Automated Reasoning II*

Uwe Waldmann

Summer Term 2024

Topics of the Course

Decision procedures:
 equality (congruence closure),
 algebraic theories,
 combinations.

Satisfiability modulo theories (SMT):
 CDCL(T),
 dealing with universal quantification.

Superposition:
 combining ordered resolution and completion,
 optimizations,
 integrating theories.
1 Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is undecidable.
To get decidability results, we have to impose restrictions on
• signatures,
• formulas,
• and/or algebras.

1.1 Theories and Fragments

So far, we have considered the validity or satisfiability of “unstructured” sets of formulas.
We will now split these sets of formulas into two parts: a theory (which we keep fixed) and a set of formulas that we consider relative to the theory.

A first-order theory \mathcal{T} is defined by

its signature $\Sigma = (\Omega, \Pi)$

its axioms, that is, a set of closed Σ-formulas.

(We often use the same symbol \mathcal{T} for a theory and its set of axioms.)

Note: This is the syntactic view of theories. There is also a semantic view, where one specifies a class of Σ-algebras \mathcal{M} and considers $Th(\mathcal{M})$, that is, all closed Σ-formulas that hold in the algebras of \mathcal{M}.

A Σ-algebra that satisfies all axioms of \mathcal{T} is called a \mathcal{T}-algebra (or \mathcal{T}-interpretation).

\mathcal{T} is called consistent if there is at least one \mathcal{T}-algebra. (We will only consider consistent theories.)

We can define models, validity, satisfiability, entailment, equivalence, etc., relative to a theory \mathcal{T}:

A \mathcal{T}-algebra that is a model of a Σ-formula F is also called a \mathcal{T}-model of F.

A Σ-formula F is called \mathcal{T}-valid, if $A, \beta \models F$ for all \mathcal{T}-algebras A and assignments β.

A Σ-formula F is called \mathcal{T}-satisfiable, if $A, \beta \models F$ for some \mathcal{T}-algebra and assignment β (and otherwise \mathcal{T}-unsatisfiable).

(\mathcal{T}-satisfiability of sets of formulas, \mathcal{T}-entailment, \mathcal{T}-equivalence: analogously.)

A fragment is some syntactically restricted class of Σ-formulas.

Typical restriction: only certain quantifier prefixes are permitted.
1.2 Equality

Theory of equality:

Signature: arbitrary

Axioms: none

(but the equality predicate \approx has a fixed interpretation)

Alternatively:

Signature contains a binary predicate symbol \sim instead of the built-in \approx

Axioms: reflexivity, symmetry, transitivity, congruence for \sim

In general, satisfiability of first-order formulas w. r. t. equality is undecidable.

However, we will show that it is decidable for ground first-order formulas.

Note: It suffices to consider conjunctions of literals. Arbitrary ground formulas can be converted into DNF; a formula in DNF is satisfiable if and only if one of its conjunctions is satisfiable.

Note that our problem can be written in several ways:

An equational clause

$\forall \bar{x} (A_1 \lor \ldots \lor A_n \lor \neg B_1 \lor \ldots \lor \neg B_k)$ is \mathcal{T}-valid

iff

$\exists \bar{x} (\neg A_1 \land \ldots \land \neg A_n \land B_1 \land \ldots \land B_k)$ is \mathcal{T}-unsatisfiable

iff

the Skolemized (ground!) formula

$(\neg A_1 \land \ldots \land \neg A_n \land B_1 \land \ldots \land B_k)\{\bar{x} \mapsto \bar{c}\}$ is \mathcal{T}-unsatisfiable

iff

$(A_1 \lor \ldots \lor A_n \lor \neg B_1 \lor \ldots \lor \neg B_k)\{\bar{x} \mapsto \bar{c}\}$ is \mathcal{T}-valid

Other names:

The theory is also known as *EUF* (equality with uninterpreted function symbols).

The decision procedures for the ground fragment are called congruence closure algorithms.
Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

\[u_1 \approx v_1 \land \ldots \land u_n \approx v_n \land \neg s_1 \approx t_1 \land \ldots \land \neg s_k \approx t_k \]

Idea:

transform \(E = \{ u_1 \approx v_1, \ldots, u_n \approx v_n \} \) into an equivalent convergent TRS \(R \) and check whether \(s_i \downarrow_R = t_i \downarrow_R \).

if \(s_i \downarrow_R = t_i \downarrow_R \) for some \(i \):

\[s_i \leftrightarrow^* t_i \iff E \models s_i \approx t_i \Rightarrow \text{unsat.} \]

if \(s_i \downarrow_R = t_i \downarrow_R \) for no \(i \):

\[T_\Sigma(X)/R = T_\Sigma(X)/E \text{ is a model of the conjunction} \Rightarrow \text{sat.} \]

In principle, one could use Knuth-Bendix completion to convert \(E \) into an equivalent convergent TRS \(R \).

If done properly (see exercises), Knuth-Bendix completion terminates for ground inputs.

However, for the ground case, one can optimize the general procedure.

First step:

Flatten terms: Introduce new constant symbols \(c_1, c_2, \ldots \) for all subterms:

\[g(a, h(h(b))) \approx h(a) \]

is replaced by

\[a \approx c_1 \land b \approx c_2 \land h(c_2) \approx c_3 \land h(c_3) \approx c_4 \land g(c_1, c_4) \approx c_5 \land h(c_1) \approx c_6 \land c_5 \approx c_6 \]

Result: only two kinds of equations left.

D-equations: \(f(c_{i_1}, \ldots, c_{i_m}) \approx c_{i_0} \) for \(f/n \in \Omega, \ n \geq 0 \).

C-equations: \(c_i \approx c_j \).

\[\Rightarrow \text{efficient indexing (e.g., using hash tables), obvious termination for D-equations.} \]
Inference Rules

The congruence closure algorithm is presented as a set of inference rules working on a set of equations E and a set of rules R: $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$

At the beginning, $E = E_0$ is the set of C-equations and $R = R_0$ is the set of D-equations oriented left-to-right. At the end, E should be empty; then R is the result.

Notation: The formula $s \approx t$ denotes either $s \approx t$ or $t \approx s$.

Simplify:

\[
\frac{E \cup \{c \approx c'\}, \ R \cup \{c \rightarrow c''\}}{E \cup \{c'' \approx c'\}, \ R \cup \{c \rightarrow c''\}}
\]

Delete:

\[
\frac{E \cup \{c \approx c\}, \ R}{E, \ R}
\]

Orient:

\[
\frac{E \cup \{c \approx c'\}, \ R}{E, \ R \cup \{c \rightarrow c'\}} \quad \text{if } c \succ c'
\]

Collapse:

\[
\frac{E, \ R \cup \{t[c]_p \rightarrow c', \ c \rightarrow c''\}}{E, \ R \cup \{t[c']_p \rightarrow c', \ c \rightarrow c''\}} \quad \text{if } p \neq \varepsilon
\]

Deduce:

\[
\frac{E, \ R \cup \{t \rightarrow c, \ t \rightarrow c'\}}{E \cup \{c \approx c'\}, \ R \cup \{t \rightarrow c\}}
\]

Note: for ground rewrite rules, critical pair computation does not involve substitution. Therefore, every critical pair computation can be replaced by a simplification, either using Deduce or Collapse.

Theorem 1.1 Let E_0 be a finite set of C-equations, let R_0 be a finite set of D-equations oriented left-to-right w.r.t. \succ, and let \succ be a total ordering on constants. Then the inference system terminates with a final state (E_n, R_n) where $E_n = \emptyset$, R_n is terminating and confluent, and $\approx_{E_0 \cup R_0}$ equals \approx_{R_n}.
Strategy

The inference rules are applied according to the following strategy:

(1) If there is an equation in E, use Simplify as long as possible for this equation, then use either Delete or Orient. Repeat until E is empty.

(2) If Collapse is applicable, apply it, if now Deduce is applicable, apply it as well. Repeat until Collapse is no longer applicable.

(3) If E is non-empty, go to (1), otherwise return R.

Implementation

Instead of fixing the ordering \succ in advance, it is preferable to define it on the fly during the algorithm:

If we orient an equation $c \approx c'$ between two constant symbols, we try to make that constant symbol larger that occurs less often in $R \Rightarrow$ fewer Collapse steps.

Additionally:

Use various index data structures so that all the required operations can be performed efficiently.

Use a union-find data structure to represent the equivalence classes encoded by the C-rules.

Average runtime for an implementation using hash tables: $O(m \log m)$, where m is the number of edges in the graph representation of the initial C and D-equations.

One Small Problem

The inference rules are sound in the usual sense: The conclusions are entailed by the premises, so every T-model of the premises is a T-model of the conclusions.

For the initial flattening, however, we get a weaker result: We have to extend the T-models of the original equations to obtain models of the flattened equations. That is, we get a new algebra with the same universe as the old one, with the same interpretations for old functions and predicate symbols, but with appropriately chosen interpretations for the new constants.

Consequently, the relations \approx_E and \approx_R for the original E and the final R are not the same. For instance, $c_3 \approx_E c_7$ does not hold, but $c_3 \approx_R c_7$ may hold.
On the other hand, the model extension preserves the universe and the interpretations for old symbols. Therefore, if \(s \) and \(t \) are terms over the old symbols, we have \(s \approx_E t \) iff \(s \approx_R t \).

This is sufficient for our purposes: The terms \(s_i \) and \(t_i \) that we want to normalize using \(R \) do not contain new symbols.

Other Predicate Symbols

If the initial ground conjunction contains also non-equational literals \([\neg] P(t_1, \ldots, t_n)\), treat these like equational literals \([\neg] P(t_1, \ldots, t_n) \approx true\). Then use the same algorithm as before.

History

Congruence closure algorithms have been published, among others, by Shostak (1978). by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a completion procedure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the Downey/Sethi/Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the presentation of Bachmair and Tiwari.

Literature

1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature: \(\Sigma = (\{0/0, 1/0, +/2\}, \{< \}/2) \) and the predefined binary predicate \(\approx \).

The equational part of linear rational arithmetic is described by the theory of divisible torsion-free abelian groups:

\[
\forall x, y, z \ (x + (y + z) \approx (x + y) + z) \quad \text{(associativity)} \\
\forall x, y \ (x + y \approx y + x) \quad \text{(commutativity)} \\
\forall x \ (x + 0 \approx x) \quad \text{(identity)} \\
\forall x \ \exists y \ (x + y \approx 0) \quad \text{(inverse)} \\
\forall n \geq 1: \forall x \ (x + \cdots + x \approx 0 \rightarrow x \approx 0) \quad \text{(torsion-freeness)}
\]

For all \(n \geq 1 \):

\[
\forall x \ (\exists y \ (y + \cdots + y \approx x)) \quad \text{(divisibility)} \\
\neg 1 \approx 0 \quad \text{(non-triviality)}
\]

Note: Quantification over natural numbers is not part of our language. We really need infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible abelian groups:

\[
\forall x \ (\neg x < x) \quad \text{(irreflexivity)} \\
\forall x, y, z \ (x < y \land y < z \rightarrow x < z) \quad \text{(transitivity)} \\
\forall x, y \ (x < y \lor y < x \lor x \approx y) \quad \text{(totality)} \\
\forall x, y, z \ (x < y \rightarrow x + z < y + z) \quad \text{(compatibility)} \\
0 < 1 \quad \text{(non-triviality)}
\]

Note: The second non-triviality axiom renders the first one superfluous. Moreover, as soon as we add the axioms of compatible strict total orderings, torsion-freeness can be omitted. Every ordered divisible abelian group is obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered (F.-W. Levi 1913).

Examples: \(\mathbb{Q}, \mathbb{R}, \mathbb{Q}^n, \mathbb{R}^n, \ldots \)
The signature can be extended by further symbols:

\(\leq/2, >/2, \geq/2, \neq/2 \): defined using \(<\) and \(\approx\)

\(-/1\): Skolem function for inverse axiom

\(-/2\): defined using \(+/2\) and \(-/1\)

\(\text{div}_{n}/1\): Skolem functions for divisibility axiom for all \(n \geq 1\).

\(\text{mult}_{n}/1\): defined by \(\forall x \ (\text{mult}_{n}(x) \approx x + \cdots + x)\) for all \(n \geq 1\).

\(\text{mult}_{q}/1\): defined using \(\text{mult}_{n}, \text{div}_{n}, \text{−}\) for all \(q \in \mathbb{Q}\).

(We usually write \(q \cdot t\) or \(qt\) instead of \(\text{mult}_{q}(t)\).)

\(q/0\) (for \(q \in \mathbb{Q}\)): defined by \(q \approx q \cdot 1\).

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over the base signature.

When \(\cdot\) is considered as a binary operator, (ordered) divisible torsion-free abelian groups correspond to (ordered) rational vector spaces.

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits *quantifier elimination*: every formula \(\exists x \ F\) or \(\forall x \ F\) in linear rational arithmetic can be converted into an equivalent formula without the variable \(x\).

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in 1936.

Observation: Every literal over the variables \(x, y_{1}, \ldots, y_{n}\) can be converted into an ODAG-equivalent literal \(x \sim t[y]\) or \(0 \sim t[y]\), where \(\sim \in \{<, >, \leq, \geq, \approx, \neq\}\) and \(t[y]\) has the form \(\sum q_{i} \cdot y_{i} + q_{0}\).

In other words, we can either eliminate \(x\) completely or isolate in on one side of the literal, and we can replace every negative ordering literal by a positive one.

Moreover, we can convert every \(\neq\)-literal into an ODAG-equivalent disjunction of two \(<\)-literals.
We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation $x \approx t[\vec{y}]$, we can eliminate the quantifier $\exists x$ by substitution:

$$\exists x (x \approx t[\vec{y}] \land F)$$

is equivalent to

$$F\{x \mapsto t[\vec{y}]\}$$

If x occurs only in inequations, then

$$\exists x \left(\bigwedge_i x < s_i(\vec{y}) \land \bigwedge_j x \leq t_j(\vec{y}) \land \bigwedge_k x > u_k(\vec{y}) \land \bigwedge_m 0 \sim w_m(\vec{y}) \right)$$

is equivalent to

$$\bigwedge_i \bigwedge_k s_i(\vec{y}) > u_k(\vec{y}) \land \bigwedge_j \bigwedge_k t_j(\vec{y}) > u_k(\vec{y}) \land \bigwedge_i \bigwedge_l s_i(\vec{y}) > v_l(\vec{y}) \land \bigwedge_j \bigwedge_l t_j(\vec{y}) \geq v_l(\vec{y}) \land \bigwedge_m 0 \sim w_m(\vec{y})$$

Proof: (\Rightarrow) by transitivity;
(\Leftarrow) take $\frac{1}{2}(\min\{s_i, t_j\} + \max\{u_k, v_l\})$ as a witness.

Extension to arbitrary formulas:

Transform into prenex formula;

if innermost quantifier is \exists: transform matrix into DNF and move \exists into disjunction;
if innermost quantifier is \forall: replace $\forall x F$ by $\neg \exists x \neg F$, then eliminate \exists.

Consequence: every closed formula over the signature of ODAGs is ODAG-equivalent to either \top or \bot.

Consequence: ODAGs are a complete theory, i.e., every closed formula over the signature of ODAGs is either valid or unsatisfiable w.r.t. ODAGs.

Consequence: every closed formula over the signature of ODAGs holds either in all ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs.

(These properties do not hold for extended signatures!)
Fourier-Motzkin: Complexity

One FM-step for \exists:

formula size grows quadratically, therefore $O(n^2)$ runtime.

m quantifiers $\exists \ldots \exists$:

naive implementation produces a doubly exponential number of inequations, therefore needs $O(n^{2m})$ runtime (the number of necessary inequations grows only exponentially, though).

m quantifiers $\exists \forall \forall \ldots \exists$:

CNF/DNF conversion (exponential!) required after each step; therefore non-elementary runtime.

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic was developed by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution method”.

For simplicity, we consider only one particular ODAG, namely Q (as we have seen above, the results are the same for all ODAGs).

Let $F(x, \vec{y})$ be a positive boolean combination of linear (in-)equations $x \sim_i s_i(\vec{y})$ and $0 \sim_j s'_j(\vec{y})$ with $\sim_i, \sim_j \in \{\approx, \not=, <, \leq, >, \geq\}$, that is, a formula built from linear (in-) equations, \land and \lor (but without \lnot).

Goal: Find a finite set T of “test points” so that

$$\exists x \ F(x, \vec{y}) \models \bigvee_{t \in T} F(x, \vec{y}) \{x \mapsto t\}$$

In other words: We want to replace the infinite disjunction $\exists x$ by a finite disjunction.

If we keep the values of the variables \vec{y} fixed, then we can consider F as a function $F : x \mapsto F(x, \vec{y})$ from Q to $\{0, 1\}$.

The value of each of the atoms $s_i(\vec{y}) \sim_i x$ changes only at $s_i(\vec{y})$, and the value of F can only change if the value of one of its atoms changes.

Let $\delta(\vec{y}) = \min\{|s_i(\vec{y}) - s_j(\vec{y})| \mid s_i(\vec{y}) \neq s_j(\vec{y})\}$

F is a piecewise constant function; more precisely, the set of all x with $F(x, \vec{y}) = 1$ is a finite union of intervals. (The union may be empty, the individual intervals may be finite or infinite and open or closed.)
Moreover, each of the intervals has either length 0 (i.e., it consists of one point), or its length is at least $\delta(\vec{y})$.

If the set of all x for which $F(x, \vec{y})$ is 1 is non-empty, then

(i) $F(x, \vec{y}) = 1$ for all $x \leq r(\vec{y})$ for some $r(\vec{y}) \in Q$

(ii) or there is some point where the value of $F(x, \vec{y})$ switches from 0 to 1 when we traverse the real axis from $-\infty$ to $+\infty$.

We use this observation to construct a set of test points.

We start with some “sufficiently small” test point $r(\vec{y})$ to take care of case (i).

For case (ii), we observe that $F(x, \vec{y})$ can only switch from 0 to 1 if one of the atoms switches from 0 to 1. (We consider only positive boolean combinations of atoms, and \land and \lor are monotonic w.r.t. truth values.)

$x \leq s_i(\vec{y})$ and $x < s_i(\vec{y})$ do not switch from 0 to 1 when x grows.

$x \geq s_i(\vec{y})$ and $x \approx s_i(\vec{y})$ switch from 0 to 1 at $s_i(\vec{y})$

$\Rightarrow s_i(\vec{y})$ is a test point.

$x > s_i(\vec{y})$ and $x \not\approx s_i(\vec{y})$ switch from 0 to 1 “right after” $s_i(\vec{y})$

$\Rightarrow s_i(\vec{y}) + \varepsilon$ (for some $0 < \varepsilon < \delta(\vec{y})$) is a test point.

If $r(\vec{y})$ is sufficiently small and $0 < \varepsilon < \delta(\vec{y})$, then

$$T := \{r(\vec{y})\} \cup \{s_i(\vec{y}) \mid \sim_i \in \{\geq, =\}\} \cup \{s_i(\vec{y}) + \varepsilon \mid \sim_i \in \{>, \neq\}\}.$$

is a set of test points.

Problem:
We don’t know how small $r(\vec{y})$ has to be for case (i), and we don’t know $\delta(\vec{y})$ for case (ii).

Idea:
We consider the limits for $r \to -\infty$ and for $\varepsilon \searrow 0$, that is, we redefine

$$T := \{-\infty\} \cup \{s_i(\vec{y}) \mid \sim_i \in \{\geq, =\}\} \cup \{s_i(\vec{y}) + \varepsilon \mid \sim_i \in \{>, \neq\}\}.$$

How can we eliminate the infinitesimals ∞ and ε when we substitute elements of T for x?
Virtual substitution:
\[
(x < s(\vec{y})) \{ x \mapsto -\infty \} := \lim_{r \to -\infty} (r < s(\vec{y})) = \top
\]
\[
(x \leq s(\vec{y})) \{ x \mapsto -\infty \} := \lim_{r \to -\infty} (r \leq s(\vec{y})) = \top
\]
\[
(x > s(\vec{y})) \{ x \mapsto -\infty \} := \lim_{r \to -\infty} (r > s(\vec{y})) = \bot
\]
\[
(x \geq s(\vec{y})) \{ x \mapsto -\infty \} := \lim_{r \to -\infty} (r \geq s(\vec{y})) = \bot
\]
\[
(x \approx s(\vec{y})) \{ x \mapsto -\infty \} := \lim_{r \to -\infty} (r \approx s(\vec{y})) = \bot
\]
\[
(x \not\approx s(\vec{y})) \{ x \mapsto -\infty \} := \lim_{r \to -\infty} (r \not\approx s(\vec{y})) = \top
\]
\[
(x < s(\vec{y})) \{ x \mapsto u + \epsilon \} := \lim_{\epsilon \to 0} (u + \epsilon < s(\vec{y})) = (u < s(\vec{y}))
\]
\[
(x \leq s(\vec{y})) \{ x \mapsto u + \epsilon \} := \lim_{\epsilon \to 0} (u + \epsilon \leq s(\vec{y})) = (u < s(\vec{y}))
\]
\[
(x > s(\vec{y})) \{ x \mapsto u + \epsilon \} := \lim_{\epsilon \to 0} (u + \epsilon > s(\vec{y})) = (u \geq s(\vec{y}))
\]
\[
(x \geq s(\vec{y})) \{ x \mapsto u + \epsilon \} := \lim_{\epsilon \to 0} (u + \epsilon \geq s(\vec{y})) = (u \geq s(\vec{y}))
\]
\[
(x \approx s(\vec{y})) \{ x \mapsto u + \epsilon \} := \lim_{\epsilon \to 0} (u + \epsilon \approx s(\vec{y})) = \bot
\]
\[
(x \not\approx s(\vec{y})) \{ x \mapsto u + \epsilon \} := \lim_{\epsilon \to 0} (u + \epsilon \not\approx s(\vec{y})) = \top
\]

We have traversed the real axis from $-\infty$ to $+\infty$. Alternatively, we can traverse it from $+\infty$ to $-\infty$. In this case, the test points are

\[
T' := \{ +\infty \} \cup \{ s_i(\vec{y}) \mid \sim_i \in \{ \leq, = \} \} \cup \{ s_i(\vec{y}) - \epsilon \mid \sim_i \in \{ <, \neq \} \}.
\]

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T' and take the smaller set.

