Automated Reasoning II*

Uwe Waldmann

Summer Term 2024

Topics of the Course

Decision procedures:

equality (congruence closure),
algebraic theories,
combinations.

Satisfiability modulo theories (SMT):

CDCL(T),
dealing with universal quantification.

Superposition:

combining ordered resolution and completion,
optimizations,
integrating theories.

*This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper — neither stylistically
nor typographically.

1 Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is undecidable.
To get decidability results, we have to impose restrictions on

e signatures,

e formulas,

e and/or algebras.

1.1 Theories and Fragments
So far, we have considered the validity or satisfiability of “unstructured” sets of formu-
las.

We will now split these sets of formulas into two parts: a theory (which we keep fixed)
and a set of formulas that we consider relative to the theory.

A first-order theory T is defined by
its signature ¥ = (€2, IT)
its axioms, that is, a set of closed X-formulas.
(We often use the same symbol T for a theory and its set of axioms.)

Note: This is the syntactic view of theories. There is also a semantic view, where one
specifies a class of -algebras M and considers Th(M), that is, all closed Y-formulas
that hold in the algebras of M.

A Y-algebra that satisfies all axioms of T is called a T-algebra (or T -interpretation).

T is called consistent if there is at least one T-algebra. (We will only consider consistent
theories.)

We can define models, validity, satisfiability, entailment, equivalence, etc., relative to a
theory T

A T-algebra that is a model of a YX-formula F' is also called a T-model of F.
A Y-formula F is called T-valid, if A, 5 |= F for all T-algebras A and assignments f.

A Y-formula F'is called T-satisfiable, if A, 8 = F for some T-algebra and assignment
B (and otherwise T-unsatisfiable).

(T-satisfiability of sets of formulas, 7-entailment, T-equivalence: analogously.)
A fragment is some syntactically restricted class of 3-formulas.

Typical restriction: only certain quantifier prefixes are permitted.

1.2 Equality

Theory of equality:
Signature: arbitrary

Axioms: none
(but the equality predicate ~ has a fixed interpretation)

Alternatively:
Signature contains a binary predicate symbol ~ instead of the built-in ~
Axioms: reflexivity, symmetry, transitivity, congruence for ~
In general, satisfiability of first-order formulas w.r.t. equality is undecidable.
However, we will show that it is decidable for ground first-order formulas.

Note: It suffices to consider conjunctions of literals. Arbitrary ground formulas can be
converted into DNF; a formula in DNF is satisfiable if and only if one of its conjunctions
is satisfiable.

Note that our problem can be written in several ways:

An equational clause
VZ (A V...VA, V=B V...V~By) is T-valid

iff
A7 (mA; AN ... A=A, AN By A ... A By) is T-unsatisfiable
iff

the Skolemized (ground!) formula
(mAL A ADAL A By AL A Bp){Z — ¢} is T-unsatisfiable

iff
(A1V...VA, V=B V...V~aBp){Zw— ¢} is T-valid
Other names:
The theory is also known as EUF' (equality with uninterpreted function symbols).

The decision procedures for the ground fragment are called congruence closure algo-
rithms.

Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

UL RN AU, RU, NS RN ND S T

Idea:

transform £ = {u; =~ vy, ..., u, =~ v,} into an equivalent convergent TRS R and
check whether s;lr = t;|g.

if s;lr = t;} g for some i:
silR=1tilp & s, oLt & EEs; ~t, = unsat.

if s;lr = t;1r for no i:
Ts(X)/R = Tx(X)/E is a model of the conjunction = sat.

In principle, one could use Knuth-Bendix completion to convert E into an equivalent
convergent TRS R.

If done properly (see exercises), Knuth-Bendix completion terminates for ground in-
puts.

However, for the ground case, one can optimize the general procedure.
First step:
Flatten terms: Introduce new constant symbols ¢y, ¢, ... for all subterms:
g(a, h(h(b))) = h(a)
is replaced by
ar~cg Nbr ey ANh(c) ez ANh(cs) = ey ANgler,ca) = cs ANh(er) = e A es = cg
Result: only two kinds of equations left.

D-equations: f(c;,,..., ¢,) ~ ¢, for f/n € Q, n>0.
C-equations: ¢; = c;.

= efficient indexing (e.g., using hash tables),
obvious termination for D-equations.

Inference Rules
The congruence closure algorithm is presented as a set of inference rules working on a
set of equations F and a set of rules R: Ey, Ry E1, RiF Ey, Ro ...

At the beginning, ' = Ej is the set of C-equations and R = R is the set of D-equations
oriented left-to-right. At the end, F should be empty; then R is the result.

Notation: The formula s ~ ¢ denotes either s ~ t or t ~ s.

Simplify:

EU{c=~d}, RU{c— "}
Eu{c~cd}, RU{c— '}

Delete:
EUu{c=c}, R
E, R
Orient:

Eu{c=d}, R

£ ,
E, RU{c—} heme

Collapse:
E, RU{t[c], =, c— "}
E, RU{t|], >, c— '}
Deduce:
E, RU{t—c, t—}
EUu{c=d}, RU{t— c}

ifp#e

Note: for ground rewrite rules, critical pair computation does not involve substitution.
Therefore, every critical pair computation can be replaced by a simplification, either
using Deduce or Collapse.

Theorem 1.1 Let Ey be a finite set of C-equations, let Ry be a finite set of D-equations
oriented left-to-right w.r.t. >, and let >~ be a total ordering on constants. Then the
inference system terminates with a final state (E,, R,)) where E,, = (), R, is terminating
and confluent, and ~g, g, equals ~p,.

Strategy

The inference rules are applied according to the following strategy:

(1) If there is an equation in E, use Simplify as long as possible for this equation, then
use either Delete or Orient. Repeat until E is empty.

(2) If Collapse is applicable, apply it, if now Deduce is applicable, apply it as well.
Repeat until Collapse is no longer applicable.

(3) If £ is non-empty, go to (1), otherwise return R.

Implementation

Instead of fixing the ordering > in advance, it is preferable to define it on the fly during
the algorithm:

If we orient an equation ¢ ~ ¢’ between two constant symbols, we try to make that
constant symbol larger that occurs less often in R = fewer Collapse steps.

Additionally:

Use various index data structures so that all the required operations can be performed
efficiently.

