
3.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several
ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed
to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the
existing ones.

This process is called simplification.

Examples:

Subsumption:
If N contains clauses D and C = C ′ ∨Dσ, where C ′ is non-empty, then D subsumes
C and C is redundant.
Example: f(x) ≈ g(x) subsumes f(y) ≈ a ∨ f(h(y)) ≈ g(h(y)).

Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause C ′ ∨ L ∨ L can
be simplified to C ′ ∨ L; a clause C ′ ∨ s 6≈ s can be simplified to C ′.

Condensation:
If we obtain a clause D from C by applying a substitution, followed by deletion of
duplicated literals, and if D subsumes C, then C can be simplified to D.
Example: By applying {y → g(x)} to C = f(g(x)) ≈ a ∨ f(y) ≈ a and deleting the
duplicated literal, we obtain f(g(x)) ≈ a, which subsumes C.

Semantic tautology deletion:
Every clause that is a tautology is redundant. Note that in the non-equational case,
a clause is a tautology if and only if it contains two complementary literals, whereas
in the equational case we need a congruence closure algorithm to detect that a clause
like x 6≈ y ∨ f(x) ≈ f(y) is tautological.

Rewriting:
If N contains a unit clause D = s ≈ t and a clause C[sσ], such that sσ ≻ tσ and
C ≻C Dσ, then C can be simplified to C[tσ].
Example: If D = f(x, x) ≈ g(x) and C = h(f(g(y), g(y))) ≈ h(y), and ≻ is an LPO
with h > f > g, then C can be simplified to h(g(g(y))) ≈ h(y).
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Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy, if the conclusion of every inference from clauses in
N \Red(N) is contained in N ∪ Red(N).

This definition ensures that in the proof of the model construction theorem, the conclu-
sion C0θ of a ground inference follows from clauses in GΣ(N) that are smaller than or
equal to itself, hence they are smaller than the premise Cθ of the inference, hence they
are true in RCθ by induction.

However, a closer inspection of the proof shows that it is actually sufficient that the
clauses from which C0θ follows are smaller than Cθ – it is not necessary that they are
smaller than C0θ itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion C0 and right (or only) premise C is called redundant

w. r. t. a set of ground clauses N , if one of its premises is redundant w. r. t. N , or if C0

follows from clauses in N that are smaller than C.

An inference is redundant w. r. t. a set of clauses N , if all its ground instances are
redundant w. r. t. GΣ(N).

Recall that a clause can be redundant w. r. t. N without being contained in N . Analo-
gously, an inference can be redundant w. r. t. N without being an inference from clauses
in N .

The set of all inferences that are redundant w. r. t. N is denoted by RedInf (N).

Saturation is then redefined in the following way:

N is saturated up to redundancy, if every inference from clauses in N is redundant
w. r. t. N .

Using this definition, the model construction theorem can be proved essentially as be-
fore.

The connection between redundant inferences and clauses is given by the following lem-
mas. They are proved in the same way as the corresponding lemmas for redundant
clauses:

Lemma 3.18 If N ⊆ N ′, then RedInf (N) ⊆ RedInf (N ′).

Lemma 3.19 If N ′ ⊆ Red(N), then RedInf (N) ⊆ RedInf (N \N ′).
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Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function
that overrides the ordering restrictions for negative literals.

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

We indicate selected literals by a box:

¬f(x) ≈ a ∨ g(x, y) ≈ g(x, z)

The second ordering condition for inferences is replaced by

– The last literal in each premise is either selected, or there is no selected literal in
the premise and the literal is maximal in the premise (strictly maximal for positive
literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution infer-
ences and as the second premise in negative superposition inferences.

Static refutational completeness is proved essentially as before:

We assume that each ground clause in GΣ(N) inherits the selection of one of the
clauses in N of which it is a ground instance (there may be several ones!).

In the proof of the model construction theorem, we replace case 3 by “Cθ contains a
selected or maximal negative literal” and case 4 by “Cθ contains neither a selected
nor a maximal negative literal”.

In addition, for the induction proof of this theorem we need one more property, namely:
(iv) If Cθ has selected literals then ECθ = ∅.

For dynamic refutational completeness, there is a problem, however:

In the static refutational completeness proof, the selection function gsel for ground
clauses depends on the selection function sel for general clauses and on the saturated
set N∞ itself.

N∞ is the limit of a run, therefore it depends on RedInf .

