4.6 Superposition in Higher-Order Logic

Problems originating from proof assistents
use higher-order logic,
but contain large first-order parts,

and in particular equality.
Can we extend the superposition calculus to higher-order logic?

Following Bentkamp et al. we proceed in three steps.

Step 1: Lambda-free HOL

We admit

e applied variables (z b ¢),

e unapplied or partially applied functions (g f ~ h (f bc))
but exclude

e lambda abstractions

e first-class booleans (i. e., boolean expressions on the term level, rather than on the
literal level)

This is also known as the applicative fragment.

In principle, one could encode it in FOL using constants and just one binary function
symbol app.

FOL provers do not behave well on these formulas, though: Indexing data structures
become almost useless. Term orderings do not behave in the expected way anymore.

First step:
Define a higher-order reduction ordering.

In addition to the usual properties of reduction orderings, one would like to have
compatibility with arguments: s > s’ implies st = s’ t.

But this is difficult to achieve.

The calculus below works without this requirement.
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A subterm ¢ of s is called a green subterm, if t = s or if s = 8" uy...u, and t is a green
subterm of some ;.

Notation: s = s(t).

Green subterms correspond to first-order subtermss.
If ¢t = t/, then s(t) = s(t').

Second step:

Define the inference rules analogously to first-order superposition, but restrict to in-
ferences that involve green subterms:
D'vt=t C'V s(u) = s
(D'VC'Vs(t) ~s)o

where o = mgu(t, u).
Additionally:
New inference rule: ArgCong

C'Vs~s
C'Vsx~sx

Redundancy for inferences must be defined in such a way that the conclusion of
ArgCong is not automatically redundant!

One more problem:

If > is not compatible with arguments, we need occasionally superpositions at (but
not below) variable positions. (The 6/6’ trick may not work anymore.)

Proof idea:
Use a two-fold lifting
e from HOL to ground HOL
e from ground HOL to ground FOL

Note: The Henkin interpretations contain only those functions that we can construct
from the given ones.

In order to refute b 2 x b, our set of axioms should contain id 2z ~ z.
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Step 2: Boolean-free HOL

We add lambda abstractions to the logic, but still exclude first-class booleans.
Need efficient HO unification procedure that enumerates a CSU (Vukmirovi¢ et al.)

Need dovetailing to interleave generation of further conclusions of inferences with clause
selection.

Again: only inferences involving green subterms.
The definition of green subterms must be adapted, though:

A subterm t of s is called a green subterm, if t = s or if s = c uy ... u, for some constant
c and t is a green subterm of some wu;.

(Subterms below applied variables are no longer green.)

Problem: Applying a grounding substitution § that maps free variables to lambda ex-
pressions may fundamentally change the structure of a term ¢. Green subterms in t6
need not be instances of green subterms in ¢.

Examples:

Let t =h (x b f)and 0 = {x+— Ayz.g9 (zy)}. Then t0 = h (g (f b)) contains the green
subterm f b.

Let t = Az. f (y ) x and @ = {y — Az.c}. Then t0 = Ax. f ¢ x = f ¢ contains the green
subterm f c.

Solution:

Need fluid inferences to ensure that all inferences between ground instances can be
lifted:

D'vtt C'V s(u) = s
(D'VC'Vs(zt) ~s)o

where o € CSU(z t, u).

Step 3: Full HOL

We add first-class booleans to the logic.

New problem: Performing a CNF transformation (including Skolemization) a priori is
no longer sufficient.

Solution: Construct the HO superposition calculus on top of a non-clausal FO superpo-
sition calculus that performs CNF transformation steps on the fly.
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We inherit the hoisting inferences of the non-clausal FO superposition calculus, e. g.

C(u)
(C(L)Vr~y)o

where 0 € CSU(u, z =~ y).

Cu)
(C(T)Vax~y)o

where 0 € CSU(u, z % y).
Implementations:
Zipperposition (OCaml, full calculus)
E (C, parts of the calculus)

Alternative Approach

Extending an existing prover for FOL to handle lambda expressions requires substantial
modifications of the architecture.

Alternative approach (Bhayat and Reger):

Every lambda expression can be encoded using a small set of combinators, e.g., S =
Aeyzorz(yz), K=y z, [ =\x.x.

Use the lambda-free calculus together with the definitions of combinators.

Implemented in Vampire.
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