
Automated Reasoning II∗

Uwe Waldmann

Summer Term 2024

Topics of the Course

Decision procedures:

equality (congruence closure),
algebraic theories,
combinations.

Satisfiability modulo theories (SMT):

CDCL(T),
dealing with universal quantification.

Superposition:

combining ordered resolution and completion,
optimizations,
integrating theories.

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper – neither stylistically
nor typographically.

1

1 Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is undecidable.

To get decidability results, we have to impose restrictions on

• signatures,

• formulas,

• and/or algebras.

1.1 Theories and Fragments

So far, we have considered the validity or satisfiability of “unstructured” sets of formu-
las.

We will now split these sets of formulas into two parts: a theory (which we keep fixed)
and a set of formulas that we consider relative to the theory.

A first-order theory T is defined by

its signature Σ = (Ω,Π)

its axioms, that is, a set of closed Σ-formulas.

(We often use the same symbol T for a theory and its set of axioms.)

Note: This is the syntactic view of theories. There is also a semantic view, where one
specifies a class of Σ-algebras M and considers Th(M), that is, all closed Σ-formulas
that hold in the algebras of M.

A Σ-algebra that satisfies all axioms of T is called a T -algebra (or T -interpretation).

T is called consistent if there is at least one T -algebra. (We will only consider consistent
theories.)

We can define models, validity, satisfiability, entailment, equivalence, etc., relative to a
theory T :

A T -algebra that is a model of a Σ-formula F is also called a T -model of F .

A Σ-formula F is called T -valid, if A, β |= F for all T -algebras A and assignments β.

A Σ-formula F is called T -satisfiable, if A, β |= F for some T -algebra and assignment
β (and otherwise T -unsatisfiable).

(T -satisfiability of sets of formulas, T -entailment, T -equivalence: analogously.)

A fragment is some syntactically restricted class of Σ-formulas.

Typical restriction: only certain quantifier prefixes are permitted.

2

1.2 Equality

Theory of equality:

Signature: arbitrary

Axioms: none
(but the equality predicate ≈ has a fixed interpretation)

Alternatively:

Signature contains a binary predicate symbol ∼ instead of the built-in ≈

Axioms: reflexivity, symmetry, transitivity, congruence for ∼

In general, satisfiability of first-order formulas w. r. t. equality is undecidable.

However, we will show that it is decidable for ground first-order formulas.

Note: It suffices to consider conjunctions of literals. Arbitrary ground formulas can be
converted into DNF; a formula in DNF is satisfiable if and only if one of its conjunctions
is satisfiable.

Note that our problem can be written in several ways:

An equational clause
∀~x (A1 ∨ . . . ∨An ∨ ¬B1 ∨ . . . ∨ ¬Bk) is T -valid

iff

∃~x (¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧Bk) is T -unsatisfiable

iff

the Skolemized (ground!) formula
(¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧Bk){~x 7→ ~c} is T -unsatisfiable

iff

(A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bk){~x 7→ ~c} is T -valid

Other names:

The theory is also known as EUF (equality with uninterpreted function symbols).

The decision procedures for the ground fragment are called congruence closure algo-
rithms.

3

Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

u1 ≈ v1 ∧ . . . ∧ un ≈ vn ∧ ¬ s1 ≈ t1 ∧ . . . ∧ ¬ sk ≈ tk

Idea:

transform E = {u1 ≈ v1, . . . , un ≈ vn} into an equivalent convergent TRS R and
check whether si↓R = ti↓R.

if si↓R = ti↓R for some i:
si↓R = ti↓R ⇔ si ↔

∗
E ti ⇔ E |= si ≈ ti ⇒ unsat.

if si↓R = ti↓R for no i:
TΣ(X)/R = TΣ(X)/E is a model of the conjunction ⇒ sat.

In principle, one could use Knuth-Bendix completion to convert E into an equivalent
convergent TRS R.

If done properly (see exercises), Knuth-Bendix completion terminates for ground in-
puts.