RedInf depends on what counts as a ground instance of an inference and what does
not, and thus on the set of ground inferences.

The set of ground inferences depends of gsel , though!
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How can we break this cycle?

Solution: In the definition of RedInf , we have to quantify over all possible ground selec-
tion functions gsel :

An inference ι is redundant, if for every ground selection function gsel corresponding
to sel , all gsel -ground instances of ι are redundant.

Result:

Worst-case analysis: When we check whether some inference involving a clause C ∈ N

is redundant, we must assume that every ground instance D of C inherits the selection
of C (even though D might also be a ground instance of another clause C ′ ∈ N with
a different selection).
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3.6 Splitting

Motivation:

A clause like f(x) ≈ a ∨ g(y) ≈ b has rather undesirable properties in the superposi-
tion calculus: It does not have negative literals that one could select; it does not have
a unique maximal literal; moreover, after performing a superposition inference with
this clause, the conclusion often does not have a unique maximal literal either.

On the other hand, the two unit clauses f(x) ≈ a and g(y) ≈ b have much nicer
properties.

Splitting with Backtracking

If a clause ∀~x, ~y C1(~x) ∨ C2(~y) consists of two non-empty variable-disjoint subclauses,
then it is equivalent to the disjunction

(

∀~x C1(~x)
)

∨
(

∀~y C2(~y)
)

.

In this case, superposition derivations can branch in a tableau-like manner:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

where C1 and C2 do not have common variables.

If ⊥ is found on the left branch, backtrack to the right one.

If C1 is ground, the general rule can be improved:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2} ∪ {¬C1}

where C1 is ground.

Note: ¬C1 denotes the conjunction of all negations of literals in C1.

In practice: most useful if both subclauses contain at least one positive literal.

Implementing Splitting

Most clauses that are derived after a splitting step do not depend on the split clause.

It is unpractical to delete them as soon as one branch is closed and to recompute them
in the other branch afterwards.

Solution: Associate a label set L to every clause C that indicates on which splits it
depends.

Inferences:
C2 ← L2 C1 ← L1

C0 ← L2 ∪ L1
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If we derive ⊥ ← L in one branch:

Determine the last split in L.

Backtrack to the corresponding right branch.

Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying clause is no longer valid
on the right branch.

Additionally: Delete splittings that did not contribute to the contradiction (branch
condensation).

AVATAR

Superposition with splitting has some similarity with CDCL.

Can we actually use CDCL?

Encoding splitting components:

Use propositional literals as labels for splitting components:

non-ground component C → propositional variable PC

positive ground component C → propositional variable PC

negative ground component C → negated propositional variable ¬PC

Therefore: splittable clauses → propositional clauses.

Implementation:

Combine a CDCL solver and a superposition prover.

The superposition prover passes splittable clauses and labelled empty clauses to the
CDCL solver.

If the CDCL solver finds contradiction: input contradictory.

Otherwise the CDCL solver extracts a boolean model and passes the associated la-
belled clauses to the superposition prover.
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3.7 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on the analysis of inferences
between ground instances of clauses.

Inferences between ground instances must be covered by inferences between original
clauses.

Non-ground clauses represent the set of all their ground instances.

Do we really need all ground instances?

Constrained Clauses

A constrained clause is a pair (C,K), usually written as C [[K]], where C is a Σ-clause
and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals s ≻ t with Σ-terms s, t.
(also possible: comparisons between literals or clauses).

Intuition: C [[K]] represents the set of all ground clauses Cθ for which Kθ evaluates to
true for some fixed term ordering. Such a Cθ is called a ground instance of C [[K]].

A clause C without constraint is identified with C [[⊤]].

A constrained clause C [[⊥]] with an unsatisfiable constraint represents no ground
instances; it can be discarded.

Constraint Superposition

Inference rules for constrained clauses:

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ [[(K2 ∧K1 ∧K)σ]]

where σ = mgu(t, u) and
u is not a variable and
K = (t ≻ t′ ∧ s[u] ≻ s′

∧ (t ≈ t′) ≻C D′

∧ (s[u] ≈ s′) ≻C C ′

∧ (s[u] ≈ s′) ≻L (t ≈ t′))

The other inference rules are modified analogously.
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To work effectively with constrained clauses in a calculus, we need methods to check the
satisfiability of constraints:

Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts of the constraint. (Note
that the calculus remains sound, if constraints are replaced by implied constraints.)