For a universally quantified formulas $\forall x F$, we replace it by $\neg \exists x \neg F$, push inner negation downwards, and then continue as before.

Note that there is no CNF/DNF transformation required. Loos-Weispfenning quantifier elimination works on arbitrary positive formulas.
Loos-Weispfenning: Complexity

One LW-step for \(\exists\) or \(\forall\):

as the number of test points is at most one plus the number of atoms (one plus half of the number of atoms, if there are only ordering literals), the formula size grows quadratically; therefore \(O(n^2)\) runtime.

Multiple quantifiers of the same kind:

\[
\exists x_2 \exists x_1\cdot F(x_1, x_2, \vec{y})
\]

\[
\leadsto \exists x_2\cdot \left(\bigvee_{t_1 \in T_1} F(x_1, x_2, \vec{y}) \{ x_1 \mapsto t_1 \} \right)
\]

\[
\leadsto \bigvee_{t_1 \in T_1} \left(\exists x_2\cdot F(x_1, x_2, \vec{y}) \{ x_1 \mapsto t_1 \} \right)
\]

\[
\leadsto \bigvee_{t_1 \in T_1} \bigvee_{t_2 \in T_2} \left(F(x_1, x_2, \vec{y}) \{ x_1 \mapsto t_1 \} \{ x_2 \mapsto t_2 \} \right)
\]

\(m\) quantifiers \(\exists\ldots\exists\) or \(\forall\ldots\forall\):

formula size is multiplied by \(n\) in each step, therefore \(O(n^{m+1})\) runtime.

\(m\) quantifiers \(\exists\forall\exists\ldots\exists\):

doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant; so an efficient implementation must make heavy use of simplification techniques.

Literature

1.4 Existentially-quantified LRA

So far, we have considered formulas that may contain free, existentially quantified, and universally quantified variables.

For the special case of conjunction of linear inequations in which all variables are existentially quantified, there are more efficient methods available.

Main idea: reduce satisfiability problem to optimization problem.

Linear Optimization

Goal:

Solve a linear optimization (also called: linear programming) problem for given numbers $a_{ij}, b_i, c_j \in \mathbb{R}$:

$$\max \sum_{1 \leq j \leq n} c_j x_j$$

for $\bigwedge_{1 \leq i \leq m} \sum_{1 \leq j \leq n} a_{ij} x_j \leq b_i$

or in vectorial notation:

$$\max \vec{c}^\top \vec{x}$$

for $A\vec{x} \leq \vec{b}$

Simplex algorithm:

Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is exponential, though.

Interior point methods:

Polynomial-time worst-case complexity (but large constants).

In practice: no clear winner.

Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.
Main idea of Simplex:

\(A\vec{x} \leq \vec{b} \) describes a convex polyhedron.

Pick one vertex of the polyhedron, then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global optimum.

Details: see special lecture on optimization.

Using an optimization procedure for checking satisfiability:

Goal: Check whether \(A\vec{x} \leq \vec{b} \) is satisfiable.

To use the Simplex method, we have to transform the original (possibly empty) polyhedron into another polyhedron that is non-empty and for which we know one initial vertex.

Every real number can be written as the difference of two non-negative real numbers. Use this idea to convert \(A\vec{x} \leq \vec{b} \) into an equisatisfiable inequation system \(\vec{y} \geq \vec{0}, B\vec{y} \leq \vec{b} \) for new variables \(\vec{y} \).

Multiply those inequations of the inequation system \(B\vec{y} \leq \vec{b} \) in which the number on the right-hand side is negative by \(-1\). We obtain two inequation systems \(D\vec{y} \leq \vec{g}_1, D\vec{y} \geq \vec{g}_2 \), such that \(\vec{g}_1 \geq \vec{0}, \vec{g}_2 > \vec{0} \).

Now solve

\[
\begin{align*}
\text{maximize} & \quad \vec{1}^\top (D\vec{y} - \vec{z}) \\
\text{for} & \quad \vec{y}, \vec{z} \geq \vec{0} \\
& \quad D\vec{y} \leq \vec{g}_1 \\
& \quad D\vec{y} - \vec{z} \leq \vec{g}_2
\end{align*}
\]

where \(\vec{z} \) is a vector of new variables with the same size as \(\vec{g}_2 \).

Observation 1: \(\vec{0} \) is a vertex of the polyhedron of this optimization problem.

Observation 2: The maximum is \(\vec{1}^\top \vec{g}_2 \) if and only if \(\vec{y} \geq \vec{0}, D\vec{y} \leq \vec{g}_1, D\vec{y} \geq \vec{g}_2 \) has a solution.

(\(\Rightarrow\)): If \(\vec{1}^\top (D\vec{y} - \vec{z}) = \vec{1}^\top \vec{g}_2 \) for some \(\vec{y}, \vec{z} \) satisfying \(D\vec{y} - \vec{z} \leq \vec{g}_2 \), then \(D\vec{y} - \vec{z} = \vec{g}_2 \), hence \(D\vec{y} = \vec{g}_2 + \vec{z} \geq \vec{g}_2 \).

(\(\Leftarrow\)): \(\vec{1}^\top (D\vec{y} - \vec{z}) \) can never be larger than \(\vec{1}^\top \vec{g}_2 \). If \(\vec{y} \geq \vec{0}, D\vec{y} \leq \vec{g}_1, D\vec{y} \geq \vec{g}_2 \) has a solution, choose \(\vec{z} = D\vec{y} - \vec{g}_2 \); then \(\vec{1}^\top (D\vec{y} - \vec{z}) = \vec{1}^\top \vec{g}_2 \).
A Simplex variant:

Transform the satisfiability problem into the form

\[A\vec{x} = \vec{0} \]
\[\vec{l} \leq \vec{x} \leq \vec{u} \]

(where \(l_i \) may be \(-\infty\) and \(u_i \) may be \(+\infty\)).

Relation to optimization problem is obscured.

But: More efficient if one needs an incremental decision procedure, where inequations may be added and retracted (Dutertre and de Moura 2006).

1.5 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear real arithmetic (or more generally, for real-closed fields). His algorithm had non-elementary complexity, however.

An improved algorithm by Collins (1975) (with further improvements by Hong) has doubly exponential complexity: Cylindrical algebraic decomposition (CAD).

Implementation: QEPCAD.

Cylindrical Algebraic Decomposition

Given: First-order formula over atoms of the form \(f_i(\vec{x}) \sim 0 \), where the \(f_i \) are polynomials over variables \(\vec{x} \).

Goal: Decompose \(\mathbb{R}^n \) into a finite number of regions such that all polynomials have invariant sign on every region \(X \):

\[\forall i \left(\forall \vec{x} \in X. f_i(\vec{x}) < 0 \right) \]
\[\lor \forall \vec{x} \in X. f_i(\vec{x}) = 0 \]
\[\lor \forall \vec{x} \in X. f_i(\vec{x}) > 0 \right) \]

Note: Implementation needs exact arithmetic using algebraic numbers (i.e., zeroes of univariate polynomials with integer coefficients).
1.6 Real Arithmetic incl. Transcendental Functions

Real arithmetic with exp/log: decidability unknown.

Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if $x \in \mathbb{Z}$:

$$\exists y \ (\sin(y) = 0 \land 3 < y \land y < 4 \land \sin(x \cdot y) = 0)$$

(note that necessarily $y = \pi$).

Consequence: Peano arithmetic (which is undecidable) can be encoded in real arithmetic with trigonometric functions.

However, real arithmetic with transcendental functions is decidable for formulas that are stable under perturbations, i.e., whose truth value does not change if numeric constants are modified by some sufficiently small ε.

Example:

Stable under perturbations: $\exists x \ x^2 \leq 5$

Not stable under perturbations: $\exists x \ x^2 \leq 0$

(Formula is true, but if we subtract an arbitrarily small $\varepsilon > 0$ from the right-hand side, it becomes false.)

Unsatisfactory from a mathematical point of view, but sufficient for engineering applications (where stability under perturbations is necessary anyhow).

Approach:

Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are stable under perturbations; may loop forever if the formula is not stable under perturbations.

1.7 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic.

Decidable (Presburger, 1929), but quantifier elimination is only possible if additional divisibility operators are present:

$\exists x \ (y = 2x)$ is equivalent to divides(2, y) but not to any quantifier-free formula over the base signature.

Cooper (1972): Quantifier elimination procedure, triple exponential for arbitrarily quantified formulas.
The Omega Test

Idea:

• Perform easy transformations, e.g.:
 \[3x + 6y \leq 8 \implies 3x + 6y \leq 6 \implies x + 2y \leq 2 \]
 \[3x + 6y = 8 \implies \bot \]
 (since \(3x + 6y\) must be divisible by 3).

• Eliminate equations
 (easy, if one coefficient is 1; tricky otherwise).

• If only inequations are left:
 no real solutions \(\rightarrow\) unsatisfiable for \(\mathbb{Z}\)
 “sufficiently many” real solutions \(\rightarrow\) satisfiable for \(\mathbb{Z}\)
 otherwise: branch

What does “sufficiently many” mean?

Consider inequations \(ax \leq s\) and \(bx \geq t\) with \(a, b \in \mathbb{N}^>0\) and polynomials \(s, t\).

If these inequations have real solutions, the interval of solutions ranges from \(\frac{1}{b}t\) to \(\frac{1}{a}s\).

The longest possible interval of this kind that does not contain any integer number ranges from \(i + \frac{1}{b}\) to \(i + 1 - \frac{1}{a}\) for some \(i \in \mathbb{Z}\); it has the length \(1 - \frac{1}{a} - \frac{1}{b}\).

Consequence:

If \(\frac{1}{a}s > \frac{1}{b}t + (1 - \frac{1}{a} - \frac{1}{b})\), or equivalently, \(bs \geq at + ab - a - b + 1\) is satisfiable, then the original problem must have integer solutions.

It remains to consider the case that \(bs \geq at\) is satisfiable (hence there are real solutions) but \(bs \geq at + ab - a - b + 1\) is not (hence the interval of real solutions need not contain an integer).

In the latter case, \(bs \leq at + ab - a - b\) holds, hence for every solution of the original problem:

\[t \leq bx \leq \frac{b}{a}s \leq t + (b - 1 - \frac{b}{a}) \]

and if \(x\) is an integer, \(t \leq bx \leq t + \left\lfloor b - 1 - \frac{b}{a} \right\rfloor\)

\(\implies\) Branch non-deterministically:

 Add one of the equations \(bx = t + i\) for \(i \in \{0, \ldots, \left\lfloor b - 1 - \frac{b}{a} \right\rfloor\}\).

Alternatively, if \(b > a\):

 Add one of the equations \(ax = s - i\) for \(i \in \{0, \ldots, \left\lfloor a - 1 - \frac{a}{b} \right\rfloor\}\).
Note: Efficiency depends highly on the size of coefficients. In applications from program verification, there is almost always some variable with a very small coefficient. If all coefficients are large, the branching step gets expensive.

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to optimization problem (like Simplex). ILP, MILP: (mixed) integer linear programming.

Two basic approaches:

Branching: If the simplex algorithm finds a solution with $x = 2.7$, add the inequation $x \leq 2$ or the inequation $x \geq 3$.

Cutting planes: Derive an inequation that holds for all real solutions, then round it to obtain an inequation that holds for all integer solutions, but not for the real solution found previously.

Example:

Given:

\[
\begin{align*}
2x - 3y &\leq 1 \\
2x + 3y &\leq 5 \\
-5x - 4y &\leq -7
\end{align*}
\]

Simplex finds an extremal solution $x = \frac{3}{2}$, $y = \frac{2}{3}$.

From the first two inequations, we see that $4x \leq 6$, hence $x \leq \frac{3}{2}$. If $x \in \mathbb{Z}$, we conclude $x = \lfloor x \rfloor \leq \lfloor \frac{3}{2} \rfloor = 1$.

\Rightarrow Add the inequation $x \leq 1$, which holds for all integer solutions, but cuts off the solution $(\frac{3}{2}, \frac{2}{3})$.

In practice:

Use both: Alternate between branching and cutting steps.

Better performance than the individual approaches.

1.8 Difference Logic

Difference Logic (DL):

Fragment of linear rational or integer arithmetic.

Formulas: conjunctions of atoms $x - y < c$ or $x - y \leq c$, $x, y \in X$, $c \in \mathbb{Q}$ (or $c \in \mathbb{Z}$).

One special variable x_0 whose value is fixed to 0 is permitted; this allows to express atoms like $x < 3$ in the form $x - x_0 < 3$. 20
Solving difference logic:

Let F be a conjunction in DL.
For simplicity: only non-strict inequalities.

Define a weighted graph G:

Vertices V: Variables in F.

Edges E: $x - y \leq c \rightarrow$ edge (x, y) with weight c.

Theorem: F is unsatisfiable iff G has a negative cycle.
Can be checked in $O(|V| \cdot |E|)$ using the Bellman-Ford algorithm.

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2^n), in device drivers also combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant, Kroening, et al.): successful.

1.10 Decision Procedures for Data Structures

There are decision procedures for, e.g.,

Arrays (read, write)
Lists (car, cdr, cons)
Sets or multisets with cardinalities

Note: There are usually restrictions on quantifications. Unrestricted universal quantification can lead to undecidability.
Literature: Further Decision Procedures

1.11 Combining Decision Procedures

Problem:
Let T_1 and T_2 be first-order theories over the signatures Σ_1 and Σ_2.

Assume that we have decision procedures for the satisfiability of existentially quanti-
fied formulas (or the validity of universally quantified formulas) w. r. t. T_1 and T_2.

Can we combine them to get a decision procedure for the satisfiability of existentially
quantified formulas w. r. t. $T_1 \cup T_2$?

General assumption:

Σ_1 and Σ_2 are disjoint.

The only symbol shared by T_1 and T_2 is built-in equality.

We consider only conjunctions of literals.

For general formulas, convert to DNF first and consider each conjunction individually.

Abstraction

To be able to use the individual decision procedures, we have to transform the original
formula in such a way that each atom contains only symbols of one of the signatures
(plus variables).

This process is known as variable abstraction or purification.

We apply the following rule as long as possible:

\[
\exists \bar{x} (F[t]) \implies \exists \bar{x}, y (F[y] \land t \approx y)
\]

if the top symbol of t belongs to Σ_i and t occurs in F directly below a Σ_j-symbol
or in a (positive or negative) equation $s \approx t$ where the top symbol of s belongs to
Σ_j ($i \neq j$), and if y is a new variable.

It is easy to see that the original and the purified formula are equivalent.
Stable Infiniteness

Problem:

Even if the Σ_1-formula F_1 and the Σ_2-formula F_2 do not share any symbols (not even variables), and if F_1 is T_1-satisfiable and F_2 is T_2-satisfiable, we cannot conclude that $F_1 \land F_2$ is $(T_1 \cup T_2)$-satisfiable.

Example:

Consider

$T_1 = \{ \forall x, y, z (x \approx y \lor x \approx z \lor y \approx z) \}$

and

$T_2 = \{ \exists x, y, z (x \not\approx y \land x \not\approx z \land y \not\approx z) \}$.

All T_1-models have at most two elements, and all T_2-models have at least three elements.

Since $T_1 \cup T_2$ is contradictory, there are no $(T_1 \cup T_2)$-satisfiable formulas.

To ensure that T_1-models and T_2-models can be combined to $(T_1 \cup T_2)$-models, we require that both T_1 and T_2 are stably infinite.

A first-order theory T is called stably infinite, if every existentially quantified formula that has a T-model has also a T-model with a (countably) infinite universe.

Note: By the Löwenheim–Skolem theorem, “countable” is redundant here.

Shared Variables

Even if $\exists \bar{x} F_1$ is T_1-satisfiable and $\exists \bar{x} F_2$ is T_2-satisfiable, it can happen that $\exists \bar{x} (F_1 \land F_2)$ is not $(T_1 \cup T_2)$-satisfiable, for instance because the shared variables x and y must be equal in all T_1-models of $\exists \bar{x} F_1$ and different in all T_2-models of $\exists \bar{x} F_2$.

Example:

Consider

$F_1 = (x + (-y) \approx 0)$,

and

$F_2 = (f(x) \not\approx f(y))$

where T_1 is linear rational arithmetic and T_2 is EUF.

We must exchange information about shared variables to detect the contradiction.
The Nelson–Oppen Algorithm (Non-deterministic Version)

Suppose that $\exists \vec{x} F$ is a purified conjunction of Σ_1 and Σ_2- literals.

Let F_1 be the conjunction of all literals of F that do not contain Σ_2- symbols; let F_2 be the conjunction of all literals of F that do not contain Σ_1- symbols. (Equations between variables are in both F_1 and F_2.)

The Nelson–Oppen algorithm starts with the pair F_1, F_2 and applies the following inference rules.

Unsat:

$$F_1, F_2 \perp$$

if $\exists \vec{x} F_i$ is unsatisfiable w. r. t. T_i for some i.

Branch:

$$F_1, F_2$$

$$F_1 \land (x \approx y), F_2 \land (x \approx y) \mid F_1 \land (x \not\approx y), F_2 \land (x \not\approx y)$$

if x and y are two different variables appearing in both F_1 and F_2 such that neither $x \approx y$ nor $x \not\approx y$ occurs in both F_1 and F_2.

“$|$” means non-deterministic (backtracking!) branching of the derivation into two sub-derivations. Derivations are therefore trees. All branches need to be reduced until termination.

Clearly, all derivation paths are finite since there are only finitely many shared variables in F_1 and F_2, therefore the procedure represented by the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.
Theorem 1.2 (Soundness) If “Branch” can be applied to F_1, F_2, then $\exists \vec{x} (F_1 \land F_2)$ is satisfiable in $T_1 \cup T_2$ if and only if one of the successor configurations of F_1, F_2 is satisfiable in $T_1 \cup T_2$.

Corollary 1.3 If all paths in a derivation tree from F_1, F_2 end in \bot, then $\exists \vec{x} (F_1 \land F_2)$ is unsatisfiable in $T_1 \cup T_2$.

For completeness we need to show that if one branch in a derivation terminates with an irreducible configuration F_1, F_2 (different from \bot), then $\exists \vec{x} (F_1 \land F_2)$ (and, thus, the initial formula of the derivation) is satisfiable in the combined theory.

As $\exists \vec{x} (F_1 \land F_2)$ is irreducible by “Unsat”, the two formulas are satisfiable in their respective component theories, that is, we have T_i-models A_i of $\exists \vec{x} F_i$ for $i \in \{1, 2\}$. We are left with combining the models into a single one that is both a model of the combined theory and of the combined formula. These constructions are called amalgamations.

Let F be a Σ_i-formula and let S be a set of variables of F. F is called compatible with an equivalence \sim on S if the formula

$$\exists \vec{z} \left(F \land \bigwedge_{x,y \in S, x\sim y} x \approx y \land \bigwedge_{x,y \in S, x\neq y} x \neq y \right)$$

is T_i-satisfiable whenever F is T_i-satisfiable. This expresses that F does not contradict equalities between the variables in S as given by \sim.

The formula $\bigwedge_{x,y \in S, x\sim y} x \approx y \land \bigwedge_{x,y \in S, x\neq y} x \neq y$ is called an arrangement of S.

Proposition 1.4 If F_1, F_2 is a pair of conjunctions over T_1 and T_2, respectively, that is irreducible by “Branch”, then both F_1 and F_2 are compatible with some equivalence \sim on the shared variables S of F_1 and F_2.

Proof. If F_1, F_2 is irreducible by the branching rule, then for each pair of shared variables x and y, both F_1 and F_2 contain either $x \approx y$ or $x \neq y$. Choose \sim to be the equivalence given by all (positive) variable equations between shared variables that are contained in F_1.

26
Let $\Sigma = (\Omega, \Pi)$; let $\Sigma' = (\Omega', \Pi')$ with $\Omega' \subseteq \Omega$ and $\Pi' \subseteq \Pi$ be a subsignature of Σ.

Let A be a Σ-algebra. Then the reduct $A|_{\Sigma'}$ is the Σ'-algebra A' with

\[
U_{A'} = U_A,
\]
\[
f_{A'} = f_A \text{ for all } f \in \Omega', \text{ and}
\]
\[
P_{A'} = P_A \text{ for all } P \in \Pi'.
\]

Lemma 1.5 (Amalgamation Lemma) Let T_1 and T_2 be two stably infinite theories over disjoint signatures Σ_1 and Σ_2. Furthermore let F_1, F_2 be a pair of conjunctions of literals over T_1 and T_2, respectively, both compatible with some equivalence \sim on the shared variables of F_1 and F_2. Then $F_1 \land F_2$ is $(T_1 \cup T_2)$-satisfiable if and only if each F_i is T_i-satisfiable.

Proof. The “only if” part is obvious.