Use a union-find data structure to represent the equivalence classes encoded by the
C-rules.

Average runtime for an implementation using hash tables: O(mlogm), where m is the
number of edges in the graph representation of the initial C and D-equations.

One Small Problem

The inference rules are sound in the usual sense: The conclusions are entailed by the
premises, so every T-model of the premises is a 7-model of the conclusions.

For the initial flattening, however, we get a weaker result: We have to extend the T-
models of the original equations to obtain models of the flattened equations. That is, we
get a new algebra with the same universe as the old one, with the same interpretations
for old functions and predicate symbols, but with appropriately chosen interpretations
for the new constants.

Consequently, the relations ~g and =~y for the original £ and the final R are not the
same. For instance, c3 ~g ¢; does not hold, but c3 ~r ¢; may hold.

On the other hand, the model extension preserves the universe and the interpretations
for old symbols. Therefore, if s and ¢t are terms over the old symbols, we have s ~g t iff
s~pgt.

This is sufficient for our purposes: The terms s; and t; that we want to normalize using
R do not contain new symbols.

Other Predicate Symbols

If the initial ground conjunction contains also non-equational literals [—] P(ty,...,t,),
treat these like equational literals [=] P(ty,...,t,) & true. Then use the same algorithm
as before.

History

Congruence closure algorithms have been published, among others, by Shostak (1978).
by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a completion proce-
dure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the Downey/Sethi/
Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the presentation
of Bachmair and Tiwari.

Literature
Leo Bachmair, Ashish Tiwari: Abstract Congruence Closure and Specializations. Proc.
CADE-17, 2000, pp 64-78, LNCS 1831, Springer.

Peter J. Downey, Ravi Sethi, Robert E. Tarjan: Variations on the Common Subexpres-
sion Problem. Journal of the ACM, 27(4):758-771, 1980.

Deepak Kapur: Shostak’s congruence closure as completion. Proc. 8th RTA, 1997, pp.
23-37, LNCS 1232, Springer.

Greg Nelson, Derek C. Oppen: Fast Decision Procedures Based on Congruence Closure.
Journal of the ACM, 27(2):356-364, 1980.

Robert E. Shostak: An algorithm for reasoning about equality. Communications of the

ACM, 21(7):583-585, 1978.

1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature: ¥ = ({0/0,1/0,+/2}, {</2}) and the pre-
defined binary predicate =.

The equational part of linear rational arithmetic is described by the theory of divisible
torsion-free abelian groups:

Ve,y,z(x+ (y+2) = (x +y) + 2) (associativity)
Ve,y(x+y~y+x) (commutativity)
Vo (z4+ 0~ x) (identity)
Vedy(z+y=~0) (inverse)
Foralln > 1:Vx(x+--+x~0—2x~0) (torsion-freeness)

——

n times
Foralln > 1:Vx3dy(y+---+y ~x) (divisibility)
—
n times

120 (non-triviality)

Note: Quantification over natural numbers is not part of our language. We really need
infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible
abelian groups:

Vo (-2 < x) (irreflexivity)

Ve,y,z (e <yANy<z—x<2) (transitivity)
Ve,y(e<yVy<azVa=y) (totality)
Ve,y,z(x <y > x+2<y+2) (compatibility)
0<1 (non-triviality)

Note: The second non-triviality axiom renders the first one superfluous. Moreover, as
soon as we add the axioms of compatible strict total orderings, torsion-freeness can be
omitted. Every ordered divisible abelian group is obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered (F.-W. Levi
1913).

Examples: Q, R, Q™, R", ...

The signature can be extended by further symbols:

</2, >/2, >/2, %£/2: defined using < and ~

—/1: Skolem function for inverse axiom

—/2: defined using +/2 and —/1

div,,/1: Skolem functions for divisibility axiom for all n > 1.

mult,, /1: defined by Vz (mult,(z) =~z +---+) for all n > 1.

n times

mult, /1: defined using mult,,, div,,, — for all ¢ € Q.
(We usually write ¢ - t or ¢t instead of mult,(t).)
q/0 (for ¢ € Q): defined by g ~ ¢ - 1.

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over
the base signature.

When - is considered as a binary operator, (ordered) divisible torsion-free abelian groups
correspond to (ordered) rational vector spaces.

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination: every formula dz F' or Va F
in linear rational arithmetic can be converted into an equivalent formula without the
variable x.

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in
1936.

Observation: Every literal over the variables x,v;,...,y, can be converted into an
ODAG-equivalent literal x ~ t[g] or 0 ~ t[y], where ~ € {<,>,<, > ~, %} and t[y]
has the form > . ¢; - yi + qo.

In other words, we can either eliminate x completely or isolate in on one side of the
literal, and we can replace every negative ordering literal by a positive one.

Moreover, we can convert every #-literal into an ODAG-equivalent disjunction of two
<-literals.

We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation = = t[y], we can eliminate the quantifier 3z by
substitution:

dx(x~tly] N F)

is equivalent to

If x occurs only in inequations, then

S (Aiw < si@) A Az < 4()
A New > w@) A Ax =@ A A0~ wn(i)

is equivalent to

Ni \i. 5i(¥) > ui(9) k
AWAAYEX)>Ul() A /\j/\ztj(zf) > ui(Y)
AN, 0~y

m
Proof: (=) by transitivity;
(<) take 5 (min{s;,¢;} + max{uy,v;}) as a witness.
Extension to arbitrary formulas:
Transform into prenex formula;
if innermost quantifier is 3: transform matrix into DNF and move 3 into disjunction;
if innermost quantifier is V: replace Vo F' by —dz —F, then eliminate 4.

Consequence: every closed formula over the signature of ODAGs is ODAG-equivalent to
either T or L.

Consequence: ODAGs are a complete theory, i. e., every closed formula over the signature

of ODAGSs is either valid or unsatisfiable w.r.t. ODAGs.

Consequence: every closed formula over the signature of ODAGs holds either in all
ODAGS or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs.
(These properties do not hold for extended signatures!)

10

Fourier-Motzkin: Complexity

One FM-step for 4
formula size grows quadratically, therefore O(n?) runtime.
m quantifiers 3...3:

naive implementation produces a doubly exponential number of inequations, therefore
needs O(n?") runtime (the number of necessary inequations grows only exponentially,
though).

m quantifiers VIV ... 3:

CNF/DNF conversion (exponential!) required after each step;
therefore non-elementary runtime.

