
3.9 Integrating Theories I: E-Unification

Dealing with mathematical theories naively in a superposition prover is difficult:

Some axioms (e. g., commutativity) cannot be oriented w. r. t. a reduction ordering.
⇒ Provers compute many equivalent copies of a formula.

Some axiom sets (e. g., torsion-freeness, divisibility) are infinite.
⇒ Can we tell which axioms are really needed?

Hierarchic (“black-box”) superposition is easy to implement, but conditions like com-
pactness and sufficient completeness are rather restrictive.

Can we integrate theories directly into theorem proving calculi (“white-box” integra-
tion)?

Idea:

In order to avoid enumerating entire congruence classes w. r. t. an equational theory
E, treat formulas as representatives of their congruence classes.

Compute an inference between formula C and D if an inference between some clause
represented by C and some clause represented by D would be possible.

Consequence: We have to check whether there are substitutions that make terms s
and t equal w. r. t. E.
⇒ Unification is replaced by E-unification.

E-Unification

E-unification (unification modulo an equational theory E):

For a set of equality problems {s1 ≈ t1, . . . , sn ≈ tn}, an E-unifier is a substitution σ
such that for all i ∈ {1, . . . , n}: siσ ≈E tiσ.

Recall: siσ ≈E tiσ means E |= siσ ≈ tiσ.

In general, there are infinitely many (E-)unifiers.
What about most general unifiers?

Frequent cases: E = ∅, E = AC, E = ACU:

x+ (y + z) ≈ (x+ y) + z (associativity = A)

x+ y ≈ y + x (commutativity = C)

x+ 0 ≈ x (identity (unit) = U)

76



The identity axiom is also abbreviated by “1”, in particular, if the binary operation is
denoted by ∗. (ACU = AC1).

Example:

x+ y and c are ACU-unifiable with {x 7→ c, y 7→ 0} and {x 7→ 0, y 7→ c}.

x+ y and x′ + y′ are ACU-unifiable with {x 7→ z1+ z2, y 7→ z3+ z4, x
′ 7→ z1 + z3, y

′ 7→
z2 + z4} (among others).

More general substitutions:

Let X be a set of variables.
A substitution σ is more general modulo E than a substitution σ′ on X , if there exists
a substitution ρ such that xσρ ≈E xσ′ for all x ∈ X .

Notation: σ .X
E σ′.

(Why X? Because we cannot restrict to idempotent substitutions.)

Complete sets of unifiers:

Let S be an E-unification problem, let X = var(S).
A set C of E-unifiers of S is called complete (CSU),
if for every E-unifier σ′ of S there exists a σ ∈ C
with σ .X

E σ′.

A complete set of E-unifiers C is called minimal (µCSU),
if for all σ, σ′ ∈ C, σ .X

E σ′ implies σ = σ′.

Note: every E-unification problem has a CSU. (Why?)

The set of equations E is of unification type

unitary, if every E-unification problem has a µCSU with cardinality ≤ 1 (e. g.: E = ∅);

finitary, if every E-unification problem has a finite µCSU (e. g.: E = ACU, E = AC,
E = C);

infinitary, if every E-unification problem has a µCSU and some E-unification problem
has an infinite µCSU (e. g.: E = A);

zero (or nullary), if some E-unification problem does not have a µCSU (e. g.: E =
A ∪ {x+ x ≈ x}).

77



Unification modulo ACU

Let us first consider elementary ACU-unification:
the terms to be unified contain only variables and the function symbols from Σ =
({+/2, 0/0}, ∅).

Since parentheses and the order of summands don’t matter, every term over Xn =
{x1, . . . , xn} can be written as a sum

∑n

i=1
ai xi.

The ACU-equivalence class of a term t =
∑n

i=1
ai xi ∈ TΣ(Xn) is uniquely determined

by the vector ~vn(t) = (a1, . . . , an).

Analogously, a substitution σ = { xi →
∑m

j=1
bij xj | 1 ≤ i ≤ n } is uniquely determined

by the matrix

Mn,m(σ) =







b11 · · · b1m
...

...
bn1 · · · bnm







Let t =
∑n

i=1
ai xi and σ = { xi →

∑m

j=1
bij xj | 1 ≤ i ≤ n }.

Then tσ =
∑n

i=1
ai (
∑m

j=1
bij xj)

=
∑n

i=1

∑m

j=1
ai bij xj

=
∑m

j=1

∑n

i=1
ai bij xj

=
∑m

j=1
(
∑n

i=1
ai bij) xj .

Consequence:

~vm(tσ) = ~vn(t) ·Mn,m(σ).

Let S = {s1 ≈ t1, . . . , sk ≈ tk} be a set of equality problems over TΣ(Xn).

Then the following properties are equivalent:

(a) σ is an ACU-unifier of S from Xn → TΣ(Xm).

(b) ~vm(siσ) = ~vm(tiσ) for all i ∈ {1, . . . , k}.

(c) ~vn(si) ·Mn,m(σ) = ~vn(ti) ·Mn,m(σ) for all i ∈ {1, . . . , k}.