For the “if” part, assume that each of the F_i is T_i-satisfiable. That is, there exist models A_i of T_i and variable assignments β_i such that $A_i, \beta_i \models F_i$. As the F_i are compatible with an equivalence \sim on their shared variables, we may assume that the β_i also satisfy the extended conjunctions in (1) with S the set of shared variables. In particular, whenever we have two shared variables x and y, $\beta_1(x) = \beta_1(y)$ if and only if $\beta_2(x) = \beta_2(y)$. Since the theories are stably infinite we may additionally assume that the A_i have countably infinite universes, hence there are bijections ρ_i from the domain of A_i to \mathbb{N} such that $\rho_1(\beta_1(x))) = \rho_2(\beta_2(x))$ for each shared variable x. Now define A to be the algebra having \mathbb{N} as its domain; for f or P in Σ_i define $f_A(n_1, \ldots, n_k) = \rho_i(f_A(\rho_i^{-1}(n_1), \ldots, \rho_i^{-1}(n_k)))$ and $P_A(n_1, \ldots, n_k) \Leftrightarrow P_A(\rho_i^{-1}(n_1), \ldots, \rho_i^{-1}(n_k))$. Define $\beta(x) = \rho_i(\beta_i(x))$ if x is a variable occurring in F_i. By construction of the ρ_i this definition is independent of the choice of i. Clearly $A|_{\Sigma_i}, \beta \models F_i$, for $i = 1, 2$, hence $A, \beta \models F_1 \land F_2$. Moreover, the reducts $A|_{\Sigma_i}$ are isomorphic (via ρ_i) to A_i and thus are models of T_i, so that A is a model of $T_1 \cup T_2$ as required.

Theorem 1.6 The non-deterministic Nelson–Oppen algorithm is terminating and complete for deciding satisfiability of pure conjunctions of literals F_1 and F_2 over $T_1 \cup T_2$ for signature-disjoint, stably infinite theories T_1 and T_2.

Proof. Suppose that F_1, F_2 is irreducible by the inference rules of the Nelson–Oppen algorithm. Applying the amalgamation lemma in combination with Prop. 1.4 we infer that F_1, F_2 is satisfiable w. r. t. $T_1 \cup T_2$.
Convexity

The number of possible equivalences of shared variables grows superexponentially with the number of shared variables, so enumerating all possible equivalences non-deterministically is going to be inefficient.

A much faster variant of the Nelson–Oppen algorithm exists for convex theories.

A first-order theory T is called convex w. r. t. equations, if for every conjunction Γ of Σ-equations and non-equational Σ-literals and for all Σ-equations A_i ($1 \leq i \leq n$), whenever $T \models \forall \vec{x} (\Gamma \rightarrow A_1 \lor \ldots \lor A_n)$, then there exists some index j such that $T \models \forall \vec{x} (\Gamma \rightarrow A_j)$.

Theorem 1.7 If a first-order theory T is convex w. r. t. equations and has no trivial models (i.e., models with only one element), then T is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose T is not stably infinite. Then there exists a T-satisfiable conjunction of literals $\exists \vec{x} F$ that has only finite T-models. As T is a first-order theory and first-order logic is compact, all T-models of $\exists \vec{x} F$ are bounded in cardinality by some number m.

Let y_1, \ldots, y_{m+1} be fresh variables not occurring in F. Then the formula $F_0 = \exists \vec{x} F \land \exists y_1 \ldots y_{m+1} \bigwedge_{1 \leq i < j \leq m+1} y_i \neq y_j$ is T-unsatisfiable since it expresses the fact that $\exists \vec{x} F$ has a model with more than m elements. Therefore, $T \models \neg F_0$.

We can write F in the form $F^+ \land F^-$, where F^- contains the negative equational literals in F and F^+ contains the rest. Then $T \models \neg F_0$ can be written as $T \models \forall \vec{x} \vec{y} (\neg F^+ \lor \neg F^- \lor \bigvee_{1 \leq i < j \leq m+1} y_i \approx y_j)$, or equivalently, $T \models \forall \vec{x} \vec{y} (F^+ \rightarrow \neg F^- \lor \bigvee_{1 \leq i < j \leq m+1} y_i \approx y_j)$. Note that $\neg F^-$ is a disjunction of positive equational literals.

Assume that $T \models \forall \vec{x}, \vec{y} (F^+ \rightarrow A)$ for some literal A of $\neg F^- \lor \bigvee_{1 \leq i < j \leq m+1} y_i \approx y_j$. If A is a literal of $\neg F^-$, then $T \models \forall \vec{x}, \vec{y} (F^+ \rightarrow A) \models \forall \vec{x}, \vec{y} (F^+ \rightarrow \neg F^-) \models \forall \vec{x}, \vec{y} \neg F$, which cannot hold since F is T-satisfiable. Otherwise A is a literal $y_i \approx y_j$, then $T \models \forall \vec{x}, \vec{y} (F^+ \rightarrow y_i \approx y_j)$. This cannot hold either: Note that $\exists \vec{x} F$ and thus $\exists \vec{x} F^+$ is T-satisfiable. So let A be some T-model of $\exists \vec{x} F^+$. By assumption, A is not a trivial model, therefore there is an A-assignment β to \vec{x}, \vec{y} that satisfies F^+ and maps y_i and y_j to two arbitrary different elements. Consequently, $A, \beta \not\models (F^+ \rightarrow y_i \approx y_j)$. 28
Lemma 1.8 Suppose T is convex, F a conjunction of literals, and S a subset of its variables. Let, for any pair of variables x_i and x_j in S, $x_i \sim x_j$ if and only if $T \models \forall \vec{x}(F \rightarrow x_i \approx x_j)$. Then F is compatible with \sim.

Proof. We show that with this choice of \sim the constraint (1), that is,

$$\exists \vec{z}\left(F \wedge \bigwedge_{x,y \in S, x \sim y} x \approx y \wedge \bigwedge_{x,y \in S, x \not\sim y} x \not\approx y \right)$$

is T-satisfiable whenever F is. Suppose, to the contrary, that F is T-satisfiable but (1) is not, that is,

$$T \models \forall \vec{z}\left(F \rightarrow \bigvee_{x,y \in S, x \sim y} x \not\approx y \vee \bigvee_{x,y \in S, x \not\sim y} x \approx y \right)$$

or, equivalently,

$$T \models \forall \vec{z}\left(F^+ \wedge \bigwedge_{x,y \in S, x \sim y} x \approx y \rightarrow \neg F^- \vee \bigvee_{x,y \in S, x \not\sim y} x \approx y \right).$$

where F^- contains the negative equational literals in F and F^+ contains the rest. By convexity of T, the antecedent implies one of the equations of the succedent.

Suppose that this equation A comes from $\neg F^-$. Then

$$T \models \forall \vec{z}\left(F^+ \wedge \bigwedge_{x,y \in S, x \sim y} x \approx y \rightarrow A \right)$$

and therefore

$$T \models \forall \vec{z}\left(F^+ \wedge \bigwedge_{x,y \in S, x \sim y} x \approx y \rightarrow \neg F^- \right)$$

which means

$$T \models \forall \vec{z}\left((F^+ \wedge F^-) \wedge \bigwedge_{x,y \in S, x \sim y} x \approx y \rightarrow \bot \right)$$

which cannot hold since $F = (F^+ \wedge F^-)$ is T-satisfiable and entails the equations $x \approx y$ with $x \sim y$.

So the equation A must come from the last part of the disjunction. In other words, there exists a pair of different variables x' and y' in S such that $x' \not\sim y'$ and

$$T \models \forall \vec{z}\left(F^+ \wedge \bigwedge_{x,y \in S, x \sim y} x \approx y \rightarrow x' \approx y' \right).$$

Since

$$T \models \forall \vec{z}\left(F \rightarrow \bigwedge_{x,y \in S, x \sim y} x \approx y \right),$$

we derive $T \models \forall \vec{z}\left(F \rightarrow x' \approx y' \right)$, which is impossible.
The Nelson–Oppen Algorithm (Deterministic Version for Convex Theories)

Unsat:

\[
F_1, F_2 \vdash \bot
\]

if \(\exists \vec{x} \) \(F_i \) is unsatisfiable w. r. t. \(T_i \) for some \(i \).

Propagate:

\[
\frac{F_1, F_2}{F_1 \land (x \approx y), F_2 \land (x \approx y)}
\]

if \(x \) and \(y \) are two different variables appearing in both \(F_1 \) and \(F_2 \) such that

\(T_1 \models \forall \vec{x} (F_1 \rightarrow x \approx y) \) and \(T_2 \not\models \forall \vec{x} (F_2 \rightarrow x \approx y) \)

or

\(T_2 \models \forall \vec{x} (F_2 \rightarrow x \approx y) \) and \(T_1 \not\models \forall \vec{x} (F_1 \rightarrow x \approx y) \).

Theorem 1.9 If \(T_1 \) and \(T_2 \) are signature-disjoint theories that are convex w. r. t. equations and have no trivial models, then the deterministic Nelson–Oppen algorithm is terminating, sound and complete for deciding satisfiability of pure conjunctions of literals \(F_1 \) and \(F_2 \) over \(T_1 \cup T_2 \).

Proof. Termination and soundness are obvious: there are only finitely many different equations that can be added, and each of them is entailed by given formulas.

For completeness, we have to show that every configuration that is irreducible by “Unsat” and “Propagate” is satisfiable w. r. t. \(T_1 \cup T_2 \): Let \(F_1, F_2 \) be such a configuration. As it is irreducible by “Propagate”, we have, for every equation \(x \approx y \) between shared variables, \(T_1 \models \forall \vec{x} (F_1 \rightarrow x \approx y) \) if and only if \(T_2 \not\models \forall \vec{x} (F_2 \rightarrow x \approx y) \). Consequently, \(F_1 \) and \(F_2 \) are compatible with the same equivalence on the shared variables of \(F_1 \) and \(F_2 \). Moreover, each of the formulas \(F_i \) is \(T_i \)-satisfiable, and since convexity implies stable infiniteness, \(F_i \) has a \(T_i \)-model with a countably infinite universe. Hence, by the amalgamation lemma, \(F_1 \land F_2 \) is \((T_1 \cup T_2)\)-satisfiable.

Corollary 1.10 The deterministic Nelson–Oppen algorithm for convex theories requires at most \(O(n^3) \) calls to the individual decision procedures for the component theories, where \(n \) is the number of shared variables.

Iterating Nelson–Oppen

The Nelson–Oppen combination procedures can be iterated to work with more than two component theories by virtue of the following observations where signature disjointness is assumed:
Theorem 1.11 If \mathcal{T}_1 and \mathcal{T}_2 are stably infinite, then so is $\mathcal{T}_1 \cup \mathcal{T}_2$.

Proof. The non-deterministic Nelson–Oppen algorithm is sound and complete for $\mathcal{T}_1 \cup \mathcal{T}_2$, that is, an existentially quantified conjunction F over $\Sigma_1 \cup \Sigma_2$ is satisfiable if and only if in every derivation from the purified form of F there exists a branch leading to some irreducible constraint F_1, F_2 entailing F. The amalgamation lemma 1.5 constructs a model with a countably infinite universe for F from the models of F_1 and F_2.

Lemma 1.12 A first-order theory \mathcal{T} is convex w. r. t. equations if and only if for every conjunction Γ of Σ-equations and non-equational Σ-literals and for all equations $x_i \approx x_i'$ (1 ≤ i ≤ n), whenever $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow x_1 \approx x_1' \lor \ldots \lor x_n \approx x_n')$, then there exists some index j such that $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow x_j \approx x_j')$.

Proof. The non-deterministic Nelson–Oppen algorithm is sound and complete for $\mathcal{T}_1 \cup \mathcal{T}_2$, that is, an existentially quantified conjunction F over $\Sigma_1 \cup \Sigma_2$ is satisfiable if and only if in every derivation from the purified form of F there exists a branch leading to some irreducible constraint F_1, F_2 entailing F. The amalgamation lemma 1.5 constructs a model with a countably infinite universe for F from the models of F_1 and F_2.

Lemma 1.13 Let \mathcal{T} be a first-order theory that is convex w. r. t. equations. Let F be a conjunction of literals; let F^- be the conjunction of all negative equational literals in F and let F^+ be the conjunction of all remaining literals in F. If $\mathcal{T} \models \forall \vec{x} (F \rightarrow x \approx y)$, then $\exists \vec{x} F$ is \mathcal{T}-unsatisfiable or $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow x \approx y)$.

Proof. $\mathcal{T} \models \forall \vec{x} (F \rightarrow x \approx y)$ is equivalent to $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow (\neg F^- \lor x \approx y))$. By convexity of \mathcal{T} we know that $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow x \approx y)$ or $\mathcal{T} \models \forall \vec{x} (F^+ \rightarrow A)$ for some literal $\neg A$ in F^-. In the latter case, $\exists \vec{x} (F^+ \land \neg A)$ is \mathcal{T}-unsatisfiable; hence $\exists \vec{x} F$, that is, $\exists \vec{x} (F^+ \land \neg F^-)$ is \mathcal{T}-unsatisfiable as well.

Theorem 1.14 If \mathcal{T}_1 and \mathcal{T}_2 are convex w. r. t. equations and do not have trivial models, then so is $\mathcal{T}_1 \cup \mathcal{T}_2$.

Proof. Suppose that \mathcal{T}_1 and \mathcal{T}_2 are convex w. r. t. equations and do not have trivial models. Then clearly $\mathcal{T}_1 \cup \mathcal{T}_2$ cannot have trivial models either, since any such model would also be a trivial model of \mathcal{T}_1 and \mathcal{T}_2.

Assume furthermore that $\mathcal{T} \models \forall \vec{x} (\Gamma \rightarrow x_1 \approx x_1' \lor \ldots \lor x_n \approx x_n')$ for some conjunction Γ of ($\Sigma_1 \cup \Sigma_2$)-equations and non-equational ($\Sigma_1 \cup \Sigma_2$)-literals. Then $\exists \vec{x} (\Gamma \land x_1 \neq x_1' \land \ldots \land x_n \neq x_n')$ is \mathcal{T}-unsatisfiable, and we can detect this by some run of the deterministic Nelson–Oppen algorithm starting with $\exists \vec{x}, \vec{y} (\Gamma_1 \land \Gamma_2 \land x_1 \neq x_1' \land \ldots \land x_n \neq x_n')$, where $\Gamma_1 \land \Gamma_2$ is the result of purifying Γ. This run consists of a sequence of “Propagate” steps followed by a final “Unsat” step, and without loss of generality, we use the “Propagate” rule only if “Unsat” cannot be applied. Consequently, whenever we add an equation $x \approx y$ that is entailed by F_1 w. r. t. \mathcal{T}_1 or by F_2 w. r. t. \mathcal{T}_2, then it is by Lemma 1.13 already entailed by the positive and the non-equational literals in F_1 or F_2. Furthermore, due to the convexity of \mathcal{T}_1 and \mathcal{T}_2, the final “Unsat” step depends on at most one negative equational literal in F_1 or F_2. We can therefore construct a similar Nelson–Oppen derivation that starts with only the positive and the non-equational literals in
Γ₁ and Γ₂, plus at most one negative equational literal that may be needed for the “Unsat” step. If a negative equational literal is needed, it is one of the \(x_j \neq x_j' \); then \(\exists \bar{x}(\Gamma \land x_j \neq x_j') \) is \(\mathcal{T} \)-unsatisfiable and \(\forall \bar{x}(\Gamma \rightarrow x_j \approx x_j') \) is \(\mathcal{T} \)-valid; if no negative equational literal is needed at all, then \(\exists \bar{x}\Gamma \) is \(\mathcal{T} \)-unsatisfiable, so \(\forall \bar{x}(\Gamma \rightarrow x_j \approx x_j') \) is \(\mathcal{T} \)-valid for every \(j \).

Extensions

Many-sorted logics:

- \texttt{read/2} becomes \texttt{read : array \times int \rightarrow data}.
- \texttt{write/3} becomes \texttt{write : array \times int \times data \rightarrow array}.

Variables: \texttt{x : data}

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe \(U_A \), one set per sort: \(array_A, int_A \).

Interpretations of function and predicate symbols correspond to their declarations:

\(\texttt{read}_A : array_A \times int_A \rightarrow data_A \)

If we consider combinations of theories with shared sorts but disjoint function and predicate symbols, then we get essentially the same combination results as before.

However, stable infiniteness and/or convexity are only required for the shared sorts.

Non-stably infinite theories:

If we impose stronger conditions on one theory, we can relax the conditions on the other one.

For instance, EUF can be combined with any other theory; stable infiniteness is not required.

E.g.: Strongly polite theories, shiny theories, flexible theories.
Strong Politeness

A theory \mathcal{T} is called smooth, if every quantifier-free formula that has a \mathcal{T}-model with some (finite or infinite) cardinality κ_0 has also \mathcal{T}-models with cardinality κ for every $\kappa \geq \kappa_0$.

A theory \mathcal{T} is called finitely witnessable, if there is a computable function wit that maps every quantifier-free formula F to a quantifier-free formula G such that

1. F and $\exists \vec{w} G$ are \mathcal{T}-equivalent, where $\vec{w} = \text{var}(G) \setminus \text{var}(F)$,
2. if $G \land \Delta$ is \mathcal{T}-satisfiable for some arrangement Δ, then there is a \mathcal{T}-model \mathcal{A} and an assignment β such that $\mathcal{A}, \beta \models (G \land \Delta)$ and $U_\mathcal{A} = \{ \beta(x) \mid x \in \text{var}(G \land \Delta) \}$

A theory \mathcal{T} is called strongly polite, if it is smooth and finitely witnessable.

Theorem 1.15 (Barrett & Jovanović) We can combine two theories \mathcal{T}_1 and \mathcal{T}_2 if one of them is strongly polite.

Again, in the many-sorted case, smoothness and finite witnessability must hold for all the shared sorts.

Non-disjoint combinations:

Have to ensure that both decision procedures interpret shared symbols in a compatible way.

Some results, e.g. by Ghilardi, using strong model theoretical conditions on the theories.

Another Combination Method

Shostak’s method:

Applicable to combinations of EUF and solvable theories.

A Σ-theory \mathcal{T} is called solvable, if there exists an effectively computable function solve such that, for any \mathcal{T}-equation $s \approx t$:

(A) $\text{solve}(s \approx t) = \bot$ if and only if $\mathcal{T} \models \forall \vec{x} (s \not\approx t)$;

(B) $\text{solve}(s \approx t) = \emptyset$ if and only if $\mathcal{T} \models \forall \vec{x} (s \approx t)$; and otherwise

(C) $\text{solve}(s \approx t) = \{ x_1 \approx u_1, \ldots , x_n \approx u_n \}$, where

- the x_i are pairwise different variables occurring in $s \approx t$;
- the x_i do not occur in the u_j; and

- $\mathcal{T} \models \forall \vec{x} \ (s \approx t) \leftrightarrow \exists \vec{y} (x_1 \approx u_1 \land \ldots \land x_n \approx u_n)$, where \vec{y} are the variables occurring in one of the u_j but not in $s \approx t$, and $\vec{x} \cap \vec{y} = \emptyset$.

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by computing some unique normal form

Main idea of the procedure:

If $s \approx t$ is a positive equation and $\text{solve}(s \approx t) = \{x_1 \approx u_1, \ldots, x_n \approx u_n\}$, replace $s \approx t$ by $x_1 \approx u_1 \land \ldots \land x_n \approx u_n$ and use these equations to eliminate the x_i elsewhere.

Practical problem:

Solvability is a rather restrictive condition.

Literature

2 Satisfiability Modulo Theories (SMT)

So far:

decision procedures for satisfiability for various fragments of first-order theories;
often only for ground conjunctions of literals.

Goals:
extend decision procedures efficiently to ground CNF formulas;
later: extend to non-ground formulas (we will often lose completeness, however).

2.1 The CDCL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set \(N \) of clauses),
where the atoms represent ground formulas over some theory \(\mathcal{T} \), check whether it is
satisfiable in \(\mathcal{T} \) (and optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated literals nor comple-
mentary literals.

For propositional CDCL ("Conflict-Driven Clause Learning"), we have considered partial
valuations, i.e., partial mappings from propositional variables to truth values.

A partial valuation \(\mathcal{A} \) corresponds to a set \(M \) of literals that does not contain comple-
mentary literals, and vice versa:

\[
\mathcal{A}(L) \text{ is true, if } L \in M.
\]

\[
\mathcal{A}(L) \text{ is false, if } \overline{L} \in M.
\]

\[
\mathcal{A}(L) \text{ is undefined, if neither } L \in M \text{ nor } \overline{L} \in M.
\]

We will now consider partial mappings from ground \(\mathcal{T} \)-atoms to truth values (which
correspond to sets of \(\mathcal{T} \)-literals).

In order to check whether a (partial) valuation is permissible, we identify the valuation
\(\mathcal{A} \) or the set \(M \) with the conjunction of all literals in \(M \):

The valuation \(\mathcal{A} \) or the set \(M \) is called \(\mathcal{T} \)-satisfiable, if the literals in \(M \) have a \(\mathcal{T} \)-model.

Since the elements of \(M \) can be interpreted both as propositional variables and as ground
\(\mathcal{T} \)-formulas, we have to distinguish between two notions of entailment:
We write $M \models F$ if F is entailed by M propositionally. We write $M \models^T F$ if the ground \mathcal{T}-formulas represented by M entail F.

M is called a \mathcal{T}-model of F, if it is \mathcal{T}-satisfiable and $M \models F$.