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic was developed
by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution method”.

For simplicity, we consider only one particular ODAG, namely Q (as we have seen above,
the results are the same for all ODAGs).

Let F(z,y) be a positive boolean combination of linear (in-)equations x ~; s;() and
0 ~; s3(y) with ~;, ~; € {=,%,<,<,>,>}, that is, a formula built from linear (in-)
equations, A and V (but without —).

Goal: Find a finite set T of “test points” so that
e F(zg) H \/ Fle,g{z—t}
teT

In other words: We want to replace the infinite disjunction dz by a finite disjunction.

If we keep the values of the variables ¢ fixed, then we can consider F' as a function
F:zw— F(z,y) from Q to {0,1}.

The value of each of the atoms s;(y) ~; x changes only at s;(%), and the value of F' can
only change if the value of one of its atoms changes.

Let 6(5) = min{ |si(5) — s;()] | s:(5) # ;) }

F' is a piecewise constant function; more precisely, the set of all z with F(z,y) = 1 is
a finite union of intervals. (The union may be empty, the individual intervals may be
finite or infinite and open or closed.)

11

Moreover, each of the intervals has either length 0 (i.e., it consists of one point), or its
length is at least d(¥).

If the set of all z for which F'(x,) is 1 is non-empty, then
(i) F(z,y) =1 for all x < r(y) for some r(y) € Q

(ii) or there is some point where the value of F(z,¥) switches from 0 to 1 when we
traverse the real axis from —oo to +o0.

We use this observation to construct a set of test points.
We start with some “sufficiently small” test point r(¥) to take care of case (i).

For case (ii), we observe that F'(x,¥) can only switch from 0 to 1 if one of the atoms
switches from 0 to 1. (We consider only positive boolean combinations of atoms, and A
and V are monotonic w.r.t. truth values.)

x < 5(¥) and = < s;(7) do not switch from 0 to 1 when z grows.

x > s(y) and x =~ s;() switch from 0 to 1 at s;(¥)
= s;(¢) is a test point.

x > s;(y) and x % s;(¢) switch from 0 to 1 “right after” s;(¥/)
= 5i(¢) + € (for some 0 < e < §(¥)) is a test point.

If r(y) is sufficiently small and 0 < ¢ < 6(%), then

T ={r@yu{s@) |~e{>=}}
U{si(¥) +e|~i€{>#}}

is a set of test points.

Problem:
We don’t know how small 7(y) has to be for case (i), and we don’t know () for
case (ii).

Idea:
We consider the limits for r — —oo and for € N\, 0, that is, we redefine

T :={—o0} U {s:i(¥) |~ €{>,=}}
U{si(ﬂ)+€ | ~; € {>77é}}

How can we eliminate the infinitesimals oo and € when we substitute elements of T
for x 7

12

Virtual substitution:

(2 < (7)) {z = —o0} := lim (r < s(7) = T

(2 < 8(7) {z = —o0} := lim (r < s(7) =T

(2> (7)) {z = —o0} = lim (r> s(7)) = L

(2> 5(7) { = —o0} := lim (r > s(7) = L

(2 % 5(7) {z = —o0} := lim (=~ () = L

(2 5 5(7) { = —o0} := lim (3 s(7)) = T

(0 < s(@) o> ut e} o= lim(u+ & < (7)) = (u < 5(7)
(2 < s(@) {z = ute} = hm(u e <s(@) = (u< s(7)
(2> (7)) {z = ut e} = g\om o> 5(7) = (u> 5(7))
(02 () {a = ut-e} = lim(u+ & > 5() = (u > s(7))
(0% () {a = w e} i= lim(u+ e = 5(7) = L

(0% () {o = u e} i= lim(u+ 2 % 5(7)) = T

We have traversed the real axis from —oo to +00. Alternatively, we can traverse it from
400 to —oo. In this case, the test points are

Th={too} Ulsiy) [~i€{<,=}}
U{si(@) —el~ie{<,#}}
Infinitesimals are eliminated in a similar way as before.
In practice: Compute both 7" and 7" and take the smaller set.

For a universally quantified formulas Vx F', we replace it by —=dx = F', push inner negation
downwards, and then continue as before.

Note that there is no CNF/DNF transformation required. Loos-Weispfenning quantifier
elimination works on arbitrary positive formulas.

13

Loos-Weispfenning: Complexity

One LW-step for 4 or V:

as the number of test points is at most one plus the number of atoms (one plus half
of the number of atoms, if there are only ordering literals), the formula size grows
quadratically; therefore O(n?) runtime.

Multiple quantifiers of the same kind:
o Jz1. F(21, 29, 7))
~ Jx,. (\/MT1 F(x1,29,7) {x1 — tl})
~ \/tleT1 (3xo. F(x1,29,9) {1 — t1})

~ Vyen Vien (F(r1,12,9) {z1 = t1} {72 = t2})

m quantifiers 3...Jor V... V:

™) runtime.

formula size is multiplied by n in each step, therefore O(n
m quantifiers VIV ... 3:
doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant; so an efficient
implementation must make heavy use of simplification techniques.

Literature
Andreas Dolzmann: Algorithmic Strategies for Applicable Real Qunantifier Elimination.
PhD thesis, Universitiat Passau, 2000.

Jean-Baptiste Joseph Fourier: Solution d’une question particuliere du calcul des inégalités.
Nouveau Bulletin des Sciences par la Société philomahique de Paris, 1826.

F. Levi: Arithmetische Gesetze im Gebiete discreter Gruppen. Rendiconti del Circolo
Matematico di Palermo, 35:225-236, 1913.

Riidiger Loos, Volker Weispfenning: Applying Linear Quantifier Elimination. The Com-
puter Journal, 36(5):450-462, 1993.

14

1.4 Existentially-quantified LRA
So far, we have considered formulas that may contain free, existentially quantified, and
universally quantified variables.

For the special case of conjunction of linear inequations in which all variables are exis-
tentially quantified, there are more efficient methods available.

Main idea: reduce satisfiability problem to optimization problem.