However, for the ground case, one can optimize the general procedure.

First step:

Flatten terms: Introduce new constant symbols c1, c2, . . . for all subterms:

g(a, h(h(b))) ≈ h(a)

is replaced by

a ≈ c1 ∧ b ≈ c2 ∧ h(c2) ≈ c3 ∧ h(c3) ≈ c4 ∧ g(c1, c4) ≈ c5 ∧ h(c1) ≈ c6 ∧ c5 ≈ c6

Result: only two kinds of equations left.

D-equations: f(ci1, . . . , cin) ≈ ci0 for f/n ∈ Ω, n ≥ 0.
C-equations: ci ≈ cj .

⇒ efficient indexing (e. g., using hash tables),
obvious termination for D-equations.

4

Inference Rules

The congruence closure algorithm is presented as a set of inference rules working on a
set of equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the set of C-equations and R = R0 is the set of D-equations
oriented left-to-right. At the end, E should be empty; then R is the result.

Notation: The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

Simplify:

E ∪ {c
.
≈ c′}, R ∪ {c → c′′}

E ∪ {c′′
.
≈ c′}, R ∪ {c → c′′}

Delete:

E ∪ {c ≈ c}, R

E, R

Orient:

E ∪ {c
.
≈ c′}, R

E, R ∪ {c → c′}
if c ≻ c′

Collapse:

E, R ∪ {t[c]p → c′, c → c′′}

E, R ∪ {t[c′′]p → c′, c → c′′}
if p 6= ε

Deduce:

E, R ∪ {t → c, t → c′}

E ∪ {c ≈ c′}, R ∪ {t → c}

Note: for ground rewrite rules, critical pair computation does not involve substitution.
Therefore, every critical pair computation can be replaced by a simplification, either
using Deduce or Collapse.

Theorem 1.1 Let E0 be a finite set of C-equations, let R0 be a finite set of D-equations

oriented left-to-right w.r.t. ≻, and let ≻ be a total ordering on constants. Then the

inference system terminates with a final state (En, Rn) where En = ∅, Rn is terminating

and confluent, and ≈E0∪R0
equals ≈Rn

.

5

Strategy

The inference rules are applied according to the following strategy:

(1) If there is an equation in E, use Simplify as long as possible for this equation, then
use either Delete or Orient. Repeat until E is empty.

(2) If Collapse is applicable, apply it, if now Deduce is applicable, apply it as well.
Repeat until Collapse is no longer applicable.

(3) If E is non-empty, go to (1), otherwise return R.

Implementation

Instead of fixing the ordering ≻ in advance, it is preferable to define it on the fly during
the algorithm:

If we orient an equation c ≈ c′ between two constant symbols, we try to make that
constant symbol larger that occurs less often in R ⇒ fewer Collapse steps.

Additionally:

Use various index data structures so that all the required operations can be performed
efficiently.

Use a union-find data structure to represent the equivalence classes encoded by the
C-rules.

Average runtime for an implementation using hash tables: O(m logm), where m is the
number of edges in the graph representation of the initial C and D-equations.

One Small Problem

The inference rules are sound in the usual sense: The conclusions are entailed by the
premises, so every T -model of the premises is a T -model of the conclusions.

For the initial flattening, however, we get a weaker result: We have to extend the T -
models of the original equations to obtain models of the flattened equations. That is, we
get a new algebra with the same universe as the old one, with the same interpretations
for old functions and predicate symbols, but with appropriately chosen interpretations
for the new constants.

Consequently, the relations ≈E and ≈R for the original E and the final R are not the
same. For instance, c3 ≈E c7 does not hold, but c3 ≈R c7 may hold.

6

On the other hand, the model extension preserves the universe and the interpretations
for old symbols. Therefore, if s and t are terms over the old symbols, we have s ≈E t iff
s ≈R t.

This is sufficient for our purposes: The terms si and ti that we want to normalize using
R do not contain new symbols.