We write $F \models^T G$, if the formula F entails G w. r. t. \mathcal{T}, that is, if every \mathcal{T}-model of F is also a model of G.

Idea

Naive Approach:

Use CDCL to find a propositionally satisfying valuation.

If the valuation found is \mathcal{T}-satisfiable, stop; otherwise continue CDCL search.

Note: The CDCL procedure may *not* use “pure literal” checks.

Improvements:

Check already partial valuations for \mathcal{T}-satisfiability.

If \mathcal{T}-decision procedure yields explanations, use them for non-chronological backjumping.

If \mathcal{T}-decision procedure can provide \mathcal{T}-entailed literals, use them for propagation.

Since \mathcal{T}-satisfiability checks may be costly, learn clauses that incorporate useful \mathcal{T}-knowledge, in particular explanations for backjumping.

CDCL(\mathcal{T})

The “CDCL Modulo Theories” procedure is modelled by a transition relation $\Rightarrow_{\text{CDCL}(\mathcal{T})}$ on a set of states.

States:

- fail
- $M \parallel N$,

where M is a list of annotated literals (“trail”) and N is a set of clauses.

Annotated literal:

- L: deduced literal, due to propagation.
- L^d: decision literal (guessed literal).
CDCL(T) Rules from CDCL

Unit Propagate:

\[M \parallel N \cup \{C \lor L\} \Rightarrow_{\text{CDCL}(T)} M L \parallel N \cup \{C \lor L\} \]

if \(C \) is false under \(M \) and \(L \) is undefined under \(M \).

Decide:

\[M \parallel N \Rightarrow_{\text{CDCL}(T)} M L^d \parallel N \]

if \(L \) is undefined under \(M \).

Fail:

\[M \parallel N \cup \{C\} \Rightarrow_{\text{CDCL}(T)} \text{fail} \]

if \(C \) is false under \(M \) and \(M \) contains no decision literals.

Specific CDCL(T) Rules

\(\mathcal{T} \)-Learn:

\[M \parallel N \Rightarrow_{\text{CDCL}(T)} M \parallel N \cup \{C\} \]

if \(N \models_{\mathcal{T}} C \) and each atom of \(C \) occurs in \(N \) or \(M \).

\(\mathcal{T} \)-Forget:

\[M \parallel N \cup \{C\} \Rightarrow_{\text{CDCL}(T)} M \parallel N \]

if \(N \models_{\mathcal{T}} C \).

\(\mathcal{T} \)-Propagate:

\[M \parallel N \Rightarrow_{\text{CDCL}(T)} M L \parallel N \]

if \(M \models_{\mathcal{T}} L \) where \(L \) is undefined in \(M \), and \(L \) or \(\overline{L} \) occurs in \(N \).

\(\mathcal{T} \)-Backjump:

\[M' L^d M'' \parallel N \Rightarrow_{\text{CDCL}(T)} M' L' \parallel N \]

if \(M' L^d M'' \models \neg C \) for some \(C \in N \)

and if there is some “backjump clause” \(C'' \lor L' \) such that \(N \models_{\mathcal{T}} C'' \lor L' \) and \(M' \models \neg C' \),

\(L' \) is undefined under \(M' \), and \(L' \) or \(\overline{L} \) occurs in \(N \) or in \(M' L^d M'' \).
Note: We don’t need a special rule to handle the case that $M’ L^d M'' \models_{\mathcal{T}} \bot$. If the trail contains a \mathcal{T}-inconsistent subset, we can always add the negation of that subset using \mathcal{T}-Learn and apply \mathcal{T}-Backjump afterwards.

CDCL(T) Properties

The system CDCL(\mathcal{T}) consists of the rules Decide, Fail, Unit Propagate, \mathcal{T}-Propagate, \mathcal{T}-Backjump, \mathcal{T}-Learn and \mathcal{T}-Forget.

Lemma 2.1 If we reach a state $M \parallel N$ starting from $\emptyset \parallel N$, then:

1. M does not contain complementary literals.
2. Every deduced literal L in M follows from \mathcal{T}, N, and decision literals occurring before L in M.

Proof. By induction on the length of the derivation. \Box

Lemma 2.2 If no clause is learned infinitely often, then every derivation starting from $\emptyset \parallel N$ terminates.

Proof. Similar to the propositional case.

Lemma 2.3 If $\emptyset \parallel N \Rightarrow^{*}_{\text{CDCL(T)}} M \parallel N'$ and there is some conflicting clause in $M \parallel N'$, that is, $M \models \neg C$ for some clause C in N', then either Fail or \mathcal{T}-Backjump applies to $M \parallel N'$.

Proof. Similar to the propositional case. \Box

Lemma 2.4 If $\emptyset \parallel N \Rightarrow^{*}_{\text{CDCL(T)}} M \parallel N'$ and M is \mathcal{T}-unsatisfiable, then either there is a conflicting clause in $M \parallel N'$, or else \mathcal{T}-Learn applies to $M \parallel N'$, generating a conflicting clause.

Proof. If M is \mathcal{T}-unsatisfiable, then there are literals L_1, \ldots, L_n in M such that $\emptyset \models_{\mathcal{T}} \overline{L_1} \lor \ldots \lor \overline{L_n}$. Hence the conflicting clause $\overline{L_1} \lor \ldots \lor \overline{L_n}$ is either in $M \parallel N'$, or else it can be learned by one \mathcal{T}-Learn step. \Box
Theorem 2.5 Consider a derivation $\emptyset \parallel N \Rightarrow^*_{\text{CDCL}(T)} S$, where no more rules of the CDCL(T) procedure are applicable to S except T-Learn or T-Forget, and if S has the form $M \parallel N'$ then M is T-satisfiable. Then

1. If S has the form $M \parallel N'$, then M is a T-model of N and N'.
2. If S is fail then N and N' are T-unsatisfiable.

Proof. (1) Observe that the “Decide” rule is applicable as long as there are undefined literals in the clause set. Hence all literals in N' must be defined. Furthermore no clause in N' can be false under M, otherwise “Fail” or “Backjump” would be applicable. So M is a T-model of every clause in N'. Moreover, the side conditions of “T-Learn” and “T-Forget” ensure that $N' \models T N$, therefore M is also a T-model of every clause in N.

(2) If we reach fail, then in the previous step we must have reached a state $M \parallel N'$ such that some clause $C \in N'$ is false under M and M contains no decision literals. By part (2) of Lemma 2.1, every literal L in M follows from T and N. On the other hand, we have $C \in N'$, and the side conditions of “T-Learn” and “T-Forget” ensure that $N \models T N'$ and $N' \models T N$. Therefore $N \models T C$. So N and N' must be T-unsatisfiable. \qed
The Solver Interface

The general CDCL(\mathcal{T}) procedure has to be connected to a “Solver” for \mathcal{T}, a theory module that performs at least \mathcal{T}-satisfiability checks.

The solver is initialized with a list of all literals occurring in the input of the CDCL(\mathcal{T}) procedure.

Internally, it keeps a stack I of theory literals that is initially empty. The solver performs the following operations on I:

SetTrue(L: \mathcal{T}-Literal):

 Check whether $I \cup \{L\}$ is \mathcal{T}-satisfiable.
 If no: return an explanation for \bar{L}, that is, a subset J of I such that $J \models_{\mathcal{T}} \bar{L}$.
 If yes: push L on I.
 Optionally: Return a list of literals that are \mathcal{T}-consequences of $I \cup \{L\}$ (and have not yet been detected before).
 Note: Depending on \mathcal{T}, detecting (all) \mathcal{T}-consequences may be very cheap or very expensive.

Backtrack(n: \mathbb{N}):

 Pop n literals from I.

Explanation(L: \mathcal{T}-Literal):

 Return an explanation for L, that is, a subset J of I such that $J \models_{\mathcal{T}} L$.

 We assume that L has been returned previously as a result of some SetTrue(L') operation. No literal of J may occur in I after L'.

Computing Backjump Clauses

Backjump clauses for a conflict can then be computed as in the propositional case:

 Start with the conflicting clause.

 Resolve with the clauses used for Unit Propagate or the explanations produced by the solver until a backjump clause (or \bot) is found.
2.2 Heuristic Instantiation

CDCL(T) is limited to ground (or existentially quantified) formulas. Even if we have decidability for more than the ground fragment of a theory \(T \), we cannot use this in CDCL(T).

Most current SMT implementations offer a limited support for universally quantified formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in \(\forall \bar{x} C \) as “trigger” (automatically, but can be overridden manually).

If there is a ground instance \(C\theta \) of \(\forall \bar{x} C \) such that \(t\theta \) occurs (modulo congruence) in the current set of ground clauses for every \(t \in \text{trigger}(C) \), add \(C\theta \) to the set of ground clauses (incrementally).

Conditions for trigger terms (or atoms):

(1) Every quantified variable of the clause occurs in some trigger term (therefore more than one trigger term may be necessary).

(2) A trigger term is not a variable itself.

(3) A trigger is not explicitly forbidden by the user.

(4) There is no larger instance of the term in the formula:
 (If \(f(x) \) were selected as a trigger in \(\forall x P(f(x), f(g(x))) \), a ground term \(f(a) \) would produce an instance \(P(f(a), f(g(a))) \), which would produce an instance \(P(f(g(a)), f(g(g(a)))) \), and so on.)

(5) No proper subterm satisfies (1)–(4).

Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom \(P(a) \) is not an instance of the trigger atom \(P(x + 1) \); it is however equivalent (in linear algebra) to \(P((a − 1) + 1) \), which is an instance and may therefore produce a new ground clause.

Heuristic instantiation is obviously incomplete

 e.g., it does not find the contradiction for \(f(x, a) \approx x, f(b, y) \approx y, a \not\approx b \)

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.
2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with “known” ground terms is sufficient for completeness.

Scenario:

\[\Sigma_0 = (\Omega_0, \Pi_0): \text{base signature}; \]
\[\mathcal{T}_0: \Sigma_0\text{-theory}. \]

\[\Sigma_1 = (\Omega_0 \cup \Omega_1, \Pi_0): \text{signature extension}; \]
\[K: \text{universally quantified } \Sigma_1\text{-clauses}; \]
\[G: \text{ground clauses}. \]

Assumption: clauses in \(G \) are \(\Sigma_1\)-flat and \(\Sigma_1\)-linear:

- only constants as arguments of \(\Omega_1\)-symbols,
- if a constant occurs in two terms below an \(\Omega_1\)-symbol, then the two terms are identical,
- no term contains the same constant twice below an \(\Omega_1\)-symbol.

Example: Monotonic functions over \(\mathbb{Z} \).

\[\mathcal{T}_0: \text{Linear integer arithmetic}. \]
\[\Omega_1 = \{ f/1 \}. \]
\[K = \{ \forall x, y \ (\neg x \leq y \lor f(x) \leq f(y)) \}. \]
\[G = \{ f(3) \geq 6, f(5) \leq 9 \}. \]

Observation: If we choose interpretations for \(f(3) \) and \(f(5) \) that satisfy the \(G \) and monotonicity axiom, then it is always possible to define \(f \) for all remaining integers such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over \(\mathbb{Z} \).

\[\mathcal{T}_0: \text{Linear integer arithmetic}. \]
\[\Omega_1 = \{ f/1 \}. \]
\[K = \{ \forall x, y \ (\neg x < y \lor f(x) < f(y)) \}. \]
\[G = \{ f(3) > 6, f(5) < 9 \}. \]

Observation: Even though we can choose interpretations for \(f(3) \) and \(f(5) \) that satisfy \(G \) and the strict monotonicity axiom (map \(f(3) \) to 7 and \(f(5) \) to 8), we cannot define \(f(4) \) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

- like (usual) total algebras, but \(f_A \) may be a partial function.
There are several ways to define equality in partial algebras (strong equality, Evans equality, weak equality, etc.). Here we use weak equality:

- an equation \(s \approx t \) holds w. r. t. \(\mathcal{A} \) and \(\beta \) if both \(\mathcal{A}(\beta)(s) \) and \(\mathcal{A}(\beta)(t) \) are defined and equal or if at least one of them is undefined;
- a negated equation \(s \not\approx t \) holds w. r. t. \(\mathcal{A} \) and \(\beta \) if both \(\mathcal{A}(\beta)(s) \) and \(\mathcal{A}(\beta)(t) \) are defined and different or if at least one of them is undefined.

If a partial algebra \(\mathcal{A} \) satisfies a set of formulas \(N \) w. r. t. weak equality, it is called a weak partial model of \(N \).

A partial algebra \(\mathcal{A} \) embeds weakly into a partial algebra \(\mathcal{B} \) if there is an injective total mapping \(h : U_\mathcal{A} \rightarrow U_\mathcal{B} \) such that if \(f_\mathcal{A}(a_1, \ldots, a_n) \) is defined in \(\mathcal{A} \) then \(f_\mathcal{B}(h(a_1), \ldots, h(a_n)) \) is defined in \(\mathcal{B} \) and equal to \(h(f_\mathcal{A}(a_1, \ldots, a_n)) \).

A theory extension \(\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup \mathcal{K} \) is called local, if for every set \(G \), \(\mathcal{T}_0 \cup \mathcal{K} \cup G \) is satisfiable if and only if \(\mathcal{T}_0 \cup \mathcal{K}[G] \cup G \) has a (partial) model, where \(\mathcal{K}[G] \) is the set of instances of clauses in \(\mathcal{K} \) in which all terms starting with an \(\Omega_1 \)-symbol are ground terms occurring in \(\mathcal{K} \) or \(G \).

If every weak partial model of \(\mathcal{T}_0 \cup \mathcal{K} \) can be embedded into a a total model, then the theory extension \(\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup \mathcal{K} \) is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to different kinds of locality.

Examples of local theory extensions:
- free functions, constructors/selectors, monotonic functions, Lipschitz functions.
2.4 Goal-driven Instantiation

Instantiation is used to refute the current model discovered by the ground solver.

Rather than a fast but loosely guided instantiation technique, we can search for the most suitable instance if it exists.

Scenario:

M: a model of the ground formula returned by the ground SMT solver.

Q: the set of universally quantified clauses contained in the original input.

Problem:

Find a clause $\forall x C \in Q$ and a grounding substitution σ such that $M \cup C\sigma$ is unsatisfiable, if it exists.

E-ground (Dis)unification Problem

Given

E: a set of ground equality literals,

N: a set of equality literals,

find σ such that $E \models N\sigma$.

The E-ground (dis)unification problem can be used to encode the goal-driven instantiation problem:

For M and each $\forall x C \in Q$, try to solve the E-ground (dis)unification problem $M \models (\neg C)\sigma$.

Congruence Closure with Free Variables

CCFV (Barbosa et al, 2017) decomposes N into sets of smaller constraints by replacing terms with equivalent smaller ones until either

1. a variable assignment is possible, and the decomposition restarts afterwards,
2. a contradiction occurs, and the corresponding search branch is closed,
3. a substitution satisfying the problem is found.

CCFV is sound, complete and terminating for the E-ground (dis)unification problem.

Modern implementations: CVC4, VeriT.
Literature

3 Superposition

First-order calculi considered so far:

Resolution: for first-order clauses without equality.

(Unfailing) Knuth-Bendix Completion: for unit equations.

Goal:

Combine the ideas of ordered resolution (overlap maximal literals in a clause) and Knuth-Bendix completion (overlap maximal sides of equations) to get a calculus for equational clauses.

3.1 Recapitulation

First-order logic:

Atom: either $P(s_1, \ldots, s_m)$ with $P \in \Pi$ or $s \approx t$.

Literal: Atom or negated atom.

Clause: (possibly empty) disjunction of literals (all variables implicitly universally quantified).

Refutational theorem proving:

For refutational theorem proving, it suffices to consider sets of clauses: every first-order formula F can be translated into a set of clauses N such that F is unsatisfiable if and only if N is unsatisfiable.

In the non-equational case, unsatisfiability can for instance be checked using the (ordered) resolution calculus.

(Ordered) resolution: inference rules:

<table>
<thead>
<tr>
<th>Ground case</th>
<th>Non-ground case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td></td>
</tr>
<tr>
<td>$\frac{D' \lor A \quad C' \lor \neg A}{D' \lor C'}$</td>
<td>$\frac{D' \lor A \quad C' \lor \neg A'}{(D' \lor C')\sigma}$</td>
</tr>
<tr>
<td>where $\sigma = \text{mgu}(A, A')$.</td>
<td></td>
</tr>
<tr>
<td>Factoring:</td>
<td></td>
</tr>
<tr>
<td>$\frac{C' \lor A \lor A}{C' \lor A}$</td>
<td>$\frac{C' \lor A \lor A'}{(C' \lor A)\sigma}$</td>
</tr>
<tr>
<td>where $\sigma = \text{mgu}(A, A')$.</td>
<td></td>
</tr>
</tbody>
</table>
Ordering restrictions:

Let \succ be a well-founded and total ordering on ground atoms.

Literal ordering \succ_L: compares literals by comparing lexicographically first the respective atoms using \succ and then their polarities (negative \succ positive).

Clause ordering \succ_C: compares clauses by comparing their multisets of literals using the multiset extension of \succ_L.

Ordering restrictions (ground case):

Inference are necessary only if the following conditions are satisfied:

- The left premise of a Resolution inference is not larger than or equal to the right premise.
- The literals that are involved in the inferences ($\neg\ A$) are maximal in the respective clauses (strictly maximal for the left premise of Resolution).

Ordering restrictions (non-ground case):

Define the atom ordering \succ also for non-ground atoms.

Need stability under substitutions: $A \succ B$ implies $A\sigma \succ B\sigma$.

Note: \succ cannot be total on non-ground atoms.

For literals involved in inferences we have the same maximality requirements as in the ground case.

Resolution is (even with ordering restrictions) refutationally complete:

Dynamic view of refutational completeness:

If N is unsatisfiable ($N \models \bot$) then fair derivations from N produce \bot.

Static view of refutational completeness:

If N is saturated, then N is unsatisfiable if and only if $\bot \in N$.

Proving refutational completeness for the ground case:

We have to show:

If N is saturated (i.e., if sufficiently many inferences have been computed), and $\bot \notin N$, then N has a model.
Constructing a candidate interpretation:

Suppose that N be saturated and $\bot \notin N$. We inspect all clauses in N in ascending order and construct a sequence of Herbrand interpretations (starting with the empty interpretation: all atoms are false).

If a clause C is false in the current interpretation, and has a positive and strictly maximal literal A, then extend the current interpretation such that C becomes true: add A to the current interpretation. (Then C is called productive.)

Otherwise, leave the current interpretation unchanged.

The sequence of interpretations has the following properties:

(1) If an atom is true in some interpretation, then it remains true in all future interpretations.

(2) If a clause is true at the time where it is inspected, then it remains true in all future interpretations.

(3) If a clause $C = C' \lor A$ is productive, then C remains true and C' remains false in all future interpretations.

Show by induction: if N is saturated and $\bot \notin N$, then every clause in N is either true at the time where it is inspected or productive.

Note:
For the induction proof, it is not necessary that the conclusion of an inference is contained in N. It is sufficient that it is redundant w. r. t. N.

N is called saturated up to redundancy if the conclusion of every inference from clauses in $N \setminus \text{Red}(N)$ is contained in $N \cup \text{Red}(N)$.

Proving refutational completeness for the non-ground case:
If $C_i\theta$ is a ground instance of the clause C_i for $i \in \{0, \ldots, n\}$ and

\[
\begin{array}{c}
C_n, \ldots, C_1 \\
\hline
C_0
\end{array}
\]

and

\[
\begin{array}{c}
C_n\theta, \ldots, C_1\theta \\
\hline
C_0\theta
\end{array}
\]

are inferences, then the latter inference is called a ground instance of the former.
For a set N of clauses, let $G_{\Sigma}(N)$ be the set of all ground instances of clauses in N.

Construct the interpretation from the set $G_{\Sigma}(N)$ of all ground instances of clauses in N:

- N is saturated and does not contain \bot
 \Rightarrow $G_{\Sigma}(N)$ is saturated and does not contain \bot
- \Rightarrow $G_{\Sigma}(N)$ has a Herbrand model I
 \Rightarrow I is a model of N.

It is possible to encode an arbitrary predicate P using a function f_P and a new constant $true$:

- $P(t_1, \ldots, t_n) \sim f_P(t_1, \ldots, t_n) \approx true$
- $\neg P(t_1, \ldots, t_n) \sim \neg f_P(t_1, \ldots, t_n) \approx true$

In equational logic it is therefore sufficient to consider the case that $\Pi = \emptyset$, i.e., equality is the only predicate symbol.

Abbreviation: $s \not\approx t$ instead of $\neg s \approx t$.

3.2 The Superposition Calculus – Informally

Conventions:

- From now on: $\Pi = \emptyset$ (equality is the only predicate).
- Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and its completeness proof. Precise definitions will be given later.

Ground inference rules:

<table>
<thead>
<tr>
<th>Rule Type</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
| **Pos. Superposition** | $D' \vee t \approx t'$
 | $C' \vee s[t] \approx s'$ | $D' \vee C' \vee s[t'] \approx s'$ |
| **Neg. Superposition** | $D' \vee t \approx t'$
 | $C' \vee s[t] \not\approx s'$ | $D' \vee C' \vee s[t'] \not\approx s'$ |
| **Equality Resolution** | $C' \vee s \not\approx s$ | C' |

(Note: We will need one further inference rule.)
Ordering wishlist:

Like in resolution, we want to perform only inferences between (strictly) maximal literals.

Like in completion, we want to perform only inferences between (strictly) maximal sides of literals.