Linear Optimization

Goal:
Solve a linear optimization (also called: linear programming) problem for given num-
bers a;;, b;, c; € R:
maximize ., ¢;T;

for Algzgm E1§jgn ai;rj < b;

or in vectorial notation:

maximize ¢'Z

for Afgl?

Simplex algorithm:
Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is exponential,
though.

Interior point methods:

First algorithm by Karmarkar (1984).

Polynomial-time worst-case complexity (but large constants).
In practice: no clear winner.
Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.

15

Main idea of Simplex:
AZ < b describes a convex polyhedron.

Pick one vertex of the polyhedron,
then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global optimum.
Details: see special lecture on optimization.

Using an optimization procedure for checking satisfiability:
Goal: Check whether A7 < b is satisfiable.

To use the Simplex method, we have to transform the original (possibly empty) poly-
hedron into another polyhedron that is non-empty and for which we know one initial
vertex.

Every real number can be written as the difference of two non-negative real numbers.
Use this idea to convert AZ < b into an equisatisfiable inequation system 3 > 0,
By < b for new variables /.

Multiply those inequations of the inequation system By < b in which the number on
the right-hand side is negative by —1. We obtain two inequation systems D1y < g,
Dsij > g, such that g7 > 0, go > 0.

Now solve

maximize 1'(Dyff — 2)

where 2" is a vector of new variables with the same size as gs.

Observation 1: 0 is a vertex of the polyhedron of this optimization problem.

Observation 2: The maximum is 17§, if and only if ¥ > 0, D17 < g1, Dot > G has a
solution.

(=): 1T (Dyyf — 2) = 17 g, for some ¥, Z satisfying Dot — Z < G, then Dyif — Z = b,
hence Doyf = Go + 2> Go.

lHl

(«<): 1T(Dyff — Z) can never be larger than 11 gy. If 7 > 0, D1 < §1, Do > G has a

solution, choose Z = Daif — Gy; then I T (Dyif — 2) =17 .

16

A Simplex variant:

Transform the satisfiability problem into the form

o
81

=~

I
ST
IN S

U
(where [; may be —oo and u; may be +00).
Relation to optimization problem is obscured.

But: More efficient if one needs an incremental decision procedure, where inequations
may be added and retracted (Dutertre and de Moura 2006).

1.5 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear real arithmetic (or more
generally, for real-closed fields). His algorithm had non-elementary complexity, how-
ever.

An improved algorithm by Collins (1975) (with further improvements by Hong) has
doubly exponential complexity: Cylindrical algebraic decomposition (CAD).

Implementation: QEPCAD.

Cylindrical Algebraic Decomposition
Given: First-order formula over atoms of the form f;(Z) ~ 0, where the f; are polynomials
over variables Z.

Goal: Decompose R™ into a finite number of regions such that all polynomials have
invariant sign on every region X:

Vi (VZ € X. fi(Z) <0
VVE € X. fi(7) =0
VVE € X. fi(7) > 0)

Note: Implementation needs exact arithmetic using algebraic numbers (i.e., zeroes of
univariate polynomials with integer coefficients).

17

1.6 Real Arithmetic incl. Transcendental Functions

Real arithmetic with exp/log: decidability unknown.
Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if = € Z:
Jy (sin(y) =0A3 <yAy <4Asin(z-y)=0)

(note that necessarily y = 7).

Consequence: Peano arithmetic (which is undecidable) can be encoded in real arith-
metic with trigonometric functions.

However, real arithmetic with transcendental functions is decidable for formulas that are
stable under perturbations, i. e., whose truth value does not change if numeric constants
are modified by some sufficiently small e.

Example:
Stable under perturbations: 3z 22 < 5

Not stable under perturbations: 3z 22 < 0
(Formula is true, but if we subtract an arbitrarily small € > 0 from the right-hand
side, it becomes false.)

Unsatisfactory from a mathematical point of view, but sufficient for engineering appli-
cations (where stability under perturbations is necessary anyhow).

Approach:
Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are stable under perturbations;
may loop forever if the formula is not stable under perturbations.

1.7 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic.

Decidable (Presburger, 1929), but quantifier elimination is only possible if additional
divisibility operators are present:

dzr (y = 2x) is equivalent to divides(2,y) but not to any quantifier-free formula over
the base signature.

Cooper (1972): Quantifier elimination procedure, triple exponential for arbitrarily
quantified formulas.

18

The Omega Test

Omega test (Pugh, 1991): variant of Fourier—Motzkin for conjunctions of (in-)equations
in linear integer arithmetic.

Idea:

e Perform easy transformations, e. g.:
3r+6y<8 = 3x+6y<6 — z+2y<2
3r +6y=8 — L
(since 3z + 6y must be divisible by 3).

e Eliminate equations
(easy, if one coefficient is 1; tricky otherwise).

e If only inequations are left:
no real solutions — unsatisfiable for Z
“sufficiently many” real solutions — satisfiable for Z
otherwise: branch

What does “sufficiently many” mean?
Consider inequations ax < s and bz > t with a,b € N>° and polynomials s, .
If these inequations have real solutions, the interval of solutions ranges from %t to %s.

The longest possible interval of this kind that does not contain any integer number

ranges from ¢ + 3 to i + 1 — & for some i € Z; it has the length 1 — 1 — 4.

Consequence:

If %s > %t +(1- é — %), or equivalently, bs > at + ab — a — b+ 1 is satisfiable, then

the original problem must have integer solutions.

It remains to consider the case that bs > at is satisfiable (hence there are real solutions)
but bs > at + ab — a — b+ 1 is not (hence the interval of real solutions need not contain
an integer).

In the latter case, bs < at 4+ ab — a — b holds, hence for every solution of the original
problem:

t<br<ls<t+(b—1-2)
andif:pisaninteger,t§bx§t+Lb—l—%J

= Branch non-deterministically:
Add one of the equations bz =t + i for i € {0,...,[b—1— 2|}

Alternatively, if b > a:
Add one of the equations az = s —i for i € {0,..., [a —1— 4] }.

19

Note: Efficiency depends highly on the size of coefficients. In applications from program
verification, there is almost always some variable with a very small coefficient. If all
coefficients are large, the branching step gets expensive.

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to optimization problem (like Sim-
plex). ILP, MILP: (mixed) integer linear programming.