Other Predicate Symbols

If the initial ground conjunction contains also non-equational literals [¬] P (t1, . . . , tn),
treat these like equational literals [¬] P (t1, . . . , tn) ≈ true. Then use the same algorithm
as before.

History

Congruence closure algorithms have been published, among others, by Shostak (1978).
by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a completion proce-
dure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the Downey/Sethi/
Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the presentation
of Bachmair and Tiwari.

Literature

Leo Bachmair, Ashish Tiwari: Abstract Congruence Closure and Specializations. Proc.
CADE-17, 2000, pp 64–78, LNCS 1831, Springer.

Peter J. Downey, Ravi Sethi, Robert E. Tarjan: Variations on the Common Subexpres-
sion Problem. Journal of the ACM, 27(4):758–771, 1980.

Deepak Kapur: Shostak’s congruence closure as completion. Proc. 8th RTA, 1997, pp.
23–37, LNCS 1232, Springer.

Greg Nelson, Derek C. Oppen: Fast Decision Procedures Based on Congruence Closure.
Journal of the ACM, 27(2):356–364, 1980.

Robert E. Shostak: An algorithm for reasoning about equality. Communications of the
ACM, 21(7):583–585, 1978.

7

1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {</2}) and the pre-
defined binary predicate ≈.

The equational part of linear rational arithmetic is described by the theory of divisible
torsion-free abelian groups:

∀x, y, z (x+ (y + z) ≈ (x+ y) + z) (associativity)

∀x, y (x+ y ≈ y + x) (commutativity)

∀x (x+ 0 ≈ x) (identity)

∀x ∃y (x+ y ≈ 0) (inverse)

For all n ≥ 1: ∀x (x+ · · ·+ x
︸ ︷︷ ︸

n times

≈ 0 → x ≈ 0) (torsion-freeness)

For all n ≥ 1: ∀x ∃y (y + · · ·+ y
︸ ︷︷ ︸

n times

≈ x) (divisibility)

¬ 1 ≈ 0 (non-triviality)

Note: Quantification over natural numbers is not part of our language. We really need
infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible

abelian groups:

∀x (¬ x < x) (irreflexivity)

∀x, y, z (x < y ∧ y < z → x < z) (transitivity)

∀x, y (x < y ∨ y < x ∨ x ≈ y) (totality)

∀x, y, z (x < y → x+ z < y + z) (compatibility)

0 < 1 (non-triviality)

Note: The second non-triviality axiom renders the first one superfluous. Moreover, as
soon as we add the axioms of compatible strict total orderings, torsion-freeness can be
omitted. Every ordered divisible abelian group is obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered (F.-W. Levi
1913).

Examples: Q, R, Qn, Rn, . . .

8

The signature can be extended by further symbols:

≤/2, >/2, ≥/2, 6≈/2: defined using < and ≈

−/1: Skolem function for inverse axiom

−/2: defined using +/2 and −/1

divn/1: Skolem functions for divisibility axiom for all n ≥ 1.

multn/1: defined by ∀x (multn(x) ≈ x+ · · ·+ x
︸ ︷︷ ︸

n times

) for all n ≥ 1.

multq/1: defined using multn, divn, − for all q ∈ Q.

(We usually write q · t or qt instead of multq(t).)

q/0 (for q ∈ Q): defined by q ≈ q · 1.

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over
the base signature.

When · is considered as a binary operator, (ordered) divisible torsion-free abelian groups
correspond to (ordered) rational vector spaces.

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination: every formula ∃xF or ∀xF
in linear rational arithmetic can be converted into an equivalent formula without the
variable x.

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in
1936.

Observation: Every literal over the variables x, y1, . . . , yn can be converted into an
ODAG-equivalent literal x ∼ t[~y] or 0 ∼ t[~y], where ∼ ∈ {<,>,≤,≥,≈, 6≈} and t[~y]
has the form

∑

i qi · yi + q0.

In other words, we can either eliminate x completely or isolate in on one side of the
literal, and we can replace every negative ordering literal by a positive one.