(d) (~vn(si)− ~vn(ti)) ·Mn,m(σ) = ~0m for all i ∈ {1, . . . , k}.

(e) Mk,n(S) ·Mn,m(σ) = ~0k,m.
where Mk,n(S) is the k × n matrix whose rows are the vectors ~vn(si)− ~vn(ti).

(f) The columns of Mn,m(σ) are non-negative integer solutions of the system of homo-
geneous linear diophantine equations DE(S):

Mk,n(S) ·

(

y1...
yn

)

=

(

0
...
0

)

78



Computing unifiers:

Obviously: if ~y1, . . . , ~yr are solutions of DE(S) and a1, . . . , ar are natural numbers,
then a1~y1 + · · ·+ ar~yr is also a solution. (In particular, the zero vector is a solution!)

In fact, one can compute a finite set of solutions ~y1, . . . , ~yr, such that every solution
of DE(S) can be represented as such a linear combination.

Moreover, if we combine these column vectors ~y1, . . . , ~yr to an n× r matrix, this matrix
represents a most general unifier of S. (Proof: see Baader/Nipkow.)

From ACU to AC

A complete set of AC-unifiers for elementary AC-unification problems can be computed
from a most general ACU-unifier by some postprocessing.

Elementary AC-unification is finitary and the elementary unifiability problem is solvable
in polynomial time.

But that does not mean that minimal complete sets of AC-unifiers can be computed
efficiently.

E. Domenjoud has computed the exact size of AC-µCSUs for unification problems of the
following kind:

mx1 + · · ·+mxp ≈ n y1 + · · ·+ n yq

where gcd(m,n) = 1.

The number of unifiers is

(−1)p+q

p
∑

i=0

q
∑

j=0

(−1)i+j

(

p

i

)(

q

j

)

2(
m+j−1

m )(n+i−1

n )

For p = m = 1 and q = n = 4, that is, for the equation

4 x ≈ y1 + y2 + y3 + y4

this is

34 359 607 481.

Consequence:

If possible, avoid the enumeration of AC-µCSUs
(which may have doubly exponential size).

Rather: only check AC-unifiability.

Or: use ACU instead.

79



Unification with Constants

So far:

Elementary unification:
terms over variables and {+, 0} or {+}.

Step 2:

Additional free constants.

Step 3:

Additional arbitrary free function symbols.
❀ Unification in the union of disjoint equational theories.

Unification with constants:

We can treat constants ai like variables xi that must be mapped to themselves.

Consequence: The algorithm is similar to the one we have seen before, but we have to
deal with homogeneous and inhomogeneous linear diophantine equations.

Some complexity bounds change, however:

Unification type:

elementary ACU-unification: unitary;
ACU-unification with constants: finitary.

Checking unifiability:

elementary ACU-unification: trivial;
ACU-unification with constants: NP-complete.

Combining Unification Procedures

The Baader–Schulz combination procedure allows to combine unification procedures for
disjoint theories (e. g., ACU and the free theory).

Basic idea (as usual): Use abstraction to convert the combined unification problem into
a union of two pure unification problems; solve them individually; combine the results.

80



Problem 1:

The individual unification procedures might map the same variable to different terms,
e. g., {x 7→ y + z} and {x 7→ f(w)}.

Solution: Guess for each variable non-deterministically which procedure treats it like
a constant.

Problem 2:

Combining the results might produce cycles, e. g., {x 7→ y + z} and {y 7→ f(x)}.

Solution: Guess an ordering of the variables non-deterministically; each individual
unifier that is computed must respect the ordering.

Note: This is a non-trivial extension that may be impossible for some unification
procedures (but it is possible for regular equational theories, i. e., theories where for
each equation u ≈ v the terms u and v contain the same variables).

Literature

Franz Baader, Tobias Nipkow: Term Rewriting and All That. Cambridge University
Press, 1998.

Franz Baader, Klaus Schulz: Unification in the union of disjoint equational theories:
Combining decision procedures. Automated Deduction, CADE-11, LNCS 607, pp. 50–
65, Springer, 1992.

Eric Domenjoud: A technical note on AC-unification. The number of minimal unifiers
of the equation αx1 + · · ·+ αxp

.
=AC βy1 + · · ·+ βyq. Journal of Automated Reasoning,

8(1):39–44, 1992.

François Fages: Associative-commutative unification. Automated Deduction, CADE-7,
LNCS 170, pp. 194–208, Springer, 1984.

Mike Livesey, Jörg H. Siekmann: Unification of AC-terms (bags) and ACI-terms (sets).
Internal report, University of Essex, 1975.

Gordon Plotkin: Building-in equational theories. Machine Intelligence, 7:73–90, Ameri-
can Elsevier, 1972.

Manfred Schmidt-Schauß: Unification under associativity and idempotence is of type
nullary. Journal of Automated Reasoning, 2:277–282, 1986.

81



3.10 Integrating Theories II: Calculi

We can replace syntactic unification by E-unification in the superposition calculus.