Two basic approaches:

Branching: If the simplex algorithm finds a solution with z = 2.7, add the inequation
x < 2 or the inequation = > 3.

Cutting planes: Derive an inequation that holds for all real solutions, then round it to
obtain an inequation that holds for all integer solutions, but not for the real solution
found previously.

Example:

Given: 2r—3y< 1

20 +3y < b5
—bxr —4y < =7
Simplex finds an extremal solution x = %, Yy = %

From the first two inequations, we see that 4x < 6, hence x < % If z € Z, we conclude
r=lz) < 2] = 1.

= Add the inequation z < 1, which holds for all integer solutions, but cuts off the

(32
solution (3, %).
In practice:

Use both: Alternate between branching and cutting steps.
Better performance than the individual approaches.

1.8 Difference Logic

Difference Logic (DL):
Fragment of linear rational or integer arithmetic.

Formulas: conjunctions of atoms x —y < cor z —y < ¢,
r,y€ X, ceQ (orce).

One special variable zy whose value is fixed to 0 is permitted;
this allows to express atoms like z < 3 in the form x — zy < 3.

20

Solving difference logic:

Let F' be a conjunction in DL.
For simplicity: only non-strict inequalities.

Define a weighted graph G:

Vertices V': Variables in F'.

Edges E: z —y < ¢ ~ edge (z,y) with weight c.
Theorem: F' is unsatisfiable iff G has a negative cycle.

Can be checked in O(|V| - |E]) using the Bellman-Ford algorithm.

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2™), in device drivers also
combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):
Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant, Kroening, et al.):
successful.

1.10 Decision Procedures for Data Structures

There are decision procedures for, e. g.,
Arrays (read, write)
Lists (car, cdr, cons)
Sets or multisets with cardinalities
Bitvectors

Note: There are usually restrictions on quantifications. Unrestricted universal quantifi-
cation can lead to undecidability.

21

Literature: Further Decision Procedures

Aaron R. Bradley, Zohar Manna: The Calculus of Computation. Springer, 2007.

Aaron R. Bradley, Zohar Manna, Henny B. Sipma: What’s decidable about arrays?
Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS 3855, pp.
427-442, Springer, 2006.

Randal E. Bryant, Daniel Kroening, Joél Ouaknine, Sanjit A. Seshia, Ofer Strichman,
Bryan Brady: Deciding bit-vector arithmetic with abstraction. 13th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07),
LNCS 4424, pp. 358-372, Springer, 2007.

George E. Collins: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. 2nd. GI Conf. Automata Theory and Formal Languages, LNCS 33, pp.
134-183, Springer, 1975.

D. C. Cooper: Theorem Proving in Arithmetic Without Multiplication. Machine Intel-
ligence, vol. 7, pp. 91-99. American Elsevier, New York, 1972.

George B. Dantzig: Linear Programming and Extensions. Princeton Univ. Press, 1963.

L. V. Kantorovich: Mathematical Methods in the Organization and Planning of Produc-
tion. Publication House of the Leningrad State University, 1939. Translated in Manage-
ment Science, 6:366-422, 1960.

Narendra Karmarkar: A New Polynomial Time Algorithm for Linear Programming.
Combinatorica, 4(4):373-395, 1984.

Daniel Kroening, Ofer Strichman: Decision Procedures — An Algorithmic Point of View.
Springer, 2008.

Mojzesz Presburger: Uber der Vollstandigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Ren-
dus Premier Congres des Mathématiciens des Pays Slaves, Warsaw, pp. 92-101, 1929.

William Pugh: The Omega Test: a fast and practical integer programming algorithm for
dependence analysis. Comm. of the ACM, 35(8):102-114, 1992.

Stefan Ratschan: Approximate Quantified Constraint Solving by Cylindrical Box De-
composition. Reliable Computing, 8(1):21-42, 2002.

Alfred Tarski: A Decision Method for Elementary Algebra and Geometry. Univ. of Cal-
ifornia Press, Berkeley, 1951.

22

1.11 Combining Decision Procedures

Problem:
Let 77 and 73 be first-order theories over the signatures ¥; and .

Assume that we have decision procedures for the satisfiability of existentially quanti-
fied formulas (or the validity of universally quantified formulas) w.r.t. 7; and 7s.

Can we combine them to get a decision procedure for the satisfiability of existentially
quantified formulas w.r.t. 71 U757

General assumption:
Y1 and X5 are disjoint.

The only symbol shared by 7; and 75 is built-in equality.

We consider only conjunctions of literals.

For general formulas, convert to DNF first and consider each conjunction individually.

Abstraction

To be able to use the individual decision procedures, we have to transform the original
formula in such a way that each atom contains only symbols of one of the signatures
(plus variables).

This process is known as variable abstraction or purification.
We apply the following rule as long as possible:

A7 (F[t])
T,y (Fly At~ y)

if the top symbol of ¢ belongs to >J; and ¢ occurs in I directly below a ¥;-symbol
or in a (positive or negative) equation s & ¢t where the top symbol of s belongs to
Y (i # j), and if y is a new variable.

It is easy to see that the original and the purified formula are equivalent.

23

Stable Infiniteness

Problem:

Even if the 3;-formula F} and the ¥y-formula Fy do not share any symbols (not even
variables), and if Fj is T;-satisfiable and F; is Ty-satisfiable, we cannot conclude that
Fi A\ Fy is (71 U Ty)-satisfiable.

Example:

Consider

Ti={Vo,y,z(x=y Vzxz V yxz)}
and

To={3z,y,2(x%y N x#z AN yzz)}

All 7i-models have at most two elements, and all 75-models have at least three ele-
ments.

Since T; U Ty is contradictory, there are no (77 U 73)-satisfiable formulas.

To ensure that 71-models and 73-models can be combined to (77 U Tz)-models, we require
that both 7; and 7, are stably infinite.

A first-order theory 7T is called stably infinite, if every existentially quantified formula
that has a 7T-model has also a T-model with a (countably) infinite universe.

Note: By the Lowenheim—Skolem theorem, “countable” is redundant here.

Shared Variables

Even if 37 F} is Ti-satisfiable and 3% F;, is Ty-satisfiable, it can happen that 37 (F} A F3)
is not (77 U Tz)-satisfiable, for instance because the shared variables x and y must be
equal in all 7;-models of 32 F} and different in all 73-models of 3% F5.

