x and y must be equal in all

T1-models of ∃~x F1 and different in all T2-models of ∃~x F2.

95

Shared Variables

Example:

Consider

F1 = (x + (−y) ≈ 0),

and

F2 = (f (x) 6≈ f (y))

where T1 is linear rational arithmetic and T2 is EUF.

We must exchange information about shared variables to detect the

contradiction.

96

The Nelson–Oppen Algorithm (Non-determ.)

Suppose that ∃~x F is a purified conjunction of Σ1 and Σ2-literals.

Let F1 be the conjunction of all literals of F that do not contain Σ2-symbols;

let F2 be the conjunction of all literals of F that do not contain Σ1-symbols.

(Equations between variables are in both F1 and F2.)

The Nelson–Oppen algorithm starts with the pair F1,F2 and applies the

following inference rules.

97

The Nelson–Oppen Algorithm (Non-determ.)

Unsat:

F1,F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i .

Branch:

F1,F2

F1 ∧ (x ≈ y),F2 ∧ (x ≈ y) | F1 ∧ (x 6≈ y),F2 ∧ (x 6≈ y)

if x and y are two different variables appearing in

both F1 and F2 such that neither x ≈ y nor x 6≈ y

occurs in both F1 and F2

98

The Nelson–Oppen Algorithm (Non-determ.)

“|” means non-deterministic (backtracking!) branching of the derivation

into two subderivations. Derivations are therefore trees. All branches need

to be reduced until termination.

Clearly, all derivation paths are finite since there are only finitely many

shared variables in F1 and F2, therefore the procedure represented by the

rules is terminating.

We call a constraint configuration to which no rule applies irreducible.

99

The Nelson–Oppen Algorithm (Non-determ.)

Theorem 1.2 (Soundness):

If “Branch” can be applied to F1,F2, then ∃~x (F1 ∧ F2) is satisfiable in

T1 ∪ T2 if and only if one of the successor configurations of F1,F2 is

satisfiable in T1 ∪ T2.

Corollary 1.3:

If all paths in a derivation tree from F1,F2 end in ⊥, then ∃~x (F1 ∧ F2) is

unsatisfiable in T1 ∪ T2.

100

The Nelson–Oppen Algorithm (Non-determ.)

For completeness we need to show that if one branch in a derivation

terminates with an irreducible configuration F1,F2 (different from ⊥), then

∃~x (F1 ∧ F2) (and, thus, the initial formula of the derivation) is satisfiable

in the combined theory.

As ∃~x (F1 ∧ F2) is irreducible by “Unsat”, the two formulas are satisfiable

in their respective component theories, that is, we have Ti -models Ai of

∃~x Fi for i ∈ {1, 2}. We are left with combining the models into a single

one that is both a model of the combined theory and of the combined

formula. These constructions are called amalgamations.

101

The Nelson–Oppen Algorithm (Non-determ.)

Let F be a Σi -formula and let S be a set of variables of F .

F is called compatible with an equivalence ∼ on S if the formula

∃~z
(

F ∧
∧

x ,y∈S, x∼y

x ≈ y ∧
∧

x ,y∈S, x 6∼y

x 6≈ y
)

(1)

is Ti -satisfiable whenever F is Ti -satisfiable.

This expresses that F does not contradict equalities between the variables

in S as given by ∼.

The formula
∧

x ,y∈S, x∼y

x ≈ y ∧
∧

x ,y∈S, x 6∼y

x 6≈ y is called an arrangement of S .

102

The Nelson–Oppen Algorithm (Non-determ.)

Proposition 1.4:

If F1,F2 is a pair of conjunctions over T1 and T2, respectively, that is

irreducible by “Branch”, then both F1 and F2 are compatible with some

equivalence ∼ on the shared variables S of F1 and F2.

Proof:

If F1,F2 is irreducible by the branching rule, then for each pair of shared

variables x and y , both F1 and F2 contain either x ≈ y or x 6≈ y .

Choose ∼ to be the equivalence given by all (positive) variable equations

between shared variables that are contained in F1.

103

The Nelson–Oppen Algorithm (Non-determ.)