Like in resolution, in inferences with two premises, the left premise should not be larger than the right one.

Like in resolution and completion, the conclusion should then be smaller than the larger premise.

The ordering should be total on ground literals.

Consequences:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be a bit larger than the corresponding positive literals.

Additionally, we need the following property: If $s \succ t \succ u$, then $s \not\approx u$ must be larger than $s \approx t$. In other words, we must compare first the larger term, then the polarity, and finally the smaller term.

The following construction has the required properties:

Let \succ be a reduction ordering that is total on ground terms.

To a positive literal $s \approx t$, we assign the multiset $\{s, t\}$, to a negative literal $s \not\approx t$ the multiset $\{s, s, t, t\}$. The literal ordering \succ_L compares these multisets using the multiset extension of \succ.

The clause ordering \succ_C compares clauses by comparing their multisets of literals using the multiset extension of \succ_L.

Constructing a candidate interpretation:

We want to use roughly the same ideas as in the completeness proof for resolution.

But: a Herbrand interpretation does not work for equality: The equality symbol \approx must be interpreted by equality in the interpretation.

Solution: Productive clauses contribute ground rewrite rules to a TRS R.
The interpretation has the universe $T_\Sigma(\emptyset)/R = T_\Sigma(\emptyset)/\approx_R$; a ground atom $s \approx t$ holds in the interpretation if and only if $s \approx_R t$ if and only if $s \leftrightarrow^*_R t$.

We will construct R in such a way that it is terminating and confluent. In this case, $s \approx_R t$ if and only if $s \downarrow_R t$.

One problem:

The completeness proof for the resolution calculus depends on the following property:

If $C = C' \lor A$ with a strictly maximal and positive literal A is false in the current interpretation, then adding A to the current interpretation cannot make any literal of C' true.

This property does not hold for superposition:

Let $b \succ c \succ d$. Assume that the current rewrite system (representing the current interpretation) contains the rule $c \rightarrow d$. Now consider the clause $b \approx d \lor b \approx c$.

We need a further inference rule to deal with clauses of this kind, either the “Merging Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring” rule due to Nieuwenhuis:

\[
\text{Equality Factoring: } \frac{C' \lor s \approx t' \lor s \approx t}{C' \lor t \not\approx t' \lor s \approx t'}
\]

Note: This inference rule subsumes the usual factoring rule.

How do the non-ground versions of the inference rules for superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering restrictions, use $\not\succeq$ instead of \succ.

However:

As in Knuth-Bendix completion, we do not want to consider overlaps at or below a variable position.

Consequence: there are inferences between ground instances $D\theta$ and $C\theta$ of clauses D and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.
3.3 The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules:

Pos. Superposition:

\[
\frac{D' \lor t \approx t' \quad C' \lor s[u] \approx s'}{(D' \lor C' \lor s[u] \approx s')\sigma}
\]

where \(\sigma = \text{mgu}(t, u)\) and \(u\) is not a variable.

Neg. Superposition:

\[
\frac{D' \lor t \approx t' \quad C' \lor s[u] \not\approx s'}{(D' \lor C' \lor s[u] \not\approx s')\sigma}
\]

where \(\sigma = \text{mgu}(t, u)\) and \(u\) is not a variable.

Equality Resolution:

\[
\frac{C' \lor s \not\approx s'}{C'\sigma}
\]

where \(\sigma = \text{mgu}(s, s')\).

Equality Factoring:

\[
\frac{C' \lor s' \approx t' \lor s \approx t}{(C' \lor t \not\approx t' \lor s \approx t')\sigma}
\]

where \(\sigma = \text{mgu}(s, s')\).

Theorem 3.1 All inference rules of the superposition calculus are correct, i.e., for every rule

\[
\frac{C_n, \ldots, C_1}{C_0}
\]

we have \(\{C_1, \ldots, C_n\} \models C_0\).

Proof. Exercise. \(\square\)
Orderings:

Let \(\succ \) be a reduction ordering that is total on ground terms.

To a positive literal \(s \approx t \), we assign the multiset \(\{ s, t \} \), to a negative literal \(s \not\approx t \) the multiset \(\{ s, s, t, t \} \). The literal ordering \(\succ_L \) compares these multisets using the multiset extension of \(\succ \).

The clause ordering \(\succ_C \) compares clauses by comparing their multisets of literals using the multiset extension of \(\succ_L \).

Inferences have to be computed only if the following ordering restrictions are satisfied (after applying the unifier to the premises):

- In superposition inferences, the left premise is not greater than or equal to the right one.
- The last literal in each premise is maximal in the respective premise, i.e., there exists no greater literal (strictly maximal for positive literals in superposition inferences, i.e., there exists no greater or equal literal).
- In these literals, the lhs is neither smaller nor equal than the rhs (except in equality resolution inferences).

A ground clause \(C \) is called redundant w.r.t. a set of ground clauses \(N \), if it follows from clauses in \(N \) that are smaller than \(C \).

A clause is redundant w.r.t. a set of clauses \(N \), if all its ground instances are redundant w.r.t. \(G_\Sigma(N) \).

The set of all clauses that are redundant w.r.t. \(N \) is denoted by \(\text{Red}(N) \).

\(N \) is called saturated up to redundancy, if the conclusion of every inference from clauses in \(N \setminus \text{Red}(N) \) is contained in \(N \cup \text{Red}(N) \).

3.4 Superposition: Refutational Completeness

For a set \(E \) of ground equations, \(T_\Sigma(\emptyset)/E \) is an \(E \)-interpretation (or \(E \)-algebra) with universe \(\{ [t] \mid t \in T_\Sigma(\emptyset) \} \).

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation \(s \approx t \) we have \(T_\Sigma(\emptyset)/E \models s \approx t \) if and only if \(s \leftrightarrow^*_E t \).

In particular, if \(E \) is a convergent set of rewrite rules \(R \) and \(s \approx t \) is a ground equation, then \(T_\Sigma(\emptyset)/R \models s \approx t \) if and only if \(s \downarrow_R t \). By abuse of terminology, we say that an equation or clause is valid (or true) in \(R \) if and only if it is true in \(T_\Sigma(\emptyset)/R \).
Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing \bot. Using induction on the clause ordering we define sets of rewrite rules E_C and R_C for all $C \in G_\Sigma(N)$ as follows:

Assume that E_D has already been defined for all $D \in G_\Sigma(N)$ with $D \prec_C C$. Then

$$R_C = \bigcup_{D \prec_C C} E_D.$$

The set E_C contains the rewrite rule $s \rightarrow t$, if

(a) $C = C' \lor s \approx t$.

(b) $s \approx t$ is strictly maximal in C.

(c) $s > t$.

(d) C is false in R_C.

(e) C' is false in $R_C \cup \{s \rightarrow t\}$.

(f) s is irreducible w.r.t. R_C.

In this case, C is called productive. Otherwise $E_C = \emptyset$.

Finally, $R_\infty = \bigcup_{D \in G_\Sigma(N)} E_D$.

Lemma 3.2 If $E_C = \{s \rightarrow t\}$ and $E_D = \{u \rightarrow v\}$, then $s > u$ if and only if $C >_C D$.

Proof. (\Rightarrow): By condition (b), $s \approx t$ is strictly maximal in C and $u \approx v$ is strictly maximal in D, and since the literal ordering is total on ground literals, this implies that all other literals in C or in D are actually smaller than $s \approx t$ or $u \approx v$, respectively.

Moreover, $s \succ t$ and $u \succ v$ by condition (c). Therefore $s \succ u$ implies $\{s, t\} \succ_{\mu} \{u, v\}$. Hence $s \approx t \succ_L u \approx v \geq_L L$ for every literal L of D, and thus $C >_C D$.

(\Leftarrow): Let $C >_C D$, then $E_D \subseteq R_C$. By condition (f), s must be irreducible w.r.t. R_C, so $s \neq u$.

Assume that $s \neq u$. By totality, this implies $s \preceq u$, and since $s \neq u$, we obtain $s < u$. But then $C >_C D$ can be shown in the same way as in the (\Rightarrow)-part, contradicting the assumption. □
Corollary 3.3 The rewrite systems R_C and R_∞ are convergent (i.e., terminating and confluent).

Proof. By condition (c), $s \succ t$ for all rules $s \rightarrow t$ in R_C and R_∞, so R_C and R_∞ are terminating.

Furthermore, it is easy to check that there are no critical pairs between any two rules: Assume that there are rules $u \rightarrow v$ in E_D and $s \rightarrow t$ in E_C such that u is a subterm of s. As \succ is a reduction ordering that is total on ground terms, we get $u \prec s$ and therefore $D \prec C$ and $E_D \subseteq R_C$. But then s would be reducible by R_C, contradicting condition (f).

Now the absence of critical pairs implies local confluence, and termination and local confluence imply confluence. \hfill \Box

Lemma 3.4 If $D \preceq_C C$ and $E_C = \{s \rightarrow t\}$, then $s \succ u$ for every term u occurring in a negative literal in D and $s \succeq u$ for every term u occurring in a positive literal in D.

Proof. If $s \preceq u$ for some term u occurring in a negative literal $u \not\approx v$ in D, then $\{u, u, v, v\} \succ \text{mul} \{s, t\}$. So $u \not\approx v \succ_L s \approx t \preceq_L L$ for every literal L of C, and therefore $D \succ_C C$.

Similarly, if $s \prec u$ for some term u occurring in a positive literal $u \approx v$ in D, then $\{u, v\} \succ \text{mul} \{s, t\}$. So $u \approx v \succ_L s \approx t \preceq_L L$ for every literal L of C, and therefore $D \succ_C C$. \hfill \Box

Corollary 3.5 If $D \in G_\Sigma(N)$ is true in R_D, then D is true in R_∞ and R_C for all $C \succ_C D$.

Proof. If a positive literal of D is true in R_D, then this is obvious.

Otherwise, some negative literal $s \not\approx t$ of D must be true in R_D, hence $s \not\downarrow R_D t$. As the rules in $R_\infty \setminus R_D$ have left-hand sides that are larger than s and t, they cannot be used in a rewrite proof of $s \downarrow t$, hence $s \not\downarrow R_C t$ and $s \not\downarrow R_\infty t$. \hfill \Box

Corollary 3.6 If $D = D' \lor u \approx v$ is productive, then D' is false and D is true in R_∞ and R_C for all $C \succ_C D$.

Proof. Obviously, D is true in R_∞ and R_C for all $C \succ_C D$.

Since all negative literals of D' are false in R_D, it is clear that they are false in R_∞ and R_C. For the positive literals $u' \approx v'$ of D', condition (e) ensures that they are false in $R_D \cup \{u \rightarrow v\}$. Since $u' \preceq u$ and $v' \preceq u$ and all rules in $R_\infty \setminus R_D$ have left-hand sides that are larger than u, these rules cannot be used in a rewrite proof of $u' \downarrow v'$, hence $u' \not\downarrow R_C v'$ and $u' \not\downarrow R_\infty v'$. \hfill \Box

55
Lemma 3.7 ("Lifting Lemma") Let C be a clause and let θ be a substitution such that $C\theta$ is ground. Then every equality resolution or equality factoring inference from $C\theta$ is a ground instance of an inference from C.

Proof. Exercise. □

Lemma 3.8 ("Lifting Lemma") Let $D = D' \lor u \approx v$ and $C = C' \lor [-] s \approx t$ be two clauses (without common variables) and let θ be a substitution such that $D\theta$ and $C\theta$ are ground.

If there is a superposition inference between $D\theta$ and $C\theta$ where $u\theta$ and some subterm of $s\theta$ are overlapped, and $u\theta$ does not occur in $s\theta$ at or below a variable position of s, then the inference is a ground instance of a superposition inference from D and C.

Proof. Exercise. □

Theorem 3.9 ("Model Construction") Let N be a set of clauses that is saturated up to redundancy and does not contain the empty clause. Then we have for every ground clause $C\theta \in G_\Sigma(N)$:

(i) $E_{C\theta} = \emptyset$ if and only if $C\theta$ is true in $R_{C\theta}$.

(ii) If $C\theta$ is redundant w. r. t. $G_\Sigma(N)$, then it is true in $R_{C\theta}$.

(iii) $C\theta$ is true in R_{∞} and in R_D for every $D \in G_\Sigma(N)$ with $D \succ_C C\theta$.

Proof. We use induction on the clause ordering \succ_C and assume that (i)–(iii) are already satisfied for all clauses in $G_\Sigma(N)$ that are smaller than $C\theta$. Note that the “if” part of (i) is obvious from the construction and that condition (iii) follows immediately from (i) and Corollaries 3.5 and 3.6. So it remains to show (ii) and the “only if” part of (i).

Case 1: $C\theta$ is redundant w. r. t. $G_\Sigma(N)$.

If $C\theta$ is redundant w. r. t. $G_\Sigma(N)$, then it follows from clauses in $G_\Sigma(N)$ that are smaller than $C\theta$. By part (iii) of the induction hypothesis, these clauses are true in $R_{C\theta}$. Hence $C\theta$ is true in $R_{C\theta}$.

Case 2: $x\theta$ is reducible by $R_{C\theta}$.

Suppose there is a variable x occurring in C such that $x\theta$ is reducible by $R_{C\theta}$, say $x\theta \rightarrow_{R_{C\theta}} w$. Let the substitution θ' be defined by $x\theta' = w$ and $y\theta' = y\theta$ for every variable $y \neq x$. The clause $C\theta'$ is smaller than $C\theta$. By part (iii) of the induction hypothesis, it is true in $R_{C\theta}$. By congruence, every literal of $C\theta$ is true in $R_{C\theta}$ if and only if the corresponding literal of $C\theta'$ is true in $R_{C\theta}$; hence $C\theta$ is true in $R_{C\theta}$.

56
Case 3: $C\theta$ contains a maximal negative literal.

Suppose that $C\theta$ does not fall into Case 1 or 2 and that $C\theta = C'\theta \lor s\theta \not\approx s'\theta$, where $s\theta \not\approx s'\theta$ is maximal in $C\theta$. If $s\theta \approx s'\theta$ is false in $R_{C\theta}$, then $C\theta$ is clearly true in $R_{C\theta}$ and we are done. So assume that $s\theta \approx s'\theta$ is true in $R_{C\theta}$, that is, $s\theta \downarrow_{R_{C\theta}} s'\theta$. Without loss of generality, $s\theta \geq s'\theta$.

Case 3.1: $s\theta = s'\theta$.

If $s\theta = s'\theta$, then there is an equality resolution inference

\[
\frac{C'\theta \lor s\theta \not\approx s'\theta}{C'\theta}
\]

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

\[
\frac{C' \lor s \not\approx s'}{C'\sigma}
\]

where $C = C' \lor s \not\approx s'$ is contained in N and $\theta = \rho \circ \sigma$. (Without loss of generality, σ is idempotent, therefore $C'\theta = C'\sigma \rho = C'\sigma \rho = C'\sigma \theta$, so $C'\theta$ is a ground instance of $C'\sigma \theta$.) Since $C\theta$ is not redundant w.r.t. $G_{\Sigma}(N)$, C is not redundant w.r.t. N. As N is saturated up to redundancy, the conclusion $C'\sigma$ of the inference from C is contained in $N \cup \text{Red}(N)$. Therefore, $C'\theta$ is either contained in $G_{\Sigma}(N)$ and smaller than $C\theta$, or it follows from clauses in $G_{\Sigma}(N)$ that are smaller than itself (and therefore smaller than $C\theta$). By the induction hypothesis, clauses in $G_{\Sigma}(N)$ that are smaller than $C\theta$ are true in $R_{C\theta}$, thus $C'\theta$ and $C\theta$ are true in $R_{C\theta}$.

Case 3.2: $s\theta \succ s'\theta$.

If $s\theta \downarrow_{R_{C\theta}} s'\theta$ and $s\theta \succ s'\theta$, then $s\theta$ must be reducible by some rule in some $E_{D\theta} \subseteq R_{C\theta}$. (Without loss of generality we assume that C and D are variable disjoint; so we can use the same substitution θ.) Let $D\theta = D'\theta \lor t\theta \approx t'\theta$ with $E_{D\theta} = \{t\theta \rightarrow t'\theta\}$. Since $D\theta$ is productive, $D'\theta$ is false in $R_{C\theta}$. Besides, by part (ii) of the induction hypothesis, $D\theta$ is not redundant w.r.t. $G_{\Sigma}(N)$, so D is not redundant w.r.t. N. Note that $t\theta$ cannot occur in $s\theta$ at or below a variable position of s, say $x\theta = w[t\theta]$, since otherwise $C\theta$ would be subject to Case 2 above. Consequently, the negative superposition inference

\[
\frac{D'\theta \lor t\theta \approx t'\theta \quad C'\theta \lor s\theta[t\theta] \not\approx s'\theta}{D'\theta \lor C'\theta \lor s\theta[t'\theta] \not\approx s'\theta}
\]

is a ground instance of a negative superposition inference from D and C. By saturation up to redundancy, its conclusion is either contained in $G_{\Sigma}(N)$ and smaller than $C\theta$, or it follows from clauses in $G_{\Sigma}(N)$ that are smaller than itself (and therefore smaller than $C\theta$). By the induction hypothesis, these clauses are true in $R_{C\theta}$, thus $D'\theta \lor C'\theta \lor s\theta[t'\theta] \not\approx s'\theta$ is true in $R_{C\theta}$. Since $D'\theta$ and $s\theta[t'\theta] \not\approx s'\theta$ are false in $R_{C\theta}$, both $C'\theta$ and $C\theta$ must be true.
Case 4: $C\theta$ does not contain a maximal negative literal.

Suppose that $C\theta$ does not fall into Cases 1 to 3. Then $C\theta$ can be written as $C''\theta \lor s\theta \approx s'\theta$, where $s\theta \approx s'\theta$ is a maximal literal of $C\theta$. If $E_{C\theta} = \{s\theta \rightarrow s'\theta\}$ or $C'\theta$ is true in $R_{C\theta}$ or $s\theta = s'\theta$, then there is nothing to show, so assume that $E_{C\theta} = \emptyset$ and that $C'\theta$ is false in $R_{C\theta}$. Without loss of generality, $s\theta \succ s'\theta$.

Case 4.1: $s\theta \approx s'\theta$ is maximal in $C\theta$, but not strictly maximal.

If $s\theta \approx s'\theta$ is maximal in $C\theta$, but not strictly maximal, then $C\theta$ can be written as $C''\theta \lor t\theta \approx t'\theta \lor s\theta \approx s'\theta$, where $t\theta = s\theta$ and $t'\theta = s'\theta$. In this case, there is an equality factoring inference

\begin{align*}
C''\theta \lor t\theta &\approx t'\theta \lor s\theta \approx s'\theta \\
C''\theta \lor t'\theta &\not\approx s'\theta \lor t\theta \approx t'\theta
\end{align*}

This inference is a ground instance of an inference from C. By saturation, its conclusion is true in $R_{C\theta}$. Trivially, $t'\theta = s'\theta$ implies $t'\theta \downarrow_{R_{C\theta}} s'\theta$, so $t'\theta \not\approx s'\theta$ must be false and $C\theta$ must be true in $R_{C\theta}$.

Case 4.2: $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is reducible.

Suppose that $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is reducible by some rule in $E_{D\theta} \subseteq R_{C\theta}$. Let $D\theta = D'\theta \lor t\theta \approx t'\theta$ and $E_{D\theta} = \{t\theta \rightarrow t'\theta\}$. Since $D\theta$ is productive, $D\theta$ is not redundant and $D'\theta$ is false in $R_{C\theta}$. We can now proceed in essentially the same way as in Case 3.2: If $t\theta$ occurred in $s\theta$ at or below a variable position of s, say $x\theta = w[t\theta]$, then $C\theta$ would be subject to Case 2 above. Otherwise, the positive superposition inference

\begin{align*}
D'\theta \lor t\theta &\approx t'\theta \\
C'\theta \lor s\theta[t\theta] &\approx s'\theta
\end{align*}

is a ground instance of a positive superposition inference from D and C. By saturation up to redundancy, its conclusion is true in $R_{C\theta}$. Since $D'\theta$ and $C'\theta$ are false in $R_{C\theta}$, $s\theta[t\theta] \approx s'\theta$ must be true in $R_{C\theta}$. On the other hand, $t\theta \approx t'\theta$ is true in $R_{C\theta}$, so by congruence, $s\theta[t\theta] \approx s'\theta$ and $C\theta$ are true in $R_{C\theta}$.
Case 4.3: $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is irreducible.

Suppose that $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is irreducible by $R_{C\theta}$. Then there are three possibilities: $C\theta$ can be true in $R_{C\theta}$, or $C'\theta$ can be true in $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$, or $E_{C\theta} = \{s\theta \rightarrow s'\theta\}$. In the first and the third case, there is nothing to show. Let us therefore assume that $C\theta$ is false in $R_{C\theta}$ and $C'\theta$ is true in $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$. Then $C'\theta = C''\theta \lor t\theta \approx t'\theta$, where the literal $t\theta \approx t'\theta$ is true in $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$ and false in $R_{C\theta}$. In other words, $t\theta \downarrow_{R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}} t'\theta$, but not $t\theta \downarrow_{R_{C\theta}} t'\theta$. Consequently, there is a rewrite proof of $t\theta \rightarrow^* u \leftarrow^* t'\theta$ by $R_{C\theta} \cup \{s\theta \rightarrow s'\theta\}$ in which the rule $s\theta \rightarrow s'\theta$ is used at least once. Without loss of generality we assume that $t\theta \succeq t'\theta$. Since $s\theta \approx s'\theta$ and $s\theta \triangleright s'\theta$ we can conclude that $s\theta \succeq t\theta \triangleright t'\theta$.