Refutational Completeness

The refutational completeness proof for constraint superposition looks mostly like in
Sect. 3.4.

Lifting works as before, so every ground infererence that is required in the proof is an
instance of some inference from the corresponding constrained clauses. (Easy.)

There is one significant problem, though.

Case 2 in the proof of Thm. 3.9 does not work for constrained clauses:

If we have a ground instance Cθ where xθ is reducible by RCθ, we can no longer
conclude that Cθ is true because it follows from some rule in RCθ and some smaller
ground instance Cθ′.

Example: Let C [[K]] be the clause f(x) ≈ a [[x ≻ a]], let θ = {x 7→ b}, and assume
that RCθ contains the rule b→ a.
Then θ satisfies K, but θ′ = {x 7→ a} does not, so Cθ′ is not a ground instance of
C [[K]].

Solution:

Assumption: We start the saturation with a set N0 of unconstrained clauses; the limit
N∞ contains constrained clauses, though.

During the model construction, we ignore ground instances Cθ of clauses in N∞ for
which xθ is reducible by RCθ.

We call a ground instance Cθ variable irreducible w. r. t. a ground TRS R, if for every
variable x occurring in a literal L of C, xθ is irreducible by all rules in R that are
smaller than Lθ.

The construction yields a TRS R∞ that is a model of all R∞-variable irreducible

ground instances of clauses in N∞.

R∞ is also a model of all R∞-variable irreducible ground instances of clauses in N0.

Since all clauses in N0 are unconstrained, every ground instance of a clause in N0

follows from rules in R∞ and some smaller or equal ground instance; so it is true in R∞.

Consequently, R∞ is a model of all ground instances of clauses in N0.
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Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints (❀ “basic superposi-
tion”):

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

D′ ∨ C ′ ∨ s[t′] ≈ s′ [[K2 ∧K1 ∧K]]

where u is not a variable and
K = (t = u)

Note: In contrast to ordering constraints, these constraints are essential for soundness.

The Drawback

Constraints reduce the number of required inferences; however, they are detrimental to
redundancy:

Since we consider only R∞-variable irreducible ground instances during the model
construction, we may use only such instances for redundancy:

A clause is redundant, if all its R∞-variable irreducible ground instances follow from
smaller R∞-variable irreducible ground instances and smaller rules in R∞.

Even worse, since we don’t know R∞ in advance, we must consider variable irreducibil-
ity w. r. t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!
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3.8 Hierarchic Superposition

The superposition calculus is a powerful tool to deal with formulas in uninterpreted

first-order logic.

What can we do if some symbols have a fixed interpretation?

Can we combine superposition with decision procedures, e. g., for linear rational arith-
metic? Can we integrate the decision procedure as a “black box”?

Sorted Logic

It is useful to treat this problem in sorted logic (cf. Sect. 1.11, page 32).

A many-sorted signature Σ = (Ξ,Ω,Π) fixes an alphabet of non-logical symbols, where

• Ξ is a set of sort symbols,

• Ω is a sets of function symbols,

• Π is a set of predicate symbols.

Each function symbol f ∈ Ω has a unique declaration f : ξ1 × · · · × ξn → ξ0; each
predicate symbol P ∈ Π has a unique declaration P : ξ1 × · · · × ξn with ξi ∈ Ξ.

In addition, each variable x has a unique declaration x : ξ.

We assume that all terms, atoms, substitutions are well-sorted.

A many-sorted algebra A consists of

• a non-empty set ξA for each ξ ∈ Ξ,

• a function fA : ξ1,A × · · · × ξn,A → ξ0,A for each f : ξ1 × · · · × ξn → ξ0 ∈ Ω,

• a subset PA ⊆ ξ1,A × · · · × ξn,A for each P : ξ1 × · · · × ξn ∈ Π.

Hierarchic Specifications

A specification SP = (Σ, C) consists of

• a signature Σ = (Ξ,Ω,Π),

• a class of term-generated Σ-algebras C closed under isomorphisms.

If C consists of all term-generated Σ-algebras satisfying the set of Σ-formulas N , we
write SP = (Σ, N).
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A hierarchic specification HSP = (SP , SP ′) consists of

• a base specification SP = (Σ, C),

• an extension SP ′ = (Σ′, N ′),

where Σ = (Ξ,Ω,Π), Σ′ = (Ξ′,Ω′,Π′), Ξ ⊆ Ξ′, Ω ⊆ Ω′, and Π ⊆ Π′.