Moreover, we can convert every 6≈-literal into an ODAG-equivalent disjunction of two
<-literals.

9

We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation x ≈ t[~y], we can eliminate the quantifier ∃x by
substitution:

∃x (x ≈ t[~y] ∧ F)

is equivalent to

F{x 7→ t[~y]}

If x occurs only in inequations, then

∃x
(
∧

i x < si(~y) ∧
∧

j x ≤ tj(~y)

∧
∧

k x > uk(~y) ∧
∧

l x ≥ vl(~y) ∧
∧

m 0 ∼m wm(~y)
)

is equivalent to

∧

i

∧

k si(~y) > uk(~y) ∧
∧

j

∧

k tj(~y) > uk(~y)

∧
∧

i

∧

l si(~y) > vl(~y) ∧
∧

j

∧

l tj(~y) ≥ vl(~y)

∧
∧

m 0 ∼m wm(~y)

Proof: (⇒) by transitivity;
(⇐) take 1

2
(min{si, tj}+max{uk, vl}) as a witness.

Extension to arbitrary formulas:

Transform into prenex formula;

if innermost quantifier is ∃: transform matrix into DNF and move ∃ into disjunction;

if innermost quantifier is ∀: replace ∀xF by ¬∃x¬F , then eliminate ∃.

Consequence: every closed formula over the signature of ODAGs is ODAG-equivalent to
either ⊤ or ⊥.

Consequence: ODAGs are a complete theory, i. e., every closed formula over the signature
of ODAGs is either valid or unsatisfiable w. r. t. ODAGs.

Consequence: every closed formula over the signature of ODAGs holds either in all
ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs.

(These properties do not hold for extended signatures!)

10

Fourier-Motzkin: Complexity

One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

m quantifiers ∃ . . .∃:

naive implementation produces a doubly exponential number of inequations, therefore
needs O(n2m) runtime (the number of necessary inequations grows only exponentially,
though).

m quantifiers ∃∀∃∀ . . . ∃:

CNF/DNF conversion (exponential!) required after each step;
therefore non-elementary runtime.

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic was developed
by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution method”.

For simplicity, we consider only one particular ODAG, namely Q (as we have seen above,
the results are the same for all ODAGs).

Let F (x, ~y) be a positive boolean combination of linear (in-)equations x ∼i si(~y) and
0 ∼j s′j(~y) with ∼i,∼j ∈ {≈, 6≈, <,≤, >,≥}, that is, a formula built from linear (in-)
equations, ∧ and ∨ (but without ¬).

Goal: Find a finite set T of “test points” so that

∃xF (x, ~y) |=|
∨

t∈T

F (x, ~y) {x 7→ t}

In other words: We want to replace the infinite disjunction ∃x by a finite disjunction.

If we keep the values of the variables ~y fixed, then we can consider F as a function
F : x 7→ F (x, ~y) from Q to {0, 1}.

The value of each of the atoms si(~y) ∼i x changes only at si(~y), and the value of F can
only change if the value of one of its atoms changes.

Let δ(~y) = min{ |si(~y)− sj(~y)| | si(~y) 6= sj(~y) }

F is a piecewise constant function; more precisely, the set of all x with F (x, ~y) = 1 is
a finite union of intervals. (The union may be empty, the individual intervals may be
finite or infinite and open or closed.)

11

Moreover, each of the intervals has either length 0 (i. e., it consists of one point), or its
length is at least δ(~y).

If the set of all x for which F (x, ~y) is 1 is non-empty, then

(i) F (x, ~y) = 1 for all x ≤ r(~y) for some r(~y) ∈ Q

(ii) or there is some point where the value of F (x, ~y) switches from 0 to 1 when we
traverse the real axis from −∞ to +∞.

We use this observation to construct a set of test points.

We start with some “sufficiently small” test point r(~y) to take care of case (i).

