
4 Higher-Order Logic

Desired for applications, e. g., in mathematics:

quantifications over functions and predicates,

functions and predicates applied to functions and predicates,

partially applied functions,

anonymous functions,

first-class booleans,

expressivity: define, e. g., “the” natural numbers, “the” reals.

Higher-order logic satisfies these needs.

4.1 The Starting Point: λ-Calculus

Untyped λ-calculus (Church 1930).

Syntax:

Terms: t ::= c (Constant)
| x (Variable)
| (t1 t2) (Application)
| (λx. t) (Abstraction)

Substitution:

x{x 7→ s} = s.

y{x 7→ s} = y if y 6= x.

c{x 7→ s} = c.

(t1 t2){x 7→ s} = (t1{x 7→ s} t2{x 7→ s}).

(λx. t){x 7→ s} = (λx. t).

(λy. t){x 7→ s} = (λz. (t{y 7→ z}{x 7→ s})) if y 6= x, z fresh.

Conversion rules (to be applied to arbitrary subterms):

t →α t′

if t and t′ are equal upto renaming of bound variables.

((λx. t) s) →β t{x 7→ s}.
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(λx. (t x)) →η t

if x does not occur freely in t.

Properties of the untyped λ-calculus:

β-conversion may not terminate.

Works as a model of computation (Turing-complete).

But basing a logic on it leads to problems (similarly to Russell’s paradox).

Solution: introduce types.

4.2 Typed λ-Calculus

Typed λ-calculus:

Developed by Church in 1940.

Also known as Simple Type Theory.

Note: Many variants (syntax and semantics).

Types

Types are defined recursively:

o is the type of Booleans; it is of order 0.

ι is the type of individuals; it is of order 1.

if τ1 and τ2 are types then τ1 → τ2 is a type; it is of order max(order(τ1) + 1, order(τ2))

We also write τ1 → · · · → τn → τ or τ1, . . . , τn → τ for τ1 → (· · · → (τn → τ) . . . ).

Terms

Given a non-empty set of constants and a collection of non-empty sets of variables for
each type,

constants are terms,

variables are terms,

if t1 and t2 are terms then (t1 t2) is a term,

if x is a variable and t is a term then λx. t is a term.
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Types of Terms

Given a non-empty set S of typed constants and a collection of non-empty sets of vari-
ables for each type, the term t is of type

o if t ∈ {⊤,⊥},

τ if t ∈ S has type τ ,

τ if t = x(τ) is a variable of type τ ,

τ1 → τ2 if t = λx(τ1). t1(τ2),

τ2 if t = (t1(τ1→τ2) t2(τ1)).

A term is well-typed if a type can be associated to it according to the previous definition.
We only consider well-typed terms in what follows.

Normal Forms

For well-typed terms, we can define two kinds of normal forms:

βη-short normal form:

Apply β forward exhaustively (terminates because of typing), then apply η forward
exhaustively.

βη-long normal form:

Apply β forward exhaustively (terminates because of typing), then apply η backward
exhaustively (respecting the types).

Extensions

Possible extensions:

Several types of individuals: c1 : ι1, c2 : ι2,

Type constructors: x : list ι,

Polymorphic types: cons : α → list α → list α,

Dependent types: append : array α n → array α m → array α (n +m)
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4.3 Semantics

A well-founded formula is a term of type o.

How to evaluate the truth of such a formula?

Classical Models

Let D be a non-empty set, for each type τ we define the following collection, denoted as
the frame of the type

the frame of τ = o is Jo,DK = {0, 1}

the frame of τ = ι is Jι, DK = D

the frame of τ = τ1 → τ2 is Jτ1 → τ2, DK, the collection of all functions mapping
Jτ1, DK into Jτ2, DK

A higher-order classical model is a structure M = 〈D, I〉 where D is a non-empty set
called the domain of the model and I is the interpretation of the model, a mapping such
that

if c(τ) is a constant then I(c) ∈ Jτ,DK,

I(=(τ→τ→o)) is the equality relation on Jτ,DK.

By adding an assignment function α such that for any variable x(τ), α(x) ∈ Jτ,DK, it
becomes possible to evaluate the truth value of higher-order formulas as in first-order
logic.