A Σ′-algebra A is called a model of HSP = (SP , SP ′), if A is a model of N ′ and A|Σ ∈ C,
where the reduct A|Σ is defined as ((ξA)ξ∈Ξ, (fA)f∈Ω, (PA)P∈Π).

Note:

• no confusion: models of HSP may not identify elements that are different in the
base models.

• no junk: models of HSP may not add new elements to the interpretations of base
sorts.

Example:

Base specification: ((Ξ,Ω,Π), C), where

Ξ = {int}

Ω = { 0, 1,−1, 2,−2, . . . :→ int ,
− : int → int ,
+ : int × int → int }

Π = {≥ : int × int ,
> : int × int }

C = isomorphy class of Z

Extension: ((Ξ′,Ω′,Π′), N ′), where

Ξ′ = Ξ ∪ {list}

Ω′ = Ω ∪ { cons : int × list → list ,
length : list → int ,
empty :→ list ,
a :→ list }

Π′ = Π

N ′ = { length(a) ≥ 1,
length(cons(x, y)) ≈ length(y) + 1 }

Goal:

Check whether N ′ has a model in which the sort int is interpreted by Z and the
symbols from Ω and Π accordingly.
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Hierarchic Superposition

In order to use a prover for the base theory, we must preprocess the clauses:

A term that consists only of base symbols and variables of base sort is called a base term
(analogously for atoms, literals, clauses).

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm
of a non-base term (or non-base non-equational literal) is a variable.

Every clause can be transformed into an equivalent weakly abstracted clause. We assume
that all input clauses are weakly abstracted.

A substitution is called simple, if it maps every variable of a base sort to a base term.

The inference rules of the hierarchic superposition calculus correspond to the rules of of
the standard superposition calculus with the following modifications:

• The term ordering ≻ must have the property that every base ground term (or non-
equational literal) is smaller than every non-base ground term (or non-equational
literal).

• We consider only simple substitutions as unifiers.

• We perform only inferences on non-base terms (or non-base non-equational liter-
als).

• If the conclusion of an inference is not weakly abstracted, we transform it into an
equivalent weakly abstracted clause.

While clauses that contain non-base literals are manipulated using superposition rules,
base clauses have to be passed to the base prover.

This yields one more inference rule:

Constraint Refutation:
M

⊥

where M is a set of base clauses
that is inconsistent w. r. t. C.
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Problems

There are two potential problems that are harmful to refutational completeness:

• We can only apply the constraint refutation rule to finite sets M . If C is not
compact, this is not sufficient.

• Since we only consider simple substitutions, we will only obtain a model of all
simple ground instances.

To show that we have a model of all instances, we need an additional condition
called sufficient completeness w. r. t. simple instances.

A set N of clauses is called sufficiently complete with respect to simple instances, if for
every model A′ of the set of simple ground instances of N and every ground non-base
term t of a base sort there exists a ground base term t such that t′ ≈ t is true in A′.

Note: Sufficient completeness w. r. t. simple instances ensures the absence of junk.

If the base signature contains Skolem constants, we can sometimes enforce sufficient
completeness by equating ground extension terms with a base sort to Skolem constants.

Skolem constants may harmful to compactness, though.

Completeness of Hierarchic Superposition

If the base theory is compact, the hierarchic superposition calculus is refutationally
complete for sets of clauses that are sufficiently complete with respect to simple instances
(Bachmair, Ganzinger, Waldmann, 1994; Baumgartner, Waldmann 2013).

Main proof idea:

If the set of base clauses in N has some base model, represent this model by a set E
of convergent ground equations and a set D of ground disequations.

Then show: If N is saturated w. r. t. hierarchic superposition, then E ∪ D ∪ Ñ is
saturated w. r. t. standard superposition, where Ñ is the set of simple ground instances
of clauses in N that are reduced w. r. t. E.
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A Refinement

In practice, a base signature often contains domain elements, that is, constant symbols
that are

• guaranteed to be different from each other in every base model, and

• minimal w. r. t. ≻ in their equivalent class.

Typical example for domain elements: number constants 0, 1,−1, 2,−2, . . .

If the base signature contains domain elements, then weak abstraction can be redefined
as follows:

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm of
a non-base term (or non-base non-equational literal) is a variable or a domain element.

Why does that work?
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