Example:

Consider
Fy = (o4 (~y) ~)
and

By = (f(z) % f(y))

where 7; is linear rational arithmetic and 75 is EUF.

We must exchange information about shared variables to detect the contradiction.

24

The Nelson—Oppen Algorithm (Non-deterministic Version)

Suppose that 37 F' is a purified conjunction of ¥; and Y,-literals.

Let F} be the conjunction of all literals of F' that do not contain >,-symbols; let F5 be
the conjunction of all literals of F' that do not contain 3;-symbols. (Equations between
variables are in both F; and F5.)

The Nelson-Oppen algorithm starts with the pair F, F» and applies the following infer-
ence rules.

Unsat:
F17 F2
1

if 32 F; is unsatisfiable w.r.t. 7; for some 3.

Branch:
Fi, F,
BA(r~y), BAx~y) | FA(#Ey), A EREy)
if x and y are two different variables appearing in

both F} and F5, such that neither x ~ y nor x % y
occurs in both F} and F5

44‘77

means non-deterministic (backtracking!) branching of the derivation into two sub-
derivations. Derivations are therefore trees. All branches need to be reduced until ter-
mination.

Clearly, all derivation paths are finite since there are only finitely many shared variables
in F; and F5, therefore the procedure represented by the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.

25

Theorem 1.2 (Soundness) If “Branch” can be applied to Fy, Fy, then 3% (Fy A F)
is satisfiable in T; U 75 if and only if one of the successor configurations of Fy, Fy is

satisfiable in T, U Ts.

Corollary 1.3 If all paths in a derivation tree from Fy, Fy end in L, then 37 (F} N F5)
is unsatisfiable in T; U T5.

For completeness we need to show that if one branch in a derivation terminates with
an irreducible configuration F, F, (different from L), then 37 (F} A F3) (and, thus, the
initial formula of the derivation) is satisfiable in the combined theory.

As 37 (Fy A Fy) is irreducible by “Unsat”, the two formulas are satisfiable in their re-
spective component theories, that is, we have T;-models A; of 3% F; for ¢ € {1,2}. We are
left with combining the models into a single one that is both a model of the combined
theory and of the combined formula. These constructions are called amalgamations.

Let F' be a ¥;-formula and let S be a set of variables of F. F'is called compatible with
an equivalence ~ on S if the formula

EIZ(F/\ /\x%y/\ /\xaéy) (1)

z,y€ES, Ty z,y€S, TAY

is T;-satisfiable whenever F' is T;-satisfiable. This expresses that F' does not contradict
equalities between the variables in S as given by ~.

The formula /\ TR YA /\ x %y is called an arrangement of S.
z,yE€S, T~y x,y€S, Tly

Proposition 1.4 If Fy, F, is a pair of conjunctions over Ty and Ty, respectively, that is
irreducible by “Branch”, then both F} and F, are compatible with some equivalence ~
on the shared variables S of F; and F3.

Proof. If I, F, is irreducible by the branching rule, then for each pair of shared vari-
ables = and y, both F; and F, contain either z ~ y or x % y. Choose ~ to be the
equivalence given by all (positive) variable equations between shared variables that are
contained in Fj.

26

Let ¥ = (Q,1I); let 3" = (', II") with ' C Q and II" C II be a subsignature of X.
Let A be a Y-algebra. Then the reduct Alss is the ¥'-algebra A" with

Uw = Ua,
fa = faforall fe) and
Py = Py for all P eIl

Lemma 1.5 (Amalgamation Lemma) Let 77 and 73 be two stably infinite theories
over disjoint signatures >, and Y,. Furthermore let Fy, I, be a pair of conjunctions of
literals over Ty and Ts, respectively, both compatible with some equivalence ~ on the
shared variables of Fy and Fy. Then Fy A\ Fy is (T; U Ts)-satisfiable if and only if each F;
is T;-satisfiable.

Proof. The “only if” part is obvious.

For the “if” part, assume that each of the F; is 7;-satisfiable. That is, there exist models
A; of T; and variable assignments ; such that A;, 3; = F;. As the F; are compatible with
an equivalence ~ on their shared variables, we may assume that the j; also satisfy the
extended conjunctions in (1) with S the set of shared variables. In particular, whenever
we have two shared variables x and y, f1(z) = f1(y) if and only if fSy(z) = Ba(y). Since
the theories are stably infinite we may additionally assume that the A; have countably
infinite universes, hence there are bijections p; from the domain of A; to N such that
p1(B1(x))) = p2(B2(x)) for each shared variable 2. Now define A to be the algebra having
N as its domain; for f or P in X; define fa(n1,...,n) = pi(fa,(p; ' (n1), ..., p; t(n)))
and Pa(ni,...,ng) < Pa(p;t(n1), ..., p; (k). Define 8(z) = pi(Bi(z)) if = is a vari-
able occurring in F;. By construction of the p; this definition is independent of the choice
of i. Clearly Alsx,, 8 | F;, for i = 1,2, hence A, § = Fy A F5. Moreover, the reducts Als,
are isomorphic (via p;) to A; and thus are models of 7;, so that A is a model of 77 U 75
as required.

Theorem 1.6 The non-deterministic Nelson-Oppen algorithm is terminating and com-
plete for deciding satisfiability of pure conjunctions of literals Fy and Fy over T; U Ty for
signature-disjoint, stably infinite theories T; and 7.

Proof. Suppose that F}, F, is irreducible by the inference rules of the Nelson—-Oppen
algorithm. Applying the amalgamation lemma in combination with Prop. 1.4 we infer
that F, Fy is satisfiable w.r.t. T U 7Ts.

27

Convexity

The number of possible equivalences of shared variables grows superexponentially with
the number of shared variables, so enumerating all possible equivalences non-determin-
istically is going to be inefficient.

A much faster variant of the Nelson—-Oppen algorithm exists for convex theories.

A first-order theory 7T is called convex w.r.t. equations, if for every conjunction I
of Y-equations and non-equational Y-literals and for all ¥-equations A; (1 < i < n),
whenever T = VZ(I' — A; V...V A,), then there exists some index j such that
T E=EVZ(I — A)).