The evaluation VM,α(t) of a term t given a model M = 〈D, I〉 and an assignment α is
recursively defined as

I(c) if t is a constant c

α(x) if t is a variable x

the function from Jτ1, DK to Jτ2, DK that maps every a ∈ Jτ1, DK to VM,α[x 7→a](t) ∈
Jτ2, DK if t = λx(τ1). t(τ2)

(VM,α(t1))(VM,α(t2)) if t = (t1(τ1→τ2) t2(τ1))

Truth evaluation:

Given a model M = 〈D, I〉 and an assignment α, a well-founded formula F is true in
M with respect to α, denoted as M, α |= F iff VM,α(F ) = 1

F is satisfiable in M iff there exists an assignment α such that M, α |= F

F is valid in M, denoted M |= F iff for all assignments α, M, α |= F
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F is valid, denoted |= F iff for all models M, M |= F

These notions extend straightforwardly to sets of formulas.

Problems with the Classical Semantics

HOL with classical semantics (cHOL) is very expressive, but:

• In FOL, every unsatisfiable set of formulas has a finite unsatisfiable subset. This
is no longer the case in cHOL. (Loss of compactness)

• No proof procedure able to derive all consequences of a set of formulas can exist
in cHOL. (Loss of strong completeness)

• No proof procedure able to derive all valid sets of formulas can exist in cHOL.
(Loss of weak completeness)

• The status of validity of some formulas is unclear.

Henkin Semantics

To solve the previously mentioned issues, it is possible to generalize the notion of a
model by relaxing the notion of a frame into that of a Henkin frame. Given a non-empty
set D,

Jo,DK = {0, 1}

Jι, DK = D

Jτ1 → τ2, DK is the some collection of all functions mapping Jτ1, DK into Jτ2, DK with

some additional closure conditions.

Henkin vs Classical Semantics

• Every classical model is a Henkin model, therefore every formula true in all Henkin
models is true in all classical models.

• There are formulas true in all classical models that are not true in all Henkin
models.

• There are (weak) complete proof procedures for HOL with Henkin semantics.
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4.4 Higher-Order Term Unification

We consider unification modulo α, β, η.

In FOL, there exists a unique mgu for two unifiable terms.

This is no longer true in HOL.

For example, consider t1 = y x and t2 = c where x, y are variables and c is a constant.
The unifiers of t1 and t2 are {y 7→ λz. c} and {y 7→ λz. z, x 7→ c}.

Some equations do not even have finite complete sets of unifiers, e. g., f (x c) = x (f c)
with f and c constants.

Even worse, the higher-order unification problem is undecidable.

Huet’s Unification Algorithm

Given:

a unification problem E, i.e. a finite set of equations in β and, on the outermost level,
in η-long normal form.

Goal:

find a substitution σ such that Eσ contains only syntactically equal equations.

Rigid and Flexible Terms

Every term can be written in the form λx1 . . . xn. u0 u1 . . . uk (n ≥ 0, k ≥ 0), where u0

is a constant or a bound or free variable.

u0 is called the head of the term.

A term is called rigid if its head symbol is a constant or a bound variable. Otherwise its
head symbol is a free variable and the term is called flexible.

Rigid-Rigid Equations

Two rules can be applied depending on the head symbols in the rigid-rigid equation.

Simplify :

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. f v1 . . . vp}

E ∪ {λx1 . . . xn. u1 ≈ λx1 . . . xn. v1, . . . , λx1 . . . xn. up ≈ λx1 . . . xn. vp}

where f is a constant or a bound variable.
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Fail:

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. g v1 . . . vq}

⊥

where f and g are distinct constants or bound variables.

Flexible-Rigid Equations

There is only one rule to handle such equations, but it is a branching rule.

Generate:

E

Eσ

where

(λx1 . . . xn. z u1 . . . up ≈ λx1 . . . xn. f v1 . . . vq) ∈ E,

z is a free variable, f is a constant or bound variable,

h ∈ {f, y1, . . . , yp} if f is a constant and h ∈ {y1, . . . , yp} otherwise,

z1, . . . , zr are fresh free variables,

σ = {z 7→ λy1, . . . , yp. h (z1 y1 . . . yp) . . . (zr y1 . . . yp)}.

Flexible-Flexible Equations

The following result, also by Huet, handles flexible-flexible equations.

Proposition 4.1 A unification problem E containing only flexible-flexible equations

has always a solution.

Proof. For every type τ let wτ be a fixed fresh variable of type τ . Define θ as the
substitution that maps every free variable occurring in E with type (τ1 . . . τp → τ0) to
the function λy1 . . . yp. wτ .