Let Σ = (Ω,Π); let Σ′ = (Ω′, Π′) with Ω′ ⊆ Ω and Π′ ⊆ Π be a

subsignature of Σ.

Let A be a Σ-algebra. Then the reduct A|Σ′ is the Σ′-algebra A′ with

UA′ = UA,

fA′ = fA for all f ∈ Ω′, and

PA′ = PA for all P ∈ Π′.

104

The Nelson–Oppen Algorithm (Non-determ.)

Lemma 1.5 (Amalgamation Lemma):

Let T1 and T2 be two stably infinite theories over disjoint signatures Σ1 and

Σ2.

Furthermore let F1,F2 be a pair of conjunctions of literals

over T1 and T2, respectively, both compatible with some

equivalence ∼ on the shared variables of F1 and F2.

Then F1 ∧ F2 is (T1 ∪ T2)-satisfiable if and only if

each Fi is Ti -satisfiable.

105

The Nelson–Oppen Algorithm (Non-determ.)

Theorem 1.6:

The non-deterministic Nelson–Oppen algorithm is terminating and complete

for deciding satisfiability of pure conjunctions of literals F1 and F2 over

T1 ∪ T2 for signature-disjoint, stably infinite theories T1 and T2.

Proof:

Suppose that F1,F2 is irreducible by the inference rules of the Nelson–

Oppen algorithm. Applying the amalgamation lemma in combination with

Prop. 1.4 we infer that F1,F2 is satisfiable w. r. t. T1 ∪ T2.

106

Convexity

The number of possible equivalences of shared variables grows superexpo-

nentially with the number of shared variables, so enumerating all possible

equivalences non-deterministically is going to be inefficient.

A much faster variant of the Nelson–Oppen algorithm exists for convex

theories.

107

Convexity

A first-order theory T is called convex w. r. t. equations,

if for every conjunction Γ of Σ-equations and non-equational Σ-literals and

for all Σ-equations Ai (1 ≤ i ≤ n),

whenever T |= ∀~x (Γ → A1 ∨ . . . ∨ An), then there exists

some index j such that T |= ∀~x (Γ → Aj).

108

Convexity

Theorem 1.7:

If a first-order theory T is convex w. r. t. equations and has no trivial models

(i. e., models with only one element), then T is stably infinite.

109

Convexity

Lemma 1.8:

Suppose T is convex, F a conjunction of literals,

and S a subset of its variables.

Let, for any pair of variables xi and xj in S ,

xi ∼ xj if and only if T |= ∀~x (F → xi ≈ xj).

Then F is compatible with ∼.

110

The Nelson–Oppen Algorithm (Determ./Convex)

Unsat:

F1,F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i .

Propagate:

F1,F2

F1 ∧ (x ≈ y),F2 ∧ (x ≈ y)

if x and y are two different variables appearing in

both F1 and F2 such that

T1 |= ∀~x (F1 → x ≈ y) and T2 6|= ∀~x (F2 → x ≈ y)

or T2 |= ∀~x (F2 → x ≈ y) and T1 6|= ∀~x (F1 → x ≈ y).

111

The Nelson–Oppen Algorithm (Determ./Convex)

Theorem 1.9:

If T1 and T2 are signature-disjoint theories that are convex w. r. t. equations

and have no trivial models,

then the deterministic Nelson–Oppen algorithm is terminating, sound and

complete for deciding satisfiability of pure conjunctions of literals F1 and

F2 over T1 ∪ T2.

112

The Nelson–Oppen Algorithm (Determ./Convex)

Corollary 1.10:

The deterministic Nelson–Oppen algorithm for convex theories requires at

most O(n3) calls to the individual decision procedures for the component

theories, where n is the number of shared variables.

113

Iterating Nelson–Oppen

The Nelson–Oppen combination procedures can be iterated to work with

more than two component theories by virtue of the following observations

where signature disjointness is assumed:

Theorem 1.11:

If T1 and T2 are stably infinite, then so is T1 ∪ T2.

