4.6 Superposition in Higher-Order Logic

Problems originating from proof assistents
use higher-order logic,
but contain large first-order parts,

and in particular equality.
Can we extend the superposition calculus to higher-order logic?

Following Bentkamp et al. we proceed in three steps.

Step 1: Lambda-free HOL

We admit

e applied variables (z b ¢),

e unapplied or partially applied functions (g f ~ h (f bc))
but exclude

e lambda abstractions

e first-class booleans (i. e., boolean expressions on the term level, rather than on the
literal level)

This is also known as the applicative fragment.

In principle, one could encode it in FOL using constants and just one binary function
symbol app.

FOL provers do not behave well on these formulas, though: Indexing data structures
become almost useless. Term orderings do not behave in the expected way anymore.

First step:
Define a higher-order reduction ordering.

In addition to the usual properties of reduction orderings, one would like to have
compatibility with arguments: s > s’ implies st = s’ t.

But this is difficult to achieve.

The calculus below works without this requirement.

96

A subterm ¢ of s is called a green subterm, if t = s or if s = 8" uy...u, and t is a green
subterm of some ;.

Notation: s = s(t).

Green subterms correspond to first-order subtermss.
If ¢t = t/, then s(t) = s(t').

Second step:

Define the inference rules analogously to first-order superposition, but restrict to in-
ferences that involve green subterms:
D'vt=t C'V s(u) = s
(D'VC'Vs(t) ~s)o

where o = mgu(t, u).
Additionally:
New inference rule: ArgCong

C'Vs~s
C'Vsx~sx

Redundancy for inferences must be defined in such a way that the conclusion of
ArgCong is not automatically redundant!

One more problem:

If > is not compatible with arguments, we need occasionally superpositions at (but
not below) variable positions. (The 6/6’ trick may not work anymore.)

Proof idea:
Use a two-fold lifting
e from HOL to ground HOL
e from ground HOL to ground FOL

Note: The Henkin interpretations contain only those functions that we can construct
from the given ones.

In order to refute b 2 x b, our set of axioms should contain id 2z ~ z.

97

Step 2: Boolean-free HOL

We add lambda abstractions to the logic, but still exclude first-class booleans.
Need efficient HO unification procedure that enumerates a CSU (Vukmirovi¢ et al.)

Need dovetailing to interleave generation of further conclusions of inferences with clause
selection.

Again: only inferences involving green subterms.
The definition of green subterms must be adapted, though:

A subterm t of s is called a green subterm, if t = s or if s = c uy ... u, for some constant
c and t is a green subterm of some wu;.

(Subterms below applied variables are no longer green.)

Problem: Applying a grounding substitution § that maps free variables to lambda ex-
pressions may fundamentally change the structure of a term ¢. Green subterms in t6
need not be instances of green subterms in ¢.

Examples:

Let t =h (x b f)and 0 = {x+— Ayz.g9 (zy)}. Then t0 = h (g (f b)) contains the green
subterm f b.

Let t = Az. f (y) x and @ = {y — Az.c}. Then t0 = Ax. f ¢ x = f ¢ contains the green
subterm f c.

Solution:

Need fluid inferences to ensure that all inferences between ground instances can be
lifted:

D'vtt C'V s(u) = s
(D'VC'Vs(zt) ~s)o

where o € CSU(z t, u).

Step 3: Full HOL

We add first-class booleans to the logic.

New problem: Performing a CNF transformation (including Skolemization) a priori is
no longer sufficient.

Solution: Construct the HO superposition calculus on top of a non-clausal FO superpo-
sition calculus that performs CNF transformation steps on the fly.

98

We inherit the hoisting inferences of the non-clausal FO superposition calculus, e. g.

C(u)
(C(L)Vr~y)o

where 0 € CSU(u, z =~ y).

Cu)
(C(T)Vax~y)o

where 0 € CSU(u, z % y).
Implementations:
Zipperposition (OCaml, full calculus)
E (C, parts of the calculus)

Alternative Approach

Extending an existing prover for FOL to handle lambda expressions requires substantial
modifications of the architecture.

Alternative approach (Bhayat and Reger):

Every lambda expression can be encoded using a small set of combinators, e.g., S =
Aeyzorz(yz), K=y z, [=\x.x.

Use the lambda-free calculus together with the definitions of combinators.

Implemented in Vampire.

Literature
Peter B. Andrews: An Introduction to Mathematical Logic and Type Theory — To Truth
Through Proof. 2nd edition, Springer, 2002.

Peter B. Andrews: Classical type theory. Handbook of Automated Reasoning, vol. II,
pp- 965-1007. Elsevier and MIT Press, 2001.

Heiko Becker, Jasmin Christian Blanchette, Uwe Waldmann, Daniel Wand: A transfinite
Knuth-Bendix order for lambda-free higher-order terms. CADE: 432-453, 2017.

Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, and Uwe Waldmann: Su-
perposition for lambda-free higher-order logic. Logical Methods in Computer Science,
17(2):1:1-1:38, 2021.

99

Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirovi¢, and Uwe
Waldmann: Superposition with lambdas. Journal of Automated Reasoning, 65:893-940,
2021.

Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirovié¢: Su-
perposition for higher-order logic. Journal of Automated Reasoning 67, Article number:
10, 2023.

Christoph Benzmiiller, Dale Miller: Automation of higher-order logic. Computational
Logic, Handbook of the History of Logic, vol. 9, pp. 215-254. Elsevier, 2014.

Jasmin Christian Blanchette, Uwe Waldmann, Daniel Wand: A lambda-free higher-order
recursive path order. Foundations of Software Science and Computation Structures,
FoSSaCS 2017, LNCS 10203, pp. 461-479, Springer, 2017.

Ahmed Bhayat, Giles Reger: A combinator-based superposition calculus for higher-order
logic. Automated Reasoning, IJCAR 2020, Part I, LNCS 12166, pp. 278-296, Springer,
2020.

Gilles Dowek: Higher-order unification and matching. Handbook of Automated Reason-
ing, vol. II, pp. 1009-1062, Elsevier and MIT Press, 2001.

Melvin Fitting: Types, Tableaus, and Godel’s God. Studia Logica 81(3): 425-427, 2005.

Gérard P. Huet: A mechanization of type theory. [JCAI-73, pp. 139-146. William Kauf-
mann, 1973.

Gérard P. Huet: A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.
1(1), 27-57, 1975.

D. C. Jensen, T. Pietrzykowski: Mechanizing w-order type theory through unification.
Theor. Comput. Sci. 3(2), 123-171, 1976.

Petar Vukmirovi¢, Alexander Bentkamp, and Visa Nummelin: Efficient full higher-order
unification. Logical Methods in Computer Science 17(4):18:1-18:31, 2021.

Petar Vukmirovi¢, Jasmin Blanchette, Simon Cruanes, Stephan Schulz: Extending a
brainiac prover to lambda-free higher-order logic. TACAS 2019, LNCS 11427, pp. 192—
210. Springer, 2019.

100