Moreover, it is usually necessary to choose a term ordering in such a way that all terms
in an E-congruence class behave in the same way in comparisons (E-compatible order-
ing).

However, this is usually not sufficient.

AC and ACU

Example: Let E = AC. The clauses

a + b ≈ d
b+ c ≈ e

c + d 6≈ a+ e

are contradictory w. r. t. AC, but if a ≻ b ≻ c ≻ d ≻ e, then the maximal sides of these
clauses are not AC-unifiable.

We have to compute inferences if some part of a maximal sum overlaps with a part of
another maximal sum (the constant b in the example above).

Technically, we can do this in such a way that we first replace positive literals s ≈ t by
s + x ≈ t + x, and then unify maximal sides w. r. t. AC or ACU (Peterson and Stickel
1981, Wertz 1992, Bachmair and Ganzinger 1994).

However, it turns out that even if we integrate AC or ACU in such a way into superposi-
tion, the resulting calculus is not particularly efficient – not even for ground formulas.

This is not surprising: The uniform word problem for AC or ACU is EXPSPACE-
complete (Cardoza, Lipton, and Meyer 1976, Mayr and Meyer 1982).

82



Abelian Groups

Working in Abelian groups is easier:

If we integrate also the inverse axiom, it is sufficient to compute inferences if the
maximal part of a maximal sum overlaps with the maximal part of another maximal
sum (like in Gaussian elimination).

Intuitively, in Abelian groups we can always isolate the maximal part of a sum on one
side of an equation.

What does that mean for the non-ground case?

Example:

g(y) + x 6≈ 2z ∨ f(x) + z ≈ 2y

Shielded variables (x, y):

occur below a free function symbol,
❀ cannot be mapped to a maximal term,
❀ are not involved in inferences.

Unshielded variables (z):

can be instantiated with m · u+ s, where u is maximal,
❀ must be considered in inferences,
❀ variable overlaps (similar to ACU).

Variable overlaps are ugly:

If we want to derive a contradiction from

2a ≈ c
2b ≈ d

2x 6≈ c+ d

and a ≻ b ≻ c ≻ d, we have to map x to a sum of two variables x′ + x′′, unify x′ with
a and x′′ with b.

83



Divisible Torsion-free Abelian Groups

Working in divisible torsion-free Abelian groups is still easier:

DTAGs permit variable elimination.

Every clause can be converted into a DTAG-equivalent clause without unshielded

variables.

Since only overlaps of maximal parts of maximal sums have to be computed, variable
overlaps become unnecessary.

Moreover, if abstraction is performed eagerly, terms to be unified do not contain +,
so ACU-unification can be replaced by standard unification.

Other Theories

A similar case: Chaining calculus for orderings.

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

Avoids explicit inferences with transitivity.
Only maximal sides of ordering literals have to be overlapped.
But unshielded variables can be maximal.

In dense linear orderings without endpoints, all unshielded variables can be eliminated.

DTAG-superposition and chaining can be combined to get a calculus for ordered divisible
Abelian groups. Again, all unshielded variables can be eliminated.

Conclusion

Integrating theory axioms into superposition can become easier by integrating more
axioms:

Easier unification problem (AC → ACU).

More restrictive inference rules (ACU → AG).

Fewer (or no) variable overlaps (AG → DTAG).

Main drawback of all theory integration methods:

For each theory, we have to start from scratch, both for the completeness proof and
the implementation.

84



Literature

Leo Bachmair, Harald Ganzinger: Rewrite techniques for transitive relations. IEEE Sym-
posium on Logic in Computer Science, LICS-9, pp. 384–393, 1994.

Leo Bachmair, Harald Ganzinger: Ordered chaining for total orderings. Automated De-
duction, CADE-12, LNAI 814, pp. 435–450, Springer, 1994.

Leo Bachmair, Harald Ganzinger: Associative-commutative superposition. Conditional
and Typed Rewriting Systems, CTRS-94, LNCS 968, pp. 1–14, Springer, 1994.

E. Cardoza, R. Lipton, A. R. Meyer: Exponential space complete problems for Petri nets
and commutative semigroups: preliminary report. Eighth Annual ACM Symposium on
Theory of Computing, STOC, pp. 50–54, 1976.

Guillem Godoy, Robert Nieuwenhuis: Paramodulation with built-in Abelian groups.
IEEE Symposium on Logic in Computer Science, LICS-15, pp. 413–424, 2000.

Ernst W. Mayr, Albert R. Meyer: The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982.

Gerald E. Peterson, Mark E. Stickel: Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233–264, 1981.

Uwe Waldmann: Cancellative abelian monoids and related structures in refutational
theorem proving (Part I & II). Journal of Symbolic Computation, 33(6):777–829/831–
861, 2002.

Uwe Waldmann: Superposition and chaining for totally ordered divisible abelian groups.
Technical report MPI-I-2001-2-001, Max-Planck-Institut für Informatik, Saarbrücken,
2001.

Ulrich Wertz: First-order theorem proving modulo equations. Technical report MPI-I-
92-216, Max-Planck-Institut für Informatik, Saarbrücken, 1992.

85