114

Iterating Nelson–Oppen

Lemma 1.12:

A first-order theory T is convex w. r. t. equations if and only if for every

conjunction Γ of Σ-equations and non-equational Σ-literals and for all

equations xi ≈ x ′i (1 ≤ i ≤ n), whenever T |= ∀~x (Γ → x1 ≈ x ′1 ∨ . . . ∨ xn ≈

x ′n), then there exists some index j such that T |= ∀~x (Γ → xj ≈ x ′j).

115

Iterating Nelson–Oppen

Lemma 1.13:

Let T be a first-order theory that is convex w. r. t. equations. Let F

is a conjunction of literals; let F− be the conjunction of all negative

equational literals in F and let F+ be the conjunction of all remaining

literals in F . If T |= ∀~x (F → x ≈ y), then ∃~x F is T -unsatisfiable or

T |= ∀~x (F+ → x ≈ y).

Theorem 1.14:

If T1 and T2 are convex w. r. t. equations and do not have trivial models,

then so is T1 ∪ T2.

116

Extensions

Many-sorted logics:

read/2 becomes read : array × int → data.

write/3 becomes write : array × int × data → array .

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, intA.

Interpretations of function and predicate symbols correspond to their

declarations: readA : arrayA × intA → dataA

117

Extensions

If we consider combinations of theories with shared sorts but disjoint function

and predicate symbols, then we get essentially the same combination results

as before.

However, stable infiniteness and/or convexity are only required for the

shared sorts.

118

Extensions

Non-stably infinite theories:

If we impose stronger conditions on one theory, we can relax the

conditions on the other one.

For instance, EUF can be combined with any other theory; stable

infiniteness is not required.

E.g.: Strongly polite theories, shiny theories, flexible theories.

119

Strong Politeness

A theory T is called smooth, if every quantifier-free formula that has a

T -model with some (finite or infinite) cardinality κ0 has also T -models

with cardinality κ for every κ ≥ κ0.

120

Strong Politeness

A theory T is called finitely witnessable, if there is a computable function

wit that maps every quantifier-free formula F to a quantifier-free formula

G such that

1. F and ∃~w G are T -equivalent, where ~w = var(G) \ var(F),

2. if G ∧ ∆ is T -satisfiable for some arrangement ∆, then there is a

T -model A and an assignment β such that A,β |= (G ∧ ∆) and

UA = {β(x) | x ∈ var(G ∧∆) }

121

Strong Politeness

A theory T is called strongly polite, if it is smooth and finitely witnessable.

Theorem 1.15 (Barrett & Jovanović):

We can combine two theories T1 and T2 if one of them if strongly polite.

Again, in the many-sorted case, smoothness and finite witnessability must

hold for all the shared sorts.

122

Strong Politeness

Non-disjoint combinations:

Have to ensure that both decision procedures interpret shared symbols in

a compatible way.

Some results, e. g. by Ghilardi, using strong model theoretical conditions

on the theories.

123

Another Combination Method

Shostak’s method:

Applicable to combinations of EUF and solvable theories.

124

Another Combination Method

A Σ-theory T is called solvable, if there exists an effectively computable

function solve such that, for any T -equation s ≈ t:

(A) solve(s ≈ t) = ⊥ if and only if T |= ∀~x (s 6≈ t);

(B) solve(s ≈ t) = ∅ if and only if T |= ∀~x (s ≈ t);

and otherwise

(C) solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, where

– the xi are pairwise different variables occurring in s ≈ t;

– the xi do not occur in the uj ; and

– T |= ∀~x ((s ≈ t) ↔ ∃~y (x1 ≈ u1 ∧ . . . ∧ xn ≈ un)), where ~y are the

variables occurring in one of the uj but not in s ≈ t, and ~x ∩ ~y = ∅.

125

Another Combination Method

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by computing some

unique normal form

126

Another Combination Method

Main idea of the procedure:

If s ≈ t is a positive equation and

solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un},

replace s ≈ t by x1 ≈ u1 ∧ . . . ∧ xn ≈ un

and use these equations to eliminate the xi elsewhere.

Practical problem:

Solvability is a rather restrictive condition.

127