For case (ii), we observe that F (x, ~y) can only switch from 0 to 1 if one of the atoms
switches from 0 to 1. (We consider only positive boolean combinations of atoms, and ∧
and ∨ are monotonic w. r. t. truth values.)

x ≤ si(~y) and x < si(~y) do not switch from 0 to 1 when x grows.

x ≥ si(~y) and x ≈ si(~y) switch from 0 to 1 at si(~y)
⇒ si(~y) is a test point.

x > si(~y) and x 6≈ si(~y) switch from 0 to 1 “right after” si(~y)
⇒ si(~y) + ε (for some 0 < ε < δ(~y)) is a test point.

If r(~y) is sufficiently small and 0 < ε < δ(~y), then

T := {r(~y)} ∪ { si(~y) | ∼i ∈ {≥,=} }
∪ { si(~y) + ε | ∼i ∈ {>, 6=} }.

is a set of test points.

Problem:
We don’t know how small r(~y) has to be for case (i), and we don’t know δ(~y) for
case (ii).

Idea:
We consider the limits for r → −∞ and for ε ց 0, that is, we redefine

T := {−∞} ∪ { si(~y) | ∼i ∈ {≥,=} }
∪ { si(~y) + ε | ∼i ∈ {>, 6=} }.

How can we eliminate the infinitesimals ∞ and ε when we substitute elements of T
for x ?

12

Virtual substitution:

(x < s(~y)) {x 7→ −∞} := lim
r→−∞

(r < s(~y)) = ⊤

(x ≤ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≤ s(~y)) = ⊤

(x > s(~y)) {x 7→ −∞} := lim
r→−∞

(r > s(~y)) = ⊥

(x ≥ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≥ s(~y)) = ⊥

(x ≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r 6≈ s(~y)) = ⊤

(x < s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε < s(~y)) = (u < s(~y))

(x ≤ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≤ s(~y)) = (u < s(~y))

(x > s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε > s(~y)) = (u ≥ s(~y))

(x ≥ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≥ s(~y)) = (u ≥ s(~y))

(x ≈ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε 6≈ s(~y)) = ⊤

We have traversed the real axis from −∞ to +∞. Alternatively, we can traverse it from
+∞ to −∞. In this case, the test points are

T ′ := {+∞} ∪ { si(~y) | ∼i ∈ {≤,=} }
∪ { si(~y)− ε | ∼i ∈ {<, 6=} }.

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T ′ and take the smaller set.

For a universally quantified formulas ∀xF , we replace it by ¬∃x¬F , push inner negation
downwards, and then continue as before.

Note that there is no CNF/DNF transformation required. Loos-Weispfenning quantifier
elimination works on arbitrary positive formulas.

13

Loos-Weispfenning: Complexity

One LW-step for ∃ or ∀:

as the number of test points is at most one plus the number of atoms (one plus half
of the number of atoms, if there are only ordering literals), the formula size grows
quadratically; therefore O(n2) runtime.

Multiple quantifiers of the same kind:

∃x2 ∃x1. F (x1, x2, ~y)

❀ ∃x2.
(∨

t1∈T1
F (x1, x2, ~y) {x1 7→ t1}

)

❀

∨

t1∈T1
(∃x2. F (x1, x2, ~y) {x1 7→ t1})

❀

∨

t1∈T1

∨

t2∈T2
(F (x1, x2, ~y) {x1 7→ t1} {x2 7→ t2})

m quantifiers ∃ . . .∃ or ∀ . . .∀:

formula size is multiplied by n in each step, therefore O(nm+1) runtime.

m quantifiers ∃∀∃∀ . . . ∃:

doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant; so an efficient
implementation must make heavy use of simplification techniques.

Literature

Andreas Dolzmann: Algorithmic Strategies for Applicable Real Qunantifier Elimination.
PhD thesis, Universität Passau, 2000.

Jean-Baptiste Joseph Fourier: Solution d’une question particulière du calcul des inégalités.
Nouveau Bulletin des Sciences par la Société philomahique de Paris, 1826.