Theorem 1.7 If a first-order theory T is convex w.r.t. equations and has no trivial
models (i. e., models with only one element), then T is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose 7T is not stably
infinite. Then there exists a T-satisfiable conjunction of literals 37 F' that has only finite
T-models. As T is a first-order theory and first-order logic is compact, all 7-models of
J2 F' are bounded in cardinality by some number m.

Let y1,...,yms1 be fresh variables not occurring in F. Then the formula Fy = JI7F
A1 Ymer g <icjemy1 Yi 7 Yj 1s T-unsatisfiable since it expresses the fact that 3z F
has a model with more than m elements. Therefore, T = —Fy.

We can write F in the form '™ A F~, where F'~ contains the negative equational literals
in F'and F'* contains the rest. Then T |= —Fj can be written as T | VZy (-FTV -F~V

V1§i<j§m+1 Yi & y;), or equivalently, 7 = VZ, ¢y (F* — (=F~ V \/1§i<]§m+1 Yi = Yj)).
Note that —=F'~ is a disjunction of positive equational literals.

Assume that T | VZ,§ (F* — A) for some literal A of =F~V Vo, ¥ = y;. I
A is a literal of =F~, then T = V&, §(F* — A) E VZ,y(Ft — -F") E V&, §y-F,
which cannot hold since F' is T-satisfiable. Otherwise A is a literal y; ~ y;, then 7 =
VZ,§(F" — y; ~ y;). This cannot hold either: Note that 37 F and thus 37 F* is T-
satisfiable. So let A be some T-model of 37 F'*. By assumption, A is not a trivial model,
therefore there is an A-assignment /5 to #, ¥ that satisfies F'* and maps y; and y; to two
arbitrary different elements. Consequently, A, 8 = (F't — y; = y;).

28

Lemma 1.8 Suppose T is convex, I a conjunction of literals, and S a subset of its
variables. Let, for any pair of variables z; and x; in S, x; ~ x; if and only if T |=
Vi (F — xz; = x;). Then F is compatible with ~.

Proof. We show that with this choice of ~ the constraint (1), that is,
EIZ(F/\ /\x%y/\ /\x#y)
T,YES, T~y x,y€S, Tly

is T-satisfiable whenever F' is. Suppose, to the contrary, that F' is T-satisfiable but (1)
is not, that is,

T)z‘V’Z(F—> \/xaéy\/ \/:p%y)
z,y€eSs, x~y T,YES, Tty
or, equivalently,
T)ZVZ(F*/\ /\x%y—)—F*\/ \/:L’%y>
z,y€eSs, x~y x,y€S, Tty

where F'~ contains the negative equational literals in F' and F'* contains the rest. By
convexity of T, the antecedent implies one of the equations of the succedent.

Suppose that this equation A comes from —F~. Then
T):v5<F+A Nz~y — A
z,YES, x~y
and therefore
T):VZ<F+A /\x%y—>—|F’)
z,y€eSs, x~y
which means
T):V,z((FmF—)A Nr~y = 1)
T,YES, x~vy
which cannot hold since F' = (F'* A F7) is T-satisfiable and entails the equations x ~ y
with x ~ y.

So the equation A must come from the last part of the disjunction. In other words, there
exists a pair of different variables 2’ and ¢’ in S such that ' % y' and

T):VZ<F+A /\x%y—>:c’%y’>.
z,y€eSs, x~y
Since

T)zVZ(F—> /\x%y),

z,y€S, T~y

we derive T |= VZ (F — 2~y >, which is impossible.

29

The Nelson—Oppen Algorithm (Deterministic Version for Convex Theories)

Unsat:

F17F2
1

if 32 F} is unsatisfiable w.r.t. 7; for some 3.

Propagate:

F17F2
Fl/\(.T%y),Fz/\CL’%y)

if x and y are two different variables appearing in
both F; and F, such that

T =EVZ(FL » x~y)and Ty EVE(Fy, =z~ y)
or To EVZ(Fy » x~y) and T £ VZ (F) = 2 ~y).

Theorem 1.9 If 7; and 7T; are signature-disjoint theories that are convex w.r.t. equa-
tions and have no trivial models, then the deterministic Nelson—-Oppen algorithm is
terminating, sound and complete for deciding satisfiability of pure conjunctions of liter-
als ', and Fy over T; U Ts.

Proof. Termination and soundness are obvious: there are only finitely many different
equations that can be added, and each of them is entailed by given formulas.

For completeness, we have to show that every configuration that is irreducible by “Unsat”
and “Propagate” is satisfiable w.r.t.. 7; U 75: Let Fy, F5 be such a configuration. As it is
irreducible by “Propagate”, we have, for every equation x ~ y between shared variables,
Ti EVZ(F, — x = y) if and only if T3 = VZ (Fy — = =~ y). Consequently, F; and F; are
compatible with the same equivalence on the shared variables of F; and F5. Moreover,
each of the formulas F; is 7;-satisfiable, and since convexity implies stable infiniteness, F;
has a 7;-model with a countably infinite universe. Hence, by the amalgamation lemma,

Fi A Fy is (71 U Ty)-satisfiable.

Corollary 1.10 The deterministic Nelson-Oppen algorithm for convex theories requires
at most O(n®) calls to the individual decision procedures for the component theories,
where n is the number of shared variables.

Iterating Nelson—Oppen
The Nelson—Oppen combination procedures can be iterated to work with more than two

component theories by virtue of the following observations where signature disjointness
is assumed:

30

Theorem 1.11 If 7y and T, are stably infinite, then so is T U 7.

Proof. The non-deterministic Nelson—Oppen algorithm is sound and complete for 7; U
Ts, that is, an existentially quantified conjunction F' over ¥; U Y, is satisfiable if and
only if in every derivation from the purified form of F' there exists a branch leading to
some irreducible constraint Fy, F5 entailing F'. The amalgamation lemma 1.5 constructs
a model with a countably infinite universe for F' from the models of F; and F5.

Lemma 1.12 A first-order theory T is convex w.r.t. equations if and only if for every
conjunction I' of ¥-equations and non-equational ¥-literals and for all equations x; ~
(1 <i<n), whenever T EVZ(I' = 21 =~ 2y V...V 1z, =), then there exists some
index j such that T |= Vi (I' — xz; ~ x7).