Now observe that there is an equality factoring inference

\[
C''\theta \lor t\theta \approx t'\theta \lor s\theta \approx s'\theta
\]

whose conclusion is true in $R_{C\theta}$ by saturation. Since the literal $t'\theta \not\approx s'\theta$ must be false in $R_{C\theta}$, the rest of the clause must be true in $R_{C\theta}$, and therefore $C\theta$ must be true in $R_{C\theta}$, contradicting our assumption. This concludes the proof of the theorem.

A Σ-interpretation A is called term-generated, if for every $b \in U_A$ there is a ground term $t \in T_{\Sigma}(b)$ such that $b = A(\beta)(t)$.

Lemma 3.10 Let N be a set of (universally quantified) Σ-clauses and let A be a term-generated Σ-interpretation. Then A is a model of $G_\Sigma(N)$ if and only if it is a model of N.

Proof. (\Rightarrow): Let $A \models G_\Sigma(N)$; let $(\forall \bar{x} C) \in N$. Then $A \models \forall \bar{x} C$ iff $A(\gamma[x_i \mapsto a_i])(C) = 1$ for all γ and a_i. Choose ground terms t_i such that $A(\gamma)(t_i) = a_i$; define θ such that $x_i\theta = t_i$, then $A(\gamma[x_i \mapsto a_i])(C) = A(\gamma \circ \theta)(C) = A(\gamma)(C\theta) = 1$ since $C\theta \in G_\Sigma(N)$.

(\Leftarrow): Let A be a model of N; let $\forall \bar{x} C \in N$ and $C\theta \in G_\Sigma(N)$. Then $A \models \forall \bar{x} C$ and therefore $A \models C$. Consequently $A(\gamma)(C\theta) = A(\gamma \circ \theta)(C) = 1$.

Theorem 3.11 (Refutational Completeness: Static View) Let N be a set of clauses that is saturated up to redundancy. Then N has a model if and only if N does not contain the empty clause.

Proof. If $\bot \in N$, then obviously N does not have a model. If $\bot \notin N$, then the interpretation R_∞ (that is, $T_\Sigma(\emptyset)/R_\infty$) is a model of all ground instances in $G_\Sigma(N)$ according to part (iii) of the model construction theorem. As $T_\Sigma(\emptyset)/R_\infty$ is term-generated, it is a model of N.

59
So far, we have considered only inference rules that add new clauses to the current set of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form $N_0 \vdash N_1 \vdash N_2 \vdash \ldots$, where each N_{i+1} is obtained from N_i by adding the consequence of some inference from clauses in N_i.

Under which circumstances are we allowed to delete (or simplify) a clause during the derivation?

A run of the superposition calculus is a sequence $N_0 \vdash N_1 \vdash N_2 \vdash \ldots$, such that

(i) $N_i \models N_{i+1}$, and

(ii) all clauses in $N_i \setminus N_{i+1}$ are redundant w.r.t. N_{i+1}.

In other words, during a run we may add a new clause if it follows from the old ones, and we may delete a clause, if it is redundant w.r.t. the remaining ones.

For a run, $N_\infty = \bigcup_{i \geq 0} \bigcap_{j \geq i} N_j$. The set N_∞ of all persistent clauses is called the limit of the run.

Lemma 3.12 If $N \subseteq N'$, then $\text{Red}(N) \subseteq \text{Red}(N')$.

Proof. Obvious. □

Lemma 3.13 If $N' \subseteq \text{Red}(N)$, then $\text{Red}(N) \subseteq \text{Red}(N \setminus N')$.

Proof. Like the corresponding Theorem 3.45 from the Automated Reasoning I lecture. □

Lemma 3.14 Let $N_0 \vdash N_1 \vdash N_2 \vdash \ldots$ be a run. Then $\text{Red}(N_i) \subseteq \text{Red}(\bigcup_{j \geq 0} N_j)$ and $\text{Red}(N_i) \subseteq \text{Red}(N_\infty)$ for every i.

Proof. Exercise. □

Corollary 3.15 $N_i \subseteq N_\infty \cup \text{Red}(N_\infty)$ for every i.

Proof. If $C \in N_i \setminus N_\infty$, then there is a $k \geq i$ such that $C \in N_k \setminus N_{k+1}$. Therefore C must be redundant w.r.t. N_{k+1}. Consequently, C is redundant w.r.t. N_∞. □
A run is called *fair*, if the conclusion of every inference from clauses in \(N_\infty \setminus Red(N_\infty) \) is contained in some \(N_i \cup Red(N_i) \).

Lemma 3.16 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant clauses in \(N_\infty \) is contained in some \(N_i \cup Red(N_i) \), and therefore contained in \(N_\infty \cup Red(N_\infty) \). Hence \(N_\infty \) is saturated up to redundancy. \(\square \)

Theorem 3.17 (Refutational Completeness: Dynamic View) Let \(N_0 \vdash N_1 \vdash N_2 \vdash \ldots \) be a fair run, let \(N_\infty \) be its limit. Then \(N_0 \) has a model if and only if \(\bot \not\in N_\infty \).

Proof. (\(\Leftarrow \)): By fairness, \(N_\infty \) is saturated up to redundancy. If \(\bot \not\in N_\infty \), then it has a term-generated model. Since every clause in \(N_0 \) is contained in \(N_\infty \) or redundant w.r.t. \(N_\infty \), this model is also a model of \(G_\Sigma(N_0) \) and therefore a model of \(N_0 \).

(\(\Rightarrow \)): Obvious, since \(N_0 \models N_\infty \). \(\square \)
3.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the existing ones.

This process is called simplification.

Examples:

Subsumption:
If N contains clauses D and $C = C' \lor D\sigma$, where C' is non-empty, then D subsumes C and C is redundant.
Example: $f(x) \approx g(x)$ subsumes $f(y) \approx a \lor f(h(y)) \approx g(h(y))$.

Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause $C' \lor L \lor L$ can be simplified to $C' \lor L$; a clause $C' \lor \neg s \not\approx s$ can be simplified to C'.

Condensation:
If we obtain a clause D from C by applying a substitution, followed by deletion of duplicated literals, and if D subsumes C, then C can be simplified to D.
Example: By applying $\{y \rightarrow g(x)\}$ to $C = f(g(x)) \approx a \lor f(y) \approx a$ and deleting the duplicated literal, we obtain $f(g(x)) \approx a$, which subsumes C.

Semantic tautology deletion:
Every clause that is a tautology is redundant. Note that in the non-equational case, a clause is a tautology if and only if it contains two complementary literals, whereas in the equational case we need a congruence closure algorithm to detect that a clause like $x \not\approx y \lor f(x) \approx f(y)$ is tautological.

Rewriting:
If N contains a unit clause $D = s \approx t$ and a clause $C[\sigma\sigma]$, such that $s\sigma \succ t\sigma$ and $C \succ C D\sigma$, then C can be simplified to $C[\sigma\sigma]$.
Example: If $D = f(x, x) \approx g(x)$ and $C = h(f(g(y), g(y))) \approx h(y)$, and \succ is an LPO with $h \succ f \succ g$, then C can be simplified to $h(g(g(y))) \approx h(y)$.
Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

\[N \text{ is saturated up to redundancy, if the conclusion of every inference from clauses in } N \setminus \text{Red}(N) \text{ is contained in } N \cup \text{Red}(N). \]

This definition ensures that in the proof of the model construction theorem, the conclusion \(C_0 \theta \) of a ground inference follows from clauses in \(G_\Sigma(N) \) that are smaller than or equal to itself, hence they are smaller than the premise \(C \theta \) of the inference, hence they are true in \(R C \theta \) by induction.

However, a closer inspection of the proof shows that it is actually sufficient that the clauses from which \(C_0 \theta \) follows are smaller than \(C \theta \) – it is not necessary that they are smaller than \(C_0 \theta \) itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion \(C_0 \) and right (or only) premise \(C \) is called redundant w.r.t. a set of ground clauses \(N \), if one of its premises is redundant w.r.t. \(N \), or if \(C_0 \) follows from clauses in \(N \) that are smaller than \(C \).

An inference is redundant w.r.t. a set of clauses \(N \), if all its ground instances are redundant w.r.t. \(G_\Sigma(N) \).

Recall that a clause can be redundant w.r.t. \(N \) without being contained in \(N \). Analogously, an inference can be redundant w.r.t. \(N \) without being an inference from clauses in \(N \).

The set of all inferences that are redundant w.r.t. \(N \) is denoted by \(\text{RedInf}(N) \).

Saturation is then redefined in the following way:

\[N \text{ is saturated up to redundancy, if every inference from clauses in } N \text{ is redundant w.r.t. } N. \]

Using this definition, the model construction theorem can be proved essentially as before.

The connection between redundant inferences and clauses is given by the following lemmas. They are proved in the same way as the corresponding lemmas for redundant clauses:

Lemma 3.18 If \(N \subseteq N' \), then \(\text{RedInf}(N) \subseteq \text{RedInf}(N') \).

Lemma 3.19 If \(N' \subseteq \text{Red}(N) \), then \(\text{RedInf}(N) \subseteq \text{RedInf}(N \setminus N') \).
Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function that overrides the ordering restrictions for negative literals.

A selection function is a mapping

\[S : C \mapsto \text{set of occurrences of negative literals in } C \]

We indicate selected literals by a box:

\[\neg f(x) \approx a \lor g(x, y) \approx g(x, z) \]

The second ordering condition for inferences is replaced by

- The last literal in each premise is either selected, or there is no selected literal in the premise and the literal is maximal in the premise (strictly maximal for positive literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution inferences and as the second premise in negative superposition inferences.

Static refutational completeness is proved essentially as before:

We assume that each ground clause in \(G_\Sigma(N) \) inherits the selection of one of the clauses in \(N \) of which it is a ground instance (there may be several ones!).

In the proof of the model construction theorem, we replace case 3 by “\(C\theta \) contains a selected or maximal negative literal” and case 4 by “\(C\theta \) contains neither a selected nor a maximal negative literal”.

In addition, for the induction proof of this theorem we need one more property, namely:

(iv) If \(C\theta \) has selected literals then \(E_{C\theta} = \emptyset \).

For dynamic refutational completeness, there is a problem, however:

In the static refutational completeness proof, the selection function \(gsel \) for ground clauses depends on the selection function \(sel \) for general clauses and on the saturated set \(N_\infty \) itself.

\(N_\infty \) is the limit of a run, therefore it depends on \(RedInf \).

\(RedInf \) depends on what counts as a ground instance of an inference and what does not, and thus on the set of ground inferences.

The set of ground inferences depends of \(gsel \), though!
How can we break this cycle?

Solution: In the definition of RedInf, we have to quantify over all possible ground selection functions $gsel$:

An inference ι is redundant, if for every ground selection function $gsel$ corresponding to sel, all $gsel$-ground instances of ι are redundant.

Result:

Worst-case analysis: When we check whether some inference involving a clause $C \in N$ is redundant, we must assume that every ground instance D of C inherits the selection of C (even though D might also be a ground instance of another clause $C' \in N$ with a different selection).

Literature

3.6 Splitting

Motivation:

A clause like $f(x) \approx a \lor g(y) \approx b$ has rather undesirable properties in the superposition calculus: It does not have negative literals that one could select; it does not have a unique maximal literal; moreover, after performing a superposition inference with this clause, the conclusion often does not have a unique maximal literal either.

On the other hand, the two unit clauses $f(x) \approx a$ and $g(y) \approx b$ have much nicer properties.

Splitting with Backtracking

If a clause $\forall \bar{x}, \bar{y} C_1(\bar{x}) \lor C_2(\bar{y})$ consists of two non-empty variable-disjoint subclauses, then it is equivalent to the disjunction $(\forall \bar{x} C_1(\bar{x})) \lor (\forall \bar{y} C_2(\bar{y}))$.

In this case, superposition derivations can branch in a tableau-like manner:

\[
\text{Splitting:} \quad \frac{N \cup \{C_1 \lor C_2\}}{N \cup \{C_1\} \quad \mid \quad N \cup \{C_2\}}
\]

where C_1 and C_2 do not have common variables.

If \bot is found on the left branch, backtrack to the right one.

If C_1 is ground, the general rule can be improved:

\[
\text{Splitting:} \quad \frac{N \cup \{C_1 \lor C_2\}}{N \cup \{C_1\} \quad \mid \quad N \cup \{C_2\} \cup \{-C_1\}}
\]

where C_1 is ground.

Note: $\neg C_1$ denotes the conjunction of all negations of literals in C_1.

In practice: most useful if both subclauses contain at least one positive literal.

Implementing Splitting

Most clauses that are derived after a splitting step do not depend on the split clause.

It is unpractical to delete them as soon as one branch is closed and to recompute them in the other branch afterwards.

Solution: Associate a label set \mathcal{L} to every clause C that indicates on which splits it depends.

\[
\text{Inferences:} \quad \frac{C_2 \leftarrow \mathcal{L}_2 \quad C_1 \leftarrow \mathcal{L}_1}{C_0 \leftarrow \mathcal{L}_2 \cup \mathcal{L}_1}
\]
If we derive $\bot \leftarrow \mathcal{L}$ in one branch:

Determine the last split in \mathcal{L}.

Backtrack to the corresponding right branch.

Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying clause is no longer valid on the right branch.

Additionally: Delete splittings that did not contribute to the contradiction (branch condensation).

AVATAR

Superposition with splitting has some similarity with CDCL.

Can we actually use CDCL?

Encoding splitting components:

Use propositional literals as labels for splitting components:

- non-ground component $C \rightarrow$ propositional variable P_C
- positive ground component $C \rightarrow$ propositional variable P_C
- negative ground component $C \rightarrow$ negated propositional variable $\neg P_C$

Therefore: splittable clauses \rightarrow propositional clauses.

Implementation:

Combine a CDCL solver and a superposition prover.

The superposition prover passes splittable clauses and labelled empty clauses to the CDCL solver.

If the CDCL solver finds contradiction: input contradictory.

Otherwise the CDCL solver extracts a boolean model and passes the associated labelled clauses to the superposition prover.

Literature

3.7 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on the analysis of inferences between ground instances of clauses.

Inferences between ground instances must be covered by inferences between original clauses.

Non-ground clauses represent the set of all their ground instances.

Do we really need all ground instances?

Constrained Clauses

A constrained clause is a pair (C, K), usually written as $C [K]$, where C is a Σ-clause and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals $s \succ t$ with Σ-terms s, t.
(also possible: comparisons between literals or clauses).

Intuition: $C [K]$ represents the set of all ground clauses $C\theta$ for which $K\theta$ evaluates to true for some fixed term ordering. Such a $C\theta$ is called a ground instance of $C [K]$.

A clause C without constraint is identified with $C [\top]$.

A constrained clause $C [\bot]$ with an unsatisfiable constraint represents no ground instances; it can be discarded.

Constraint Superposition

Inference rules for constrained clauses:

\[
\begin{align*}
\text{Pos. Superposition:} & \quad \frac{D' \lor t \approx t' [K_2]}{D' \lor C' \lor s[u] \approx s' [K_1]} \quad \frac{C' \lor s[u] \approx s' [K_1]}{(D' \lor C'' \lor s[t'] \approx s')\sigma \quad ((K_2 \land K_1 \land K)\sigma)} \\
& \text{where } \sigma = \text{mgu}(t, u) \text{ and} \\
& u \text{ is not a variable and} \\
& K = (t \succ t' \land s[u] \succ s') \\
& \quad \land (t \approx t') \succ_C D' \\
& \quad \land (s[u] \approx s') \succ_C C' \\
& \quad \land (s[u] \approx s') \succ_L (t \approx t'))
\end{align*}
\]

The other inference rules are modified analogously.
To work effectively with constrained clauses in a calculus, we need methods to check the satisfiability of constraints:

Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts of the constraint. (Note that the calculus remains sound, if constraints are replaced by implied constraints.)

Refutational Completeness

The refutational completeness proof for constraint superposition looks mostly like in Sect. 3.4.

Lifting works as before, so every ground inference that is required in the proof is an instance of some inference from the corresponding constrained clauses. (Easy.)

There is one significant problem, though.

Case 2 in the proof of Thm. 3.9 does not work for constrained clauses:

If we have a ground instance $C\theta$ where $x\theta$ is reducible by $R_{C\theta}$, we can no longer conclude that $C\theta$ is true because it follows from some rule in $R_{C\theta}$ and some smaller ground instance $C\theta'$.

Example: Let $C[K]$ be the clause $f(x) \approx a \upharpoonright x \succ a$, let $\theta = \{x \mapsto b\}$, and assume that $R_{C\theta}$ contains the rule $b \rightarrow a$.

Then θ satisfies K, but $\theta' = \{x \mapsto a\}$ does not, so $C\theta'$ is not a ground instance of $C[K]$.

Solution:

Assumption: We start the saturation with a set N_0 of unconstrained clauses; the limit N_∞ contains constrained clauses, though.

During the model construction, we ignore ground instances $C\theta$ of clauses in N_∞ for which $x\theta$ is reducible by $R_{C\theta}$.

We call a ground instance $C\theta$ variable irreducible w.r.t. a ground TRS R, if for every variable x occurring in a literal L of C, $x\theta$ is irreducible by all rules in R that are smaller than $L\theta$.

The construction yields a TRS R_∞ that is a model of all R_∞-variable irreducible ground instances of clauses in N_∞.

R_∞ is also a model of all R_∞-variable irreducible ground instances of clauses in N_0.

Since all clauses in N_0 are unconstrained, every ground instance of a clause in N_0 follows from rules in R_∞ and some smaller or equal ground instance; so it is true in R_∞.

Consequently, R_∞ is a model of all ground instances of clauses in N_0.

69
Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints (∼ “basic superposition”):

\[
\begin{align*}
\text{Pos. Superposition:} & \quad D' \lor t \approx t' \begin{bmatrix} K_2 \end{bmatrix} \quad C' \lor s[u] \approx s'[K_1] \\
& \quad \frac{D' \lor C' \lor s[t'] \approx s'[K_2 \land K_1 \land K]}{D' \lor C' \lor s[t'] \approx s'[K_2 \land K_1 \land K]}
\end{align*}
\]

where \(u \) is not a variable and \(K = (t = u) \)

Note: In contrast to ordering constraints, these constraints are essential for soundness.

The Drawback

Constraints reduce the number of required inferences; however, they are detrimental to redundancy:

Since we consider only \(R_\infty \)-variable irreducible ground instances during the model construction, we may use only such instances for redundancy:

A clause is redundant, if all its \(R_\infty \)-variable irreducible ground instances follow from smaller \(R_\infty \)-variable irreducible ground instances and smaller rules in \(R_\infty \).

Even worse, since we don’t know \(R_\infty \) in advance, we must consider variable irreducibility w. r. t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!

Literature

3.8 Hierarchic Superposition

The superposition calculus is a powerful tool to deal with formulas in uninterpreted first-order logic.

What can we do if some symbols have a fixed interpretation?

Can we combine superposition with decision procedures, e.g., for linear rational arithmetic? Can we integrate the decision procedure as a “black box”?

Sorted Logic

It is useful to treat this problem in sorted logic (cf. Sect. 1.11, page 32).

A many-sorted signature \(\Sigma = (\Xi, \Omega, \Pi) \) fixes an alphabet of non-logical symbols, where

- \(\Xi \) is a set of sort symbols,
- \(\Omega \) is a set of function symbols,
- \(\Pi \) is a set of predicate symbols.

Each function symbol \(f \in \Omega \) has a unique declaration \(f : \xi_1 \times \cdots \times \xi_n \rightarrow \xi_0 \); each predicate symbol \(P \in \Pi \) has a unique declaration \(P : \xi_1 \times \cdots \times \xi_n \) with \(\xi_i \in \Xi \).

In addition, each variable \(x \) has a unique declaration \(x : \xi \).

We assume that all terms, atoms, substitutions are well-sorted.

A many-sorted algebra \(\mathcal{A} \) consists of

- a non-empty set \(\xi_{\mathcal{A}} \) for each \(\xi \in \Xi \),
- a function \(f_{\mathcal{A}} : \xi_{1,\mathcal{A}} \times \cdots \times \xi_{n,\mathcal{A}} \rightarrow \xi_{0,\mathcal{A}} \) for each \(f : \xi_1 \times \cdots \times \xi_n \rightarrow \xi_0 \in \Omega \),
- a subset \(P_{\mathcal{A}} \subseteq \xi_{1,\mathcal{A}} \times \cdots \times \xi_{n,\mathcal{A}} \) for each \(P : \xi_1 \times \cdots \times \xi_n \in \Pi \).

Hierarchic Specifications

A specification \(SP = (\Sigma, \mathcal{C}) \) consists of

- a signature \(\Sigma = (\Xi, \Omega, \Pi) \),
- a class of term-generated \(\Sigma \)-algebras \(\mathcal{C} \) closed under isomorphisms.

If \(\mathcal{C} \) consists of all term-generated \(\Sigma \)-algebras satisfying the set of \(\Sigma \)-formulas \(N \), we write \(SP = (\Sigma, N) \).
A hierarchic specification $HSP = (SP, SP')$ consists of
- a base specification $SP = (\Sigma, C)$,
- an extension $SP' = (\Sigma', N')$,
where $\Sigma = (\Xi, \Omega, \Pi)$, $\Sigma' = (\Xi', \Omega', \Pi')$, $\Xi \subseteq \Xi'$, $\Omega \subseteq \Omega'$, and $\Pi \subseteq \Pi'$.