Consider any flexible-flexible equation

e = (λx1 . . . xn. y(τ1...τp→τ0) u1 . . . up ≈ λx1 . . . xn. z(τ ′
1
...τ ′

q
→τ0) v1 . . . vq).

Then eθ equals λx1 . . . xn. wτ ≈ λx1 . . . xn. wτ .

We say that a unification problem with only flexible-flexible equations is a solved unifi-
cation problem.
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The Whole Procedure

A reasonable strategy consists in applying Fail and Simplify eagerly, and Generate only
when there is no rigid-rigid equation left.

Generate is non-deterministic, making this procedure branching.

Soundness and Completeness

Proposition 4.2 If a unification problem E can be transformed into a solved problem

E ′ by applying Fail, Simplify and Generate then E has a solution.

Proposition 4.3 If a unification problem E has a solution σ then we can derive a solved

problem E ′ from E using the rules Fail, Simplify and Generate.

Theorem 4.4 The procedure made of the rules Fail, Simplify, and Generate is sound

and complete.

Termination?

Higher-order unification is only semi-decidable.

When solutions exist, Huet’s algorithm will find one and terminate, but when there is
no solution, it may loop forever.

Alternatives

Huet’s procedure tests only unifiability.

There are also unification procedures for higher-order logic that enumerate a complete
set of unifiers, e.g., by Jensen and Pietrzykowski and by Vukmirović et al.
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4.5 Resolution in Higher-Order Logic

In first-order logic, resolution for general clauses has two rules:

Resolution:
D ∨B C ∨ ¬A

(D ∨ C)σ

where σ = mgu(A,B).

Factoring:
C ∨ A ∨ B

(C ∨A)σ

where σ = mgu(A,B).

In higher-order logic, a first problem is that mgu’s need not exist and unification is
undecidable.

Example 4.5 Given D ∨ B and C ∨ ¬A where A and B are unifiable but without

mgu, there may exist infinitely many σ1, σ2,... unifiers of A and B generating distinct

resolvents (D ∨ C)σ1, (D ∨ C)σ2,... and in general there is no way to know which one is

needed to prove the given theorem.

Huet proposes to delay the computation of unifiers (when no mgu exists) by using
constraints storing the corresponding unification problems.

Once a contradiction has been derived, the corresponding unification problem can then
be solved using Huet’s algorithm.

Resolution:
D ∨BJXK C ∨ ¬AJY K

D ∨ CJX ∧ Y ∧ A = BK

Factoring:
C ∨ A ∨ BJXK

C ∨ AJX ∧A = BK

Another problem in HOL is that it is not always possible to guess the necessary substi-
tution based on the available terms.

Example 4.6 Consider the formula ¬X(o) where X is a Boolean variable. The set {¬X}
is saturated by resolution, but still the formula ¬X is unsatisfiable. However, we can

guess the substitution σ = {X 7→ ¬Y }. Then (¬X)σ = ¬(¬Y ) = Y and resolution can

now derive the empty clause from ¬X and Y .
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To overcome this issue, Huet introduces additional splitting rules.

C ∨AJXK

C ∨ ¬x(o)JX ∧A = ¬xK

C ∨AJXK

C ∨ x(o) ∨ y(o)JX ∧A = (x ∨ y)K

C ∨AJXK

C ∨ P(τ→o)x(τ)JX ∧A = Π((τ→o)→o)P K

Π((τ→o)→o) is the function that associates ⊤ to any set of type τ → o that contains all
elements of type τ .

C ∨ ¬AJXK

C ∨ x(o)JX ∧ A = ¬xK

C ∨ ¬AJXK

C ∨ ¬x(o)JX ∧A = (x ∨ y(o))K, C ∨ ¬yJX ∧A = (x ∨ y)K

C ∨ ¬AJXK

C ∨ ¬P(τ→o)(sk((τ→o)→τ)P )JX ∧ A = Π((τ→o)→o)P K

sk is the Skolem constant such that ¬Π((τ→o)→o)P = ¬P(τ→o)(sk((τ→o)→τ)P ).

Resolution with these splitting rules is sound and complete, but not terminating (Huet).

In practice, several improvements are possible.

As soon as a constraint becomes unsatisfiable, delete the corresponding clause.

If a constraint has a small enough set of solutions, generate all applied clauses to
replace the constrained original one.
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