F. Levi: Arithmetische Gesetze im Gebiete discreter Gruppen. Rendiconti del Circolo
Matematico di Palermo, 35:225–236, 1913.

Rüdiger Loos, Volker Weispfenning: Applying Linear Quantifier Elimination. The Com-
puter Journal, 36(5):450–462, 1993.

14

1.4 Existentially-quantified LRA

So far, we have considered formulas that may contain free, existentially quantified, and
universally quantified variables.

For the special case of conjunction of linear inequations in which all variables are exis-
tentially quantified, there are more efficient methods available.

Main idea: reduce satisfiability problem to optimization problem.

Linear Optimization

Goal:

Solve a linear optimization (also called: linear programming) problem for given num-
bers aij , bi, cj ∈ R:

maximize
∑

1≤j≤n cjxj

for
∧

1≤i≤m

∑

1≤j≤n aijxj ≤ bi

or in vectorial notation:

maximize ~c⊤~x

for A~x ≤ ~b

Simplex algorithm:

Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is exponential,
though.

Interior point methods:

First algorithm by Karmarkar (1984).

Polynomial-time worst-case complexity (but large constants).

In practice: no clear winner.

Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.

15

Main idea of Simplex:

A~x ≤ ~b describes a convex polyhedron.

Pick one vertex of the polyhedron,
then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global optimum.

Details: see special lecture on optimization.

Using an optimization procedure for checking satisfiability:

Goal: Check whether A~x ≤ ~b is satisfiable.

To use the Simplex method, we have to transform the original (possibly empty) poly-
hedron into another polyhedron that is non-empty and for which we know one initial
vertex.

Every real number can be written as the difference of two non-negative real numbers.
Use this idea to convert A~x ≤ ~b into an equisatisfiable inequation system ~y ≥ ~0,
B~y ≤ ~b for new variables ~y.

Multiply those inequations of the inequation system B~y ≤ ~b in which the number on
the right-hand side is negative by −1. We obtain two inequation systems D1~y ≤ ~g1,
D2~y ≥ ~g2, such that ~g1 ≥ ~0, ~g2 > 0.

Now solve

maximize ~1⊤(D2~y − ~z)

for ~y, ~z ≥ ~0
D1~y ≤ ~g1
D2~y − ~z ≤ ~g2

where ~z is a vector of new variables with the same size as ~g2.

Observation 1: ~0 is a vertex of the polyhedron of this optimization problem.

Observation 2: The maximum is ~1⊤~g2 if and only if ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution.

(⇒): If ~1⊤(D2~y − ~z) = ~1⊤~g2 for some ~y, ~z satisfying D2~y − ~z ≤ ~g2, then D2~y − ~z = ~g2,
hence D2~y = ~g2 + ~z ≥ ~g2.

(⇐): ~1⊤(D2~y − ~z) can never be larger than ~1⊤~g2. If ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution, choose ~z = D2~y − ~g2; then ~1⊤(D2~y − ~z) = ~1⊤~g2.

16

A Simplex variant:

Transform the satisfiability problem into the form

A~x = ~0
~l ≤ ~x ≤ ~u

(where li may be −∞ and ui may be +∞).

Relation to optimization problem is obscured.

But: More efficient if one needs an incremental decision procedure, where inequations
may be added and retracted (Dutertre and de Moura 2006).

1.5 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear real arithmetic (or more
generally, for real-closed fields). His algorithm had non-elementary complexity, how-
ever.

An improved algorithm by Collins (1975) (with further improvements by Hong) has
doubly exponential complexity: Cylindrical algebraic decomposition (CAD).

Implementation: QEPCAD.

Cylindrical Algebraic Decomposition

Given: First-order formula over atoms of the form fi(~x) ∼ 0, where the fi are polynomials
over variables ~x.

Goal: Decompose Rn into a finite number of regions such that all polynomials have
invariant sign on every region X :

∀i (∀~x ∈ X. fi(~x) < 0
∨ ∀~x ∈ X. fi(~x) = 0
∨ ∀~x ∈ X. fi(~x) > 0)

Note: Implementation needs exact arithmetic using algebraic numbers (i. e., zeroes of
univariate polynomials with integer coefficients).