A Σ'-algebra A is called a model of $HSP = (SP, SP')$, if A is a model of N' and $A|_\Sigma \in C$, where the reduct $A|_\Sigma$ is defined as $((\xi_A)_{\xi \in \Xi}, (f_A)_{f \in \Omega}, (P_A)_{P \in \Pi})$.

Note:
- no confusion: models of HSP may not identify elements that are different in the base models.
- no junk: models of HSP may not add new elements to the interpretations of base sorts.

Example:

Base specification: $((\Xi, \Omega, \Pi), C)$, where
- $\Xi = \{ int \}$
- $\Omega = \{ 0, 1, -1, 2, -2, \ldots : \rightarrow int,\,$
 $\quad - : int \rightarrow int,$
 $\quad + : int \times int \rightarrow int \}$
- $\Pi = \{ \geq : int \times int,$
 $\quad > : int \times int \}$
- $C = \text{isomorphy class of } \mathbb{Z}$

Extension: $((\Xi', \Omega', \Pi'), N')$, where
- $\Xi' = \Xi \cup \{ list \}$
- $\Omega' = \Omega \cup \{ cons : int \times list \rightarrow list,$
 $\quad length : list \rightarrow int,$
 $\quad empty : \rightarrow list,$
 $\quad a : \rightarrow list \}$
- $\Pi' = \Pi$
- $N' = \{ length(a) \geq 1,$
 $\quad length(cons(x, y)) \approx length(y) + 1 \}$

Goal:

Check whether N' has a model in which the sort int is interpreted by \mathbb{Z} and the symbols from Ω and Π accordingly.
Hierarchic Superposition

In order to use a prover for the base theory, we must preprocess the clauses:

A term that consists only of base symbols and variables of base sort is called a base term (analogously for atoms, literals, clauses).

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm of a non-base term (or non-base non-equational literal) is a variable.

Every clause can be transformed into an equivalent weakly abstracted clause. We assume that all input clauses are weakly abstracted.

A substitution is called simple, if it maps every variable of a base sort to a base term.

The inference rules of the hierarchic superposition calculus correspond to the rules of of the standard superposition calculus with the following modifications:

- The term ordering \succ must have the property that every base ground term (or non-equational literal) is smaller than every non-base ground term (or non-equational literal).
- We consider only simple substitutions as unifiers.
- We perform only inferences on non-base terms (or non-base non-equational literals).
- If the conclusion of an inference is not weakly abstracted, we transform it into an equivalent weakly abstracted clause.

While clauses that contain non-base literals are manipulated using superposition rules, base clauses have to be passed to the base prover.

This yields one more inference rule:

Constraint Refutation:

$$ \frac{M}{\bot} $$

where M is a set of base clauses that is inconsistent w. r. t. C.

73
Problems

There are two potential problems that are harmful to refutational completeness:

- We can only apply the constraint refutation rule to finite sets M. If C is not compact, this is not sufficient.
- Since we only consider simple substitutions, we will only obtain a model of all simple ground instances.

To show that we have a model of all instances, we need an additional condition called sufficient completeness w. r. t. simple instances.

A set N of clauses is called sufficiently complete with respect to simple instances, if for every model A' of the set of simple ground instances of N and every ground non-base term t of a base sort there exists a ground base term t' such that $t' \approx t$ is true in A'.

Note: Sufficient completeness w. r. t. simple instances ensures the absence of junk.

If the base signature contains Skolem constants, we can sometimes enforce sufficient completeness by equating ground extension terms with a base sort to Skolem constants. Skolem constants may harmful to compactness, though.

Completeness of Hierarchic Superposition

If the base theory is compact, the hierarchic superposition calculus is refutationally complete for sets of clauses that are sufficiently complete with respect to simple instances (Bachmair, Ganzinger, Waldmann, 1994; Baumgartner, Waldmann 2013).

Main proof idea:

If the set of base clauses in N has some base model, represent this model by a set E of convergent ground equations and a set D of ground disequations.

Then show: If N is saturated w. r. t. hierarchic superposition, then $E \cup D \cup \tilde{N}$ is saturated w. r. t. standard superposition, where \tilde{N} is the set of simple ground instances of clauses in N that are reduced w. r. t. E.

74
A Refinement

In practice, a base signature often contains domain elements, that is, constant symbols that are

- guaranteed to be different from each other in every base model, and
- minimal w.r.t. \succ in their equivalent class.

Typical example for domain elements: number constants $0, 1, -1, 2, -2, \ldots$

If the base signature contains domain elements, then weak abstraction can be redefined as follows:

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm of a non-base term (or non-base non-equational literal) is a variable or a domain element.

Why does that work?

Literature

3.9 Integrating Theories I: E-Unification

Dealing with mathematical theories naively in a superposition prover is difficult:

Some axioms (e.g., commutativity) cannot be oriented w.r.t. a reduction ordering.
⇒ Provers compute many equivalent copies of a formula.

Some axiom sets (e.g., torsion-freeness, divisibility) are infinite.
⇒ Can we tell which axioms are really needed?

Hierarchic ("black-box") superposition is easy to implement, but conditions like compactness and sufficient completeness are rather restrictive.

Can we integrate theories directly into theorem proving calculi ("white-box” integration)?

Idea:

In order to avoid enumerating entire congruence classes w.r.t. an equational theory \(E \), treat formulas as representatives of their congruence classes.

Compute an inference between formula \(C \) and \(D \) if an inference between some clause represented by \(C \) and some clause represented by \(D \) would be possible.

Consequence: We have to check whether there are substitutions that make terms \(s \) and \(t \) equal w.r.t. \(E \).
⇒ Unification is replaced by \(E \)-unification.

E-Unification

\(E \)-unification (unification modulo an equational theory \(E \)):

For a set of equality problems \(\{ s_1 \approx t_1, \ldots, s_n \approx t_n \} \), an \(E \)-unifier is a substitution \(\sigma \) such that for all \(i \in \{1, \ldots, n\} \): \(s_i \sigma \approx_E t_i \sigma \).

Recall: \(s_i \sigma \approx_E t_i \sigma \) means \(E \models s_i \sigma \approx t_i \sigma \).

In general, there are infinitely many (\(E \)-)unifiers.

What about most general unifiers?

Frequent cases: \(E = \emptyset \), \(E = AC \), \(E = ACU \):

\[
\begin{align*}
x + (y + z) & \approx (x + y) + z \quad \text{(associativity = A)} \\
x + y & \approx y + x \quad \text{(commutativity = C)} \\
x + 0 & \approx x \quad \text{(identity (unit) = U)}
\end{align*}
\]
The identity axiom is also abbreviated by “1”, in particular, if the binary operation is denoted by \(\ast \). (ACU = AC1).

Example:

\[x + y \text{ and } c \text{ are ACU-unifiable with } \{ x \mapsto c, y \mapsto 0 \} \text{ and } \{ x \mapsto 0, y \mapsto c \}. \]
\[x + y \text{ and } x' + y' \text{ are ACU-unifiable with } \{ x \mapsto z_1 + z_2, y \mapsto z_3 + z_4, x' \mapsto z_1 + z_3, y' \mapsto z_2 + z_4 \} \text{ (among others)}. \]

More general substitutions:

Let \(X \) be a set of variables.

A substitution \(\sigma \) is more general modulo \(E \) than a substitution \(\sigma' \) on \(X \), if there exists a substitution \(\rho \) such that \(x\sigma\rho \approx_E x\sigma' \) for all \(x \in X \).

Notation: \(\sigma \preceq^X_E \sigma' \).

(Why \(X \)? Because we cannot restrict to substitutions that do not introduce new variables.)

Complete sets of unifiers:

Let \(S \) be an \(E \)-unification problem, let \(X = \text{var}(S) \).

A set \(C \) of \(E \)-unifiers of \(S \) is called complete (CSU), if for every \(E \)-unifier \(\sigma' \) of \(S \) there exists a \(\sigma \in C \) with \(\sigma \preceq^X_E \sigma' \).

A complete set of \(E \)-unifiers \(C \) is called minimal (\(\mu \)CSU), if for all \(\sigma, \sigma' \in C \), \(\sigma \preceq^X_E \sigma' \) implies \(\sigma = \sigma' \).

Note: every \(E \)-unification problem has a CSU. (Why?)

The set of equations \(E \) is of unification type

- unitary, if every \(E \)-unification problem has a \(\mu \)CSU with cardinality \(\leq 1 \) (e.g.: \(E = \emptyset \));
- finitary, if every \(E \)-unification problem has a finite \(\mu \)CSU (e.g.: \(E = \text{ACU}, E = \text{AC}, E = \text{C} \));
- infinitary, if every \(E \)-unification problem has a \(\mu \)CSU and some \(E \)-unification problem has an infinite \(\mu \)CSU (e.g.: \(E = \text{A} \));
- zero (or nullary), if some \(E \)-unification problem does not have a \(\mu \)CSU (e.g.: \(E = \text{A} \cup \{ x + x \approx x \} \)).
Unification modulo ACU

Let us first consider elementary ACU-unification: the terms to be unified contain only variables and the function symbols from \(\Sigma = (\{+/2, 0/0\}, \emptyset) \).

Since parentheses and the order of summands don’t matter, every term over \(X_n = \{x_1, \ldots, x_n\} \) can be written as a sum \(\sum_{i=1}^{n} a_i x_i \).

The ACU-equivalence class of a term \(t = \sum_{i=1}^{n} a_i x_i \in T_\Sigma(X_n) \) is uniquely determined by the vector \(\vec{v}(t) = (a_1, \ldots, a_n) \).

Analogously, a substitution \(\sigma = \{ x_i \rightarrow \sum_{j=1}^{m} b_{ij} x_j \mid 1 \leq i \leq n \} \) is uniquely determined by the matrix

\[
M_{n,m}(\sigma) = \begin{pmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nm} \end{pmatrix}
\]

Let \(t = \sum_{i=1}^{n} a_i x_i \) and \(\sigma = \{ x_i \rightarrow \sum_{j=1}^{m} b_{ij} x_j \mid 1 \leq i \leq n \} \).

Then \(t\sigma = \sum_{i=1}^{n} a_i (\sum_{j=1}^{m} b_{ij} x_j) \)
\[
= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_{ij} x_j \\
= \sum_{j=1}^{m} \sum_{i=1}^{n} a_i b_{ij} x_j \\
= \sum_{j=1}^{m} (\sum_{i=1}^{n} a_i b_{ij}) x_j.
\]

Consequence:

\(\vec{v}_n(t\sigma) = \vec{v}_n(t) \cdot M_{n,m}(\sigma). \)

Let \(S = \{ s_1 \approx t_1, \ldots, s_k \approx t_k \} \) be a set of equality problems over \(T_\Sigma(X_n) \).

Then the following properties are equivalent:

(a) \(\sigma \) is an ACU-unifier of \(S \) from \(X_n \rightarrow T_\Sigma(X_m) \).

(b) \(\vec{v}_m(s_i\sigma) = \vec{v}_m(t_i\sigma) \) for all \(i \in \{1, \ldots, k\} \).

(c) \(\vec{v}_n(s_i) \cdot M_{n,m}(\sigma) = \vec{v}_n(t_i) \cdot M_{n,m}(\sigma) \) for all \(i \in \{1, \ldots, k\} \).

(d) \((\vec{v}_n(s_i) - \vec{v}_n(t_i)) \cdot M_{n,m}(\sigma) = \vec{0}_m \) for all \(i \in \{1, \ldots, k\} \).

(e) \(M_{k,n}(S) \cdot M_{n,m}(\sigma) = \vec{0}_{k,m} \).

where \(M_{k,n}(S) \) is the \(k \times n \) matrix whose rows are the vectors \(\vec{v}_n(s_i) - \vec{v}_n(t_i) \).

(f) The columns of \(M_{n,m}(\sigma) \) are non-negative integer solutions of the system of homogeneous linear diophantine equations \(DE(S) \):

\[
M_{k,n}(S) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
\]

78
Computing unifiers:

Obviously: if \(\vec{y}_1, \ldots, \vec{y}_r \) are solutions of \(DE(S) \) and \(a_1, \ldots, a_r \) are natural numbers, then \(a_1 \vec{y}_1 + \cdots + a_r \vec{y}_r \) is also a solution. (In particular, the zero vector is a solution!)

In fact, one can compute a finite set of solutions \(\vec{y}_1, \ldots, \vec{y}_r \), such that every solution of \(DE(S) \) can be represented as such a linear combination.

Moreover, if we combine these column vectors \(\vec{y}_1, \ldots, \vec{y}_r \) to an \(n \times r \) matrix, this matrix represents a most general unifier of \(S \). (Proof: see Baader/Nipkow.)

From ACU to AC

A complete set of AC-unifiers for elementary AC-unification problems can be computed from a most general ACU-unifier by some postprocessing.

Elementary AC-unification is finitary and the elementary unifiability problem is solvable in polynomial time.

But that does not mean that minimal complete sets of AC-unifiers can be computed efficiently.

E. Domenjoud has computed the exact size of AC-\(\mu \)CSUs for unification problems of the following kind:

\[
m x_1 + \cdots + m x_p \approx n y_1 + \cdots + n y_q
\]

where \(\gcd(m, n) = 1 \).

The number of unifiers is

\[
(-1)^{p+q} \sum_{i=0}^{p} \sum_{j=0}^{q} (-1)^{i+j} \binom{p}{i} \binom{q}{j} 2^{(m+i-1)(n+j-1)}
\]

For \(p = m = 1 \) and \(q = n = 4 \), that is, for the equation

\[
4 x \approx y_1 + y_2 + y_3 + y_4
\]

this is

\[
34,359,607,481.
\]

Consequence:

If possible, avoid the enumeration of AC-\(\mu \)CSUs (which may have doubly exponential size).

Rather: only check AC-unifiability.

Or: use ACU instead.
Unification with Constants

So far:

Elementary unification:
terms over variables and \{+ , 0\} or \{+\}.

Step 2:

Additional free constants.

Step 3:

Additional arbitrary free function symbols.
\rie Unification in the union of disjoint equational theories.

Unification with constants:

We can treat constants \(a_i\) like variables \(x_i\) that must be mapped to themselves.

Consequence: The algorithm is similar to the one we have seen before, but we have to deal with homogeneous and inhomogeneous linear diophantine equations.

Some complexity bounds change, however:

Unification type:

- elementary ACU-unification: unitary;
- ACU-unification with constants: finitary.

Checking unifiability:

- elementary ACU-unification: trivial;
- ACU-unification with constants: NP-complete.

Combining Unification Procedures

The Baader–Schulz combination procedure allows to combine unification procedures for disjoint theories (e.g., ACU and the free theory).

Basic idea (as usual): Use abstraction to convert the combined unification problem into a union of two pure unification problems; solve them individually; combine the results.
Problem 1:

The individual unification procedures might map the same variable to different terms, e.g., \(\{x \mapsto y + z\} \) and \(\{x \mapsto f(w)\} \).

Solution: Guess for each variable non-deterministically which procedure treats it like a constant.

Problem 2:

Combining the results might produce cycles, e.g., \(\{x \mapsto y + z\} \) and \(\{y \mapsto f(x)\} \).

Solution: Guess an ordering of the variables non-deterministically; each individual unifier that is computed must respect the ordering.

Note: This is a non-trivial extension that may be impossible for some unification procedures (but it is possible for regular equational theories, i.e., theories where for each equation \(u \approx v \) the terms \(u \) and \(v \) contain the same variables).

Literature

Eric Domenjoud: A technical note on AC-unification. The number of minimal unifiers of the equation \(\alpha x_1 + \cdots + \alpha x_p \equiv_{AC} \beta y_1 + \cdots + \beta y_q \). Journal of Automated Reasoning, 8(1):39–44, 1992.

3.10 Integrating Theories II: Calculi

We can replace syntactic unification by E-unification in the superposition calculus.

Moreover, it is usually necessary to choose a term ordering in such a way that all terms in an E-congruence class behave in the same way in comparisons (E-compatible ordering).

However, this is usually not sufficient.

AC and ACU

Example: Let $E = AC$. The clauses

\[
\begin{align*}
a + b & \approx d \\
b + c & \approx e \\
c + d & \not\approx a + e
\end{align*}
\]

are contradictory w. r. t. AC, but if $a \succ b \succ c \succ d \succ e$, then the maximal sides of these clauses are not AC-unifiable.

We have to compute inferences if some part of a maximal sum overlaps with a part of another maximal sum (the constant b in the example above).

Technically, we can do this in such a way that we first replace positive literals $s \approx t$ by $s + x \approx t + x$, and then unify maximal sides w. r. t. AC or ACU (Peterson and Stickel 1981, Wertz 1992, Bachmair and Ganzinger 1994).

However, it turns out that even if we integrate AC or ACU in such a way into superposition, the resulting calculus is not particularly efficient – not even for ground formulas.

This is not surprising: The uniform word problem for AC or ACU is EXPSPACE-complete (Cardoza, Lipton, and Meyer 1976, Mayr and Meyer 1982).
Abelian Groups

Working in Abelian groups is easier:

If we integrate also the inverse axiom, it is sufficient to compute inferences if the maximal part of a maximal sum overlaps with the maximal part of another maximal sum (like in Gaussian elimination).

Intuitively, in Abelian groups we can always isolate the maximal part of a sum on one side of an equation.

What does that mean for the non-ground case?

Example:

\[
g(y) + x \not\approx 2z \lor f(x) + z \approx 2y
\]

Shielded variables \((x, y)\):

- occur below a free function symbol,
- cannot be mapped to a maximal term,
- are not involved in inferences.

Unshielded variables \((z)\):

- can be instantiated with \(m \cdot u + s\), where \(u\) is maximal,
- must be considered in inferences,
- variable overlaps (similar to ACU).

Variable overlaps are ugly:

If we want to derive a contradiction from

\[
2a \approx c \\
2b \approx d \\
2x \not\approx c + d
\]

and \(a \succ b \succ c \succ d\), we have to map \(x\) to a sum of two variables \(x' + x''\), unify \(x'\) with \(a\) and \(x''\) with \(b\).
Divisible Torsion-free Abelian Groups

Working in divisible torsion-free Abelian groups is still easier:

DTAGs permit variable elimination.

Every clause can be converted into a DTAG-equivalent clause without unshielded variables.

Since only overlaps of maximal parts of maximal sums have to be computed, variable overlaps become unnecessary.

Moreover, if abstraction is performed eagerly, terms to be unified do not contain +, so ACU-unification can be replaced by standard unification.

Other Theories

A similar case: Chaining calculus for orderings.

\[D' \lor t' < t \quad C'' \lor s < s' \]

\[\frac{D'' \lor C'' \lor t' < s')}{(D' \lor C'' \lor t' < s')\sigma} \]

where \(\sigma \) is a most general unifier of \(t \) and \(s \).

Avoids explicit inferences with transitivity.

Only maximal sides of ordering literals have to be overlapped.

But unshielded variables can be maximal.

In dense linear orderings without endpoints, all unshielded variables can be eliminated.

DTAG-superposition and chaining can be combined to get a calculus for ordered divisible Abelian groups. Again, all unshielded variables can be eliminated.

Conclusion

Integrating theory axioms into superposition can become easier by integrating more axioms:

Easier unification problem (AC \(\rightarrow \) ACU).

More restrictive inference rules (ACU \(\rightarrow \) AG).

Fewer (or no) variable overlaps (AG \(\rightarrow \) DTAG).

Main drawback of all theory integration methods:

For each theory, we have to start from scratch, both for the completeness proof and the implementation.
Literature

4 Higher-Order Logic

Desired for applications, e. g., in mathematics:
- quantifications over functions and predicates,
- functions and predicates applied to functions and predicates,
- partially applied functions,
- anonymous functions,
- first-class booleans,
- expressivity: define, e. g., “the” natural numbers, “the” reals.

Higher-order logic satisfies these needs.

4.1 The Starting Point: λ-Calculus

Untyped λ-calculus (Church 1930).

Syntax:

Terms: \(t ::= c \) (Constant)
\| \(x \) (Variable)
\| \((t_1 \ t_2) \) (Application)
\| \((\lambda x. t) \) (Abstraction)

Substitution:

\(x\{x \mapsto \rightarrow s\} = s. \)
\(y\{x \mapsto \rightarrow s\} = y \) if \(y \neq x. \)
\(c\{x \mapsto \rightarrow s\} = c. \)
\((t_1 \ t_2)\{x \mapsto \rightarrow s\} = (t_1\{x \mapsto \rightarrow s\} \ t_2\{x \mapsto \rightarrow s\}). \)
\((\lambda x. t)\{x \mapsto \rightarrow s\} = (\lambda x. t). \)
\((\lambda y. t)\{x \mapsto \rightarrow s\} = (\lambda z. (t\{y \mapsto \rightarrow z\}\{x \mapsto \rightarrow s\})) \) if \(y \neq x, \ z \) fresh.

Conversion rules (to be applied to arbitrary subterms):

\(t \rightarrow_\alpha t' \)
if \(t \) and \(t' \) are equal upto renaming of bound variables.

\(((\lambda x. t) \ s) \rightarrow_\beta t\{x \mapsto \rightarrow s\}. \)
\((\lambda x. (t \ x)) \rightarrow \eta t\)
if \(x\) does not occur freely in \(t\).

Properties of the untyped \(\lambda\)-calculus:

\(\beta\)-conversion may not terminate.

Works as a model of computation (Turing-complete).

But basing a logic on it leads to problems (similarly to Russell’s paradox).

Solution: introduce types.