Lemma 1.13 Let T be a first-order theory that is convex w.r.t. equations. Let F' is a
conjunction of literals; let F'~ be the conjunction of all negative equational literals in F'
and let F* be the conjunction of all remaining literals in F. If T EVZ(F — = = y),
then 37 F' is T-unsatisfiable or T EVZ (F™ — x =~ y).

Proof. T E Vi (F — = = y) is equivalent to 7 = VZ(Ft — (-F~ Vz = y)). By
convexity of 7 we know that T &= VZ(Ft — z = y) or T = VZ(Ft — A) for some
literal =A in F~. In the latter case, 37 (F* A —A) is T-unsatisfiable; hence 37 F', that
is, 37 (F* A F7) is T-unsatisfiable as well.

Theorem 1.14 If7; and T, are convex w.r. t. equations and do not have trivial models,
then so is T; U Ts.

Proof. Suppose that 7; and 73 are convex w.r.t. equations and do not have trivial
models. Then clearly 7; U 75 cannot have trivial models either, since any such model
would also be a trivial model of 77 and 7s.

Assume furthermore that 7 = VZ (I' = 27 = 2} V...V x, = z}) for some conjunction
[of (£1 U Xs)-equations and non-equational (X; U ¥)-literals. Then 32 (I" A x1 %) A
... ANz, % x)) is T-unsatisfiable, and we can detect this by some run of the deterministic
Nelson-Oppen algorithm starting with 37,y (I'y ATy Axy & 2y Ao Az, %), where
'y AT is the result of purifying I'. This run consists of a sequence of “Propagate” steps
followed by a final “Unsat” step, and without loss of generality, we use the “Propagate”
rule only if “Unsat” cannot be applied. Consequently, whenever we add an equation
r ~ y that is entailed by F} w.r.t. 71 or by F, w.r.t. 75, then it is by Lemma 1.13
already entailed by the positive and the non-equational literals in F} or F5. Furthermore,
due to the convexity of 7; and 73, the final “Unsat” step depends on at most one
negative equational literal in F; or F,. We can therefore construct a similar Nelson—
Oppen derivation that starts with only the positive and the non-equational literals in

31

I'y and I'y, plus at most one negative equational literal that may be needed for the
“Unsat” step. If a negative equational literal is needed, it is one of the z; # 2’; then

37 (T A zy % o)) is T-unsatisfiable and VZ (I' — x; ~ z}) is T-valid; if no negative

equational literal is needed at all, then 37T" is T-unsatisfiable, so V& (I' — z; ~ %) is
T-valid for every j.

Extensions

Many-sorted logics:

read/2 becomes read : array X int — data.
write/3 becomes write : array X int X data — array.
Variables: x : data

Only one declaration per function/predicate/variable symbol.
All terms, atoms, substitutions must be well-sorted.

Algebras:
Instead of universe U 4, one set per sort: arrayy, int4.

Interpretations of function and predicate symbols correspond to their declarations:
ready : arrays X int 4 — datay

If we consider combinations of theories with shared sorts but disjoint function and pred-
icate symbols, then we get essentially the same combination results as before.

However, stable infiniteness and/or convexity are only required for the shared sorts.

Non-stably infinite theories:

If we impose stronger conditions on one theory, we can relax the conditions on the
other one.

For instance, EUF can be combined with any other theory; stable infiniteness is not
required.

E.g.: Strongly polite theories, shiny theories, flexible theories.

32

Strong Politeness

A theory T is called smooth, if every quantifier-free formula that has a 7-model with
some (finite or infinite) cardinality ko has also T-models with cardinality x for every
K 2 Kg.

A theory T is called finitely witnessable, if there is a computable function wit that maps
every quantifier-free formula F' to a quantifier-free formula G such that

1. F and 30 G are T-equivalent, where @ = var(G) \ var(F),

2. if G A A is T-satisfiable for some arrangement A, then there is a 7T-model A and
an assignment [such that A, 5 = (GAA) and Uy = {f(z) | 2 € var(G A A) }

A theory T is called strongly polite, if it is smooth and finitely witnessable.

Theorem 1.15 (Barrett & Jovanovié¢) We can combine two theories T, and Ty if
one of them if strongly polite.

Again, in the many-sorted case, smoothness and finite witnessability must hold for all
the shared sorts.

Non-disjoint combinations:

Have to ensure that both decision procedures interpret shared symbols in a compatible
way.

Some results, e. g. by Ghilardi, using strong model theoretical conditions on the the-
ories.

Another Combination Method

Shostak’s method:
Applicable to combinations of EUF and solvable theories.

A >-theory T is called solvable, if there exists an effectively computable function solve
such that, for any 7T-equation s & t:

(A) solve(s ~t) = L if and only if T | VZ (s # t);
(B) solve(s ~t) = 0 if and only if T |= V& (s &~ t); and otherwise
(C) solve(s =t) ={x1 = uy,...,x, = u,}, where

— the z; are pairwise different variables occurring in s = t;

33

— the x; do not occur in the u;; and

- T EVE(s~t)« Jy(ry = u A... Nz, = u,)), where i are the variables
occurring in one of the u; but not in s ~ ¢, and 2Ny = 0.

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by computing some unique normal
form

Main idea of the procedure:

If s &= t is a positive equation and solve(s ~ t) = {z; =~ uy,...,, = u,}, replace
s~tbyxy ~uy A... ANz, = u, and use these equations to eliminate the x; elsewhere.

Practical problem:

Solvability is a rather restrictive condition.

Literature
Harald Ganzinger: Shostak Light. Automated Deduction, CADE-18, LNCS 2392, pp
332-346, Springer, 2002.

Silvio Ghilardi: Model Theoretic Methods in Combined Constraint Satisfiability. Journal
of Automated Reasoning, 33(3-4):221-249, 2005.

Dejan Jovanovi¢ and Clark Barrett: Polite theories revisited. Logic for Programming,
Artificial Intelligence, and Reasoning, LNCS 6397, pp. 402-416, Springer, 2010.

Greg Nelson, Derek C. Oppen: Simplification by Cooperating Decision Procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245-257, 1979.

Robert E. Shostak: Deciding Combinations of Theories. Journal of the ACM, 31(1):1-12,
1984.

34