17

1.6 Real Arithmetic incl. Transcendental Functions

Real arithmetic with exp/log: decidability unknown.

Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if x ∈ Z:

∃y (sin(y) = 0 ∧ 3 < y ∧ y < 4 ∧ sin(x · y) = 0)

(note that necessarily y = π).

Consequence: Peano arithmetic (which is undecidable) can be encoded in real arith-
metic with trigonometric functions.

However, real arithmetic with transcendental functions is decidable for formulas that are
stable under perturbations, i. e., whose truth value does not change if numeric constants
are modified by some sufficiently small ε.

Example:

Stable under perturbations: ∃x x2 ≤ 5

Not stable under perturbations: ∃x x2 ≤ 0
(Formula is true, but if we subtract an arbitrarily small ε > 0 from the right-hand
side, it becomes false.)

Unsatisfactory from a mathematical point of view, but sufficient for engineering appli-
cations (where stability under perturbations is necessary anyhow).

Approach:

Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are stable under perturbations;
may loop forever if the formula is not stable under perturbations.

1.7 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic.

Decidable (Presburger, 1929), but quantifier elimination is only possible if additional
divisibility operators are present:

∃x (y = 2x) is equivalent to divides(2, y) but not to any quantifier-free formula over
the base signature.

Cooper (1972): Quantifier elimination procedure, triple exponential for arbitrarily
quantified formulas.

18

The Omega Test

Omega test (Pugh, 1991): variant of Fourier–Motzkin for conjunctions of (in-)equations
in linear integer arithmetic.

Idea:

• Perform easy transformations, e. g.:
3x+ 6y ≤ 8 7→ 3x+ 6y ≤ 6 7→ x+ 2y ≤ 2
3x+ 6y = 8 7→ ⊥
(since 3x+ 6y must be divisible by 3).

• Eliminate equations
(easy, if one coefficient is 1; tricky otherwise).

• If only inequations are left:
no real solutions → unsatisfiable for Z
“sufficiently many” real solutions → satisfiable for Z
otherwise: branch

What does “sufficiently many” mean?

Consider inequations ax ≤ s and bx ≥ t with a, b ∈ N>0 and polynomials s, t.

If these inequations have real solutions, the interval of solutions ranges from 1

b
t to 1

a
s.

The longest possible interval of this kind that does not contain any integer number
ranges from i+ 1

b
to i+ 1− 1

a
for some i ∈ Z; it has the length 1− 1

a
− 1

b
.

Consequence:

If 1

a
s > 1

b
t + (1 − 1

a
− 1

b
), or equivalently, bs ≥ at + ab − a− b + 1 is satisfiable, then

the original problem must have integer solutions.

It remains to consider the case that bs ≥ at is satisfiable (hence there are real solutions)
but bs ≥ at+ ab− a− b+1 is not (hence the interval of real solutions need not contain
an integer).

In the latter case, bs ≤ at + ab − a − b holds, hence for every solution of the original
problem:

t ≤ bx ≤ b
a
s ≤ t+ (b− 1− b

a
)

and if x is an integer, t ≤ bx ≤ t+
⌊
b− 1− b

a

⌋

⇒ Branch non-deterministically:
Add one of the equations bx = t+ i for i ∈ {0, . . . , ⌊b− 1− b

a

⌋
}.

Alternatively, if b > a:
Add one of the equations ax = s− i for i ∈ {0, . . . , ⌊a− 1− a

b

⌋
}.

19

Note: Efficiency depends highly on the size of coefficients. In applications from program
verification, there is almost always some variable with a very small coefficient. If all
coefficients are large, the branching step gets expensive.

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to optimization problem (like Sim-
plex). ILP, MILP: (mixed) integer linear programming.

Two basic approaches:

Branching: If the simplex algorithm finds a solution with x = 2.7, add the inequation
x ≤ 2 or the inequation x ≥ 3.