4.2 Typed \(\lambda\)-Calculus

Typed \(\lambda\)-calculus:

Developed by Church in 1940.

Also known as Simple Type Theory.

Note: Many variants (syntax and semantics).

Types

Types are defined recursively:

\(o\) is the type of Booleans; it is of order 0.

\(\iota\) is the type of individuals; it is of order 1.

If \(\tau_1\) and \(\tau_2\) are types then \(\tau_1 \rightarrow \tau_2\) is a type; it is of order \(\max(\text{order}(\tau_1) + 1, \text{order}(\tau_2))\).

We also write \(\tau_1 \rightarrow \cdots \rightarrow \tau_n \rightarrow \tau\) or \(\tau_1, \ldots, \tau_n \rightarrow \tau\) for \(\tau_1 \rightarrow (\cdots \rightarrow (\tau_n \rightarrow \tau) \cdots)\).

Terms

Given a non-empty set of constants and a collection of non-empty sets of variables for each type,

- constants are terms,
- variables are terms,
- if \(t_1\) and \(t_2\) are terms then \((t_1 \ t_2)\) is a term,
- if \(x\) is a variable and \(t\) is a term then \(\lambda x. t\) is a term.
Types of Terms

Given a non-empty set S of typed constants and a collection of non-empty sets of variables for each type, the term t is of type

- τ if $t \in \{\top, \bot\}$,
- τ if $t \in S$ has type τ,
- τ if $t = x_{(\tau)}$ is a variable of type τ,
- $\tau_1 \rightarrow \tau_2$ if $t = \lambda x_{(\tau_1)}. t_1(t_2)$,
- τ_2 if $t = (t_1(\tau_1 \rightarrow \tau_2). t_2(\tau_1))$.

A term is well-typed if a type can be associated to it according to the previous definition. We only consider well-typed terms in what follows.

Normal Forms

For well-typed terms, we can define two kinds of normal forms:

- $\beta\eta$-short normal form:
 Apply β forward exhaustively (terminates because of typing), then apply η forward exhaustively.

- $\beta\eta$-long normal form:
 Apply β forward exhaustively (terminates because of typing), then apply η backward exhaustively (respecting the types).

Extensions

Possible extensions:

- Several types of individuals: $c_1 : \iota_1, c_2 : \iota_2$,
- Type constructors: $x : list \iota$,
- Polymorphic types: $cons : \alpha \rightarrow list \alpha \rightarrow list \alpha$,
- Dependent types: $append : array \alpha n \rightarrow array \alpha m \rightarrow array \alpha (n + m)$
4.3 Semantics

A well-founded formula is a term of type o.

How to evaluate the truth of such a formula?

Classical Models

Let D be a non-empty set, for each type τ we define the following collection, denoted as the frame of the type

- the frame of $\tau = o$ is $[o, D] = \{0, 1\}$
- the frame of $\tau = \iota$ is $[\iota, D] = D$
- the frame of $\tau = \tau_1 \rightarrow \tau_2$ is $[\tau_1 \rightarrow \tau_2, D]$, the collection of all functions mapping $[\tau_1, D]$ into $[\tau_2, D]$

A higher-order classical model is a structure $M = \langle D, \mathcal{I} \rangle$ where D is a non-empty set called the domain of the model and \mathcal{I} is the interpretation of the model, a mapping such that

- if $c(\tau)$ is a constant then $\mathcal{I}(c) \in [\tau, D]$,
- $\mathcal{I}(=_{(\tau \rightarrow \tau \rightarrow o)})$ is the equality relation on $[\tau, D]$.

By adding an assignment function α such that for any variable $x(\tau)$, $\alpha(x) \in [\tau, D]$, it becomes possible to evaluate the truth value of higher-order formulas as in first-order logic.

The evaluation $\mathcal{V}_{M, \alpha}(t)$ of a term t given a model $M = \langle D, \mathcal{I} \rangle$ and an assignment α is recursively defined as

- $\mathcal{I}(c)$ if t is a constant c
- $\alpha(x)$ if t is a variable x
- the function from $[\tau_1, D]$ to $[\tau_2, D]$ that maps every $a \in [\tau_1, D]$ to $\mathcal{V}_{M, \alpha[x \rightarrow a]}(t) \in [\tau_2, D]$ if $t = \lambda x(\tau_1). t(\tau_2)$
- $(\mathcal{V}_{M, \alpha}(t_1))(\mathcal{V}_{M, \alpha}(t_2))$ if $t = (t_1(\tau_1 \rightarrow \tau_2) t_2(\tau_1))$

Truth evaluation:

Given a model $M = \langle D, \mathcal{I} \rangle$ and an assignment α, a well-founded formula F is true in M with respect to α, denoted as $M, \alpha \models F$ iff $\mathcal{V}_{M, \alpha}(F) = 1$

F is satisfiable in M iff there exists an assignment α such that $M, \alpha \models F$

F is valid in M, denoted $M \models F$ iff for all assignments α, $M, \alpha \models F$
F is valid, denoted $\models F$ iff for all models $\mathcal{M}, \mathcal{M} \models F$

These notions extend straightforwardly to sets of formulas.

Problems with the Classical Semantics

HOL with classical semantics (cHOL) is very expressive, but:

- In FOL, every unsatisfiable set of formulas has a finite unsatisfiable subset. This is no longer the case in cHOL. (Loss of compactness)
- No proof procedure able to derive all consequences of a set of formulas can exist in cHOL. (Loss of strong completeness)
- No proof procedure able to derive all valid sets of formulas can exist in cHOL. (Loss of weak completeness)
- The status of validity of some formulas is unclear.

Henkin Semantics

To solve the previously mentioned issues, it is possible to generalize the notion of a model by relaxing the notion of a frame into that of a Henkin frame. Given a non-empty set D,

$$\llbracket o, D \rrbracket = \{0, 1\}$$

$$\llbracket t, D \rrbracket = D$$

$$\llbracket \tau_1 \rightarrow \tau_2, D \rrbracket$$ is the some collection of all functions mapping $\llbracket \tau_1, D \rrbracket$ into $\llbracket \tau_2, D \rrbracket$ with some additional closure conditions.

Henkin vs Classical Semantics

- Every classical model is a Henkin model, therefore every formula true in all Henkin models is true in all classical models.
- There are formulas true in all classical models that are not true in all Henkin models.
- There are (weak) complete proof procedures for HOL with Henkin semantics.
4.4 Higher-Order Term Unification

We consider unification modulo α, β, η.

In FOL, there exists a unique mgu for two unifiable terms.

This is no longer true in HOL.

For example, consider $t_1 = y \ x$ and $t_2 = c$ where x, y are variables and c is a constant.

The unifiers of t_1 and t_2 are \{$y \mapsto \lambda z. c$\} and \{y $\mapsto \lambda z. z$, $x \mapsto c$\}.

Some equations do not even have finite complete sets of unifiers, e.g., $f (x \ c) = x (f \ c)$ with f and c constants.

Even worse, the higher-order unification problem is undecidable.

Huet’s Unification Algorithm

Given:

- a unification problem E, i.e. a finite set of equations in β and, on the outermost level, in η-long normal form.

Goal:

- find a substitution σ such that $E\sigma$ contains only syntactically equal equations.

Rigid and Flexible Terms

Every term can be written in the form $\lambda x_1 \ldots x_n. u_0 u_1 \ldots u_k$ ($n \geq 0$, $k \geq 0$), where u_0 is a constant or a bound or free variable.

u_0 is called the head of the term.

A term is called rigid if its head symbol is a constant or a bound variable. Otherwise its head symbol is a free variable and the term is called flexible.

Rigid-Rigid Equations

Two rules can be applied depending on the head symbols in the rigid-rigid equation.

Simplify:

\[
E \cup \left\{ \lambda x_1 \ldots x_n. f \ u_1 \ldots u_p \approx \lambda x_1 \ldots x_n. f \ v_1 \ldots v_p \right\}
\]

\[
E \cup \left\{ \lambda x_1 \ldots x_n. u_1 \approx \lambda x_1 \ldots x_n. v_1, \ldots, \lambda x_1 \ldots x_n. u_p \approx \lambda x_1 \ldots x_n. v_p \right\}
\]

where f is a constant or a bound variable.
Fail:
\[
E \cup \{\lambda x_1 \ldots x_n. f \ u_1 \ldots u_p \approx \lambda x_1 \ldots x_n. g \ v_1 \ldots v_q\}
\]
\]
where \(f \) and \(g \) are distinct constants or bound variables.

Flexible-Rigid Equations

There is only one rule to handle such equations, but it is a branching rule.

Generate:
\[
\frac{E}{E\sigma}
\]

where
\[
(\lambda x_1 \ldots x_n. z \ u_1 \ldots u_p \approx \lambda x_1 \ldots x_n. f \ v_1 \ldots v_q) \in E,
\]
\(z \) is a free variable, \(f \) is a constant or bound variable,
\(h \in \{f, y_1, \ldots, y_p\} \) if \(f \) is a constant and \(h \in \{y_1, \ldots, y_p\} \) otherwise,
\(z_1, \ldots, z_r \) are fresh free variables,
\(\sigma = \{z \mapsto \lambda y_1. y_p. h (z_1 y_1 \ldots y_p) \ldots (z_r y_1 \ldots y_p)\} \).

Flexible-Flexible Equations

The following result, also by Huet, handles flexible-flexible equations.

Proposition 4.1 A unification problem \(E \) containing only flexible-flexible equations has always a solution.

Proof. For every type \(\tau \) let \(w_\tau \) be a fixed fresh variable of type \(\tau \). Define \(\theta \) as the substitution that maps every free variable occurring in \(E \) with type \((\tau_1 \ldots \tau_p \rightarrow \tau_0) \) to the function \(\lambda y_1 \ldots y_p. w_\tau \).

Consider any flexible-flexible equation
\[
e = (\lambda x_1 \ldots x_n. y(\tau_1 \ldots \tau_p \rightarrow \tau_0) \ u_1 \ldots u_p \approx \lambda x_1 \ldots x_n. z(\tau'_1 \ldots \tau'_q \rightarrow \tau_0) \ v_1 \ldots v_q).
\]
Then \(e\theta \) equals \(\lambda x_1 \ldots x_n. w_\tau \approx \lambda x_1 \ldots x_n. w_\tau \).

We say that a unification problem with only flexible-flexible equations is a solved unification problem.
The Whole Procedure

A reasonable strategy consists in applying Fail and Simplify eagerly, and Generate only when there is no rigid-rigid equation left.

Generate is non-deterministic, making this procedure branching.

Soundness and Completeness

Proposition 4.2 If a unification problem E can be transformed into a solved problem E' by applying Fail, Simplify, and Generate then E has a solution.

Proposition 4.3 If a unification problem E has a solution σ then we can derive a solved problem E' from E using the rules Fail, Simplify, and Generate.

Theorem 4.4 The procedure made of the rules Fail, Simplify, and Generate is sound and complete.

Termination?

Higher-order unification is only semi-decidable.

When solutions exist, Huet’s algorithm will find one and terminate, but when there is no solution, it may loop forever.

Alternatives

Huet’s procedure tests only unifiability.

There are also unification procedures for higher-order logic that enumerate a complete set of unifiers, e.g., by Jensen and Pietrzykowski and by Vukmirović et al.
4.5 Resolution in Higher-Order Logic

In first-order logic, resolution for general clauses has two rules:

Resolution: $\frac{D \lor B \quad C \lor \neg A}{(D \lor C)\sigma}$ where $\sigma = \text{mgu}(A, B)$.

Factoring: $\frac{C \lor A \lor B}{(C \lor A)\sigma}$ where $\sigma = \text{mgu}(A, B)$.

In higher-order logic, a first problem is that mgu’s need not exist and unification is undecidable.

Example 4.5 Given $D \lor B$ and $C \lor \neg A$ where A and B are unifiable but without mgu, there may exist infinitely many $\sigma_1, \sigma_2, \ldots$ unifiers of A and B generating distinct resolvents $(D \lor C)\sigma_1, (D \lor C)\sigma_2, \ldots$ and in general there is no way to know which one is needed to prove the given theorem.

Huet proposes to delay the computation of unifiers (when no mgu exists) by using constraints storing the corresponding unification problems.

Once a contradiction has been derived, the corresponding unification problem can then be solved using Huet’s algorithm.

Resolution: $\frac{D \lor B[X] \quad C \lor \neg A[Y]}{D \lor C[X \land Y \land A = B]}$

Factoring: $\frac{C \lor A \lor B[X]}{C \lor A[X \land A = B]}$

Another problem in HOL is that it is not always possible to guess the necessary substitution based on the available terms.

Example 4.6 Consider the formula $\neg X_{(a)}$ where X is a Boolean variable. The set $\{\neg X\}$ is saturated by resolution, but still the formula $\neg X$ is unsatisfiable. However, we can guess the substitution $\sigma = \{X \mapsto \neg Y\}$. Then $(\neg X)\sigma = \neg(\neg Y) = Y$ and resolution can now derive the empty clause from $\neg X$ and Y.

94
To overcome this issue, Huet introduces additional splitting rules.

\[
\begin{align*}
C \lor A[X] \\
C \lor \neg x_{(o)}[X \land A = \neg x]
\end{align*}
\]

\[
\begin{align*}
C \lor A[X] \\
x_{(o)} \lor y_{(o)}[X \land A = (x \lor y)]
\end{align*}
\]

\[
\begin{align*}
C \lor A[X] \\
P_{(\tau \rightarrow o)} x_{(\tau)}[X \land A = \Pi_{(\tau \rightarrow o) \rightarrow o} P]
\end{align*}
\]

\(\Pi_{(\tau \rightarrow o) \rightarrow o}\) is the function that associates \(\top\) to any set of type \(\tau \rightarrow o\) that contains all elements of type \(\tau\).

\[
\begin{align*}
C \lor \neg A[X] \\
x_{(o)}[X \land A = \neg x]
\end{align*}
\]

\[
\begin{align*}
C \lor \neg A[X] \\
x_{(o)}[X \land A = (x \lor y)]] \quad C \lor \neg y[X \land A = (x \lor y)]
\end{align*}
\]

\[
\begin{align*}
C \lor \neg A[X] \\
P_{(\tau \rightarrow o)} (sk_{(\tau \rightarrow o) \rightarrow \tau}) P[X \land A = \Pi_{(\tau \rightarrow o) \rightarrow o} P]
\end{align*}
\]

sk is the Skolem constant such that \(\neg \Pi_{(\tau \rightarrow o) \rightarrow o} P = \neg P_{(\tau \rightarrow o)} (sk_{(\tau \rightarrow o) \rightarrow \tau}) P\).

Resolution with these splitting rules is sound and complete, but not terminating (Huet).

In practice, several improvements are possible.

As soon as a constraint becomes unsatisfiable, delete the corresponding clause.

If a constraint has a small enough set of solutions, generate all applied clauses to replace the constrained original one.
4.6 Superposition in Higher-Order Logic

Problems originating from proof assistants use higher-order logic, but contain large first-order parts, and in particular equality.

Can we extend the superposition calculus to higher-order logic?

Following Bentkamp et al. we proceed in three steps.

Step 1: Lambda-free HOL

We admit
- applied variables \((x \ b \ c)\),
- unapplied or partially applied functions \((g \ f \approx h (f \ b \ c))\)

but exclude
- lambda abstractions
- first-class booleans (i.e., boolean expressions on the term level, rather than on the literal level)

This is also known as the applicative fragment.

In principle, one could encode it in FOL using constants and just one binary function symbol \(\text{app}\).

FOL provers do not behave well on these formulas, though: Indexing data structures become almost useless. Term orderings do not behave in the expected way anymore.

First step:
Define a higher-order reduction ordering.

In addition to the usual properties of reduction orderings, one would like to have compatibility with arguments: \(s \succ s'\) implies \(s \ t \succ s' \ t\).

But this is difficult to achieve.

The calculus below works without this requirement.
A subterm \(t \) of \(s \) is called a green subterm, if \(t = s \) or if \(s = s' u_1 \ldots u_n \) and \(t \) is a green subterm of some \(u_i \).

Notation: \(s = s(t) \).

Green subterms correspond to first-order subterms.

If \(t \succ t' \), then \(s(t) \succ s(t') \).

Second step:

Define the inference rules analogously to first-order superposition, but restrict to inferences that involve green subterms:

\[
\frac{D' \lor t \approx t' \quad C' \lor s(u) \approx s'}{(D' \lor C' \lor s(t') \approx s')\sigma}
\]

where \(\sigma = \text{mgu}(t, u) \).

Additionally:

New inference rule: ArgCong

\[
\frac{C' \lor s \approx s'}{C' \lor s \approx s' x}
\]

Redundancy for inferences must be defined in such a way that the conclusion of ArgCong is not automatically redundant!

One more problem:

If \(\succ \) is not compatible with arguments, we need occasionally superpositions at (but not below) variable positions. (The \(\theta/\theta' \) trick may not work anymore.)

Proof idea:

Use a two-fold lifting

- from HOL to ground HOL
- from ground HOL to ground FOL

Note: The Henkin interpretations contain only those functions that we can construct from the given ones.

In order to refute \(b \not\approx x b \), our set of axioms should contain \(\text{id} \, z \approx z \).
Step 2: Boolean-free HOL

We add lambda abstractions to the logic, but still exclude first-class booleans.

Need efficient HO unification procedure that enumerates a CSU (Vukmirović et al.)

Need dovetailing to interleave generation of further conclusions of inferences with clause selection.

Again: only inferences involving green subterms.

The definition of green subterms must be adapted, though:

A subterm \(t \) of \(s \) is called a green subterm, if \(t = s \) or if \(s = c \ u_1 \ldots u_n \) for some constant \(c \) and \(t \) is a green subterm of some \(u_i \).

(Subterms below applied variables are no longer green.)

Problem: Applying a grounding substitution \(\theta \) that maps free variables to lambda expressions may fundamentally change the structure of a term \(t \). Green subterms in \(t \theta \) need not be instances of green subterms in \(t \).

Examples:

Let \(t = h \ (x \ b \ f) \) and \(\theta = \{x \mapsto \lambda y \ z. g \ (z \ y)\} \). Then \(t \theta = h \ (g \ (f \ b)) \) contains the green subterm \(f \ b \).

Let \(t = \lambda x. f \ (y \ x) \ x \) and \(\theta = \{y \mapsto \lambda z. c\} \). Then \(t \theta = \lambda x. f \ c \ x = f \ c \) contains the green subterm \(f \ c \).

Solution:

Need fluid inferences to ensure that all inferences between ground instances can be lifted:

\[
\frac{D' \lor t \approx t' \quad C' \lor s(u) \approx s'}{(D' \lor C' \lor s(z \ t') \approx s')\sigma}
\]

where \(\sigma \in \text{CSU}(z \ t, u) \).

Step 3: Full HOL

We add first-class booleans to the logic.

New problem: Performing a CNF transformation (including Skolemization) a priori is no longer sufficient.

Solution: Construct the HO superposition calculus on top of a non-clausal FO superposition calculus that performs CNF transformation steps on the fly.
We inherit the *hoisting* inferences of the non-clausal FO superposition calculus, e.g.

\[
\frac{C\langle u \rangle}{(C\langle \bot \rangle \lor x \approx y)\sigma}
\]

where \(\sigma \in \text{CSU}(u, x \approx y)\).

\[
\frac{C\langle u \rangle}{(C\langle \top \rangle \lor x \approx y)\sigma}
\]

where \(\sigma \in \text{CSU}(u, x \not\approx y)\).

Implementations:

- Zipperposition (OCaml, full calculus)
- E (C, parts of the calculus)

Alternative Approach

Extending an existing prover for FOL to handle lambda expressions requires substantial modifications of the architecture.

Alternative approach (Bhayat and Reger):

- Every lambda expression can be encoded using a small set of *combinators*, e.g., \(S = \lambda x y z. x (z (y z))\), \(K = \lambda x y. x\), \(I = \lambda x. x\).

- Use the lambda-free calculus together with the definitions of combinators.

 Implemented in Vampire.

Literature

Contents

1 Decision Procedures
1.1 Theories and Fragments ... 2
1.2 Equality ... 3
1.3 Linear Rational Arithmetic 8
1.4 Existentially-quantified LRA 15
1.5 Non-linear Real Arithmetic 17
1.6 Real Arithmetic incl. Transcendental Functions 18
1.7 Linear Integer Arithmetic 18
1.8 Difference Logic .. 20
1.9 C-Arithmetic ... 21
1.10 Decision Procedures for Data Structures 21
1.11 Combining Decision Procedures 23

2 Satisfiability Modulo Theories (SMT)
2.1 The CDCL(T) Procedure .. 35
2.2 Heuristic Instantiation ... 41
2.3 Local Theory Extensions .. 42
2.4 Goal-driven Instantiation .. 44

3 Superposition
3.1 Recapitulation .. 46
3.2 The Superposition Calculus – Informally 49
3.3 The Superposition Calculus – Formally 52
3.4 Superposition: Refutational Completeness 53
3.5 Improvements and Refinements 62
3.6 Splitting .. 66
3.7 Constraint Superposition 68
3.8 Hierarchic Superposition 71
3.9 Integrating Theories I: E-Unification 76
3.10 Integrating Theories II: Calculi 82

4 Higher-Order Logic
4.1 The Starting Point: λ-Calculus 86
4.2 Typed λ-Calculus .. 87
4.3 Semantics .. 89
4.4 Higher-Order Term Unification 91
4.5 Resolution in Higher-Order Logic 94
4.6 Superposition in Higher-Order Logic 96