Cutting planes: Derive an inequation that holds for all real solutions, then round it to
obtain an inequation that holds for all integer solutions, but not for the real solution
found previously.

Example:

Given: 2x− 3y ≤ 1
2x+ 3y ≤ 5

−5x− 4y ≤ −7

Simplex finds an extremal solution x = 3

2
, y = 2

3
.

From the first two inequations, we see that 4x ≤ 6, hence x ≤ 3

2
. If x ∈ Z, we conclude

x = ⌊x⌋ ≤ ⌊3

2
⌋ = 1.

⇒ Add the inequation x ≤ 1, which holds for all integer solutions, but cuts off the
solution (3

2
, 2

3
).

In practice:

Use both: Alternate between branching and cutting steps.
Better performance than the individual approaches.

1.8 Difference Logic

Difference Logic (DL):

Fragment of linear rational or integer arithmetic.

Formulas: conjunctions of atoms x− y < c or x− y ≤ c,
x, y ∈ X , c ∈ Q (or c ∈ Z).

One special variable x0 whose value is fixed to 0 is permitted;
this allows to express atoms like x < 3 in the form x− x0 < 3.

20

Solving difference logic:

Let F be a conjunction in DL.
For simplicity: only non-strict inequalities.

Define a weighted graph G:

Vertices V : Variables in F .

Edges E: x− y ≤ c ❀ edge (x, y) with weight c.

Theorem: F is unsatisfiable iff G has a negative cycle.

Can be checked in O(|V | · |E|) using the Bellman-Ford algorithm.

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2n), in device drivers also
combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant, Kroening, et al.):
successful.

1.10 Decision Procedures for Data Structures

There are decision procedures for, e. g.,

Arrays (read, write)

Lists (car, cdr, cons)

Sets or multisets with cardinalities

Bitvectors

Note: There are usually restrictions on quantifications. Unrestricted universal quantifi-
cation can lead to undecidability.

21

Literature: Further Decision Procedures

Aaron R. Bradley, Zohar Manna: The Calculus of Computation. Springer, 2007.

Aaron R. Bradley, Zohar Manna, Henny B. Sipma: What’s decidable about arrays?
Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS 3855, pp.
427-442, Springer, 2006.

Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strichman,
Bryan Brady: Deciding bit-vector arithmetic with abstraction. 13th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07),
LNCS 4424, pp. 358–372, Springer, 2007.

George E. Collins: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. 2nd. GI Conf. Automata Theory and Formal Languages, LNCS 33, pp.
134–183, Springer, 1975.

D. C. Cooper: Theorem Proving in Arithmetic Without Multiplication. Machine Intel-
ligence, vol. 7, pp. 91–99. American Elsevier, New York, 1972.

George B. Dantzig: Linear Programming and Extensions. Princeton Univ. Press, 1963.

L. V. Kantorovich: Mathematical Methods in the Organization and Planning of Produc-
tion. Publication House of the Leningrad State University, 1939. Translated in Manage-
ment Science, 6:366–422, 1960.

Narendra Karmarkar: A New Polynomial Time Algorithm for Linear Programming.
Combinatorica, 4(4):373–395, 1984.

Daniel Kroening, Ofer Strichman: Decision Procedures – An Algorithmic Point of View.
Springer, 2008.

Mojżesz Presburger: Über der Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Ren-
dus Premier Congrès des Mathématiciens des Pays Slaves, Warsaw, pp. 92-101, 1929.

William Pugh: The Omega Test: a fast and practical integer programming algorithm for
dependence analysis. Comm. of the ACM, 35(8):102-114, 1992.

Stefan Ratschan: Approximate Quantified Constraint Solving by Cylindrical Box De-
composition. Reliable Computing, 8(1):21–42, 2002.

Alfred Tarski: A Decision Method for Elementary Algebra and Geometry. Univ. of Cal-
ifornia Press, Berkeley, 1951.

22

