

Uwe Waldmann

July 9, 2024

Tutorials for "Automated Reasoning II"
 Exercise sheet 8

Exercise 8.1:

A group is a set G with a binary function $\cdot: G \times G \rightarrow G$, a unary function ${ }_{-}^{-1}: G \rightarrow G$, and an element $e \in G$ that satisfy the axioms

$$
\begin{gathered}
a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
a \cdot e=a \\
a \cdot a^{-1}=e
\end{gathered}
$$

for all $a, b, c \in G$. (It is sufficient to assert that e is a right identity and that ${ }_{-}{ }^{-1}$ is a right inverse. One can prove from these axioms that e is also a left identity and that ${ }_{-}{ }^{-1}$ is also a left inverse.)

For a group element $a \in G$ and a positive integer n, we define a^{n} recursively by $a^{1}=a$ and $a^{n+1}=a \cdot\left(a^{n}\right)$. We say that $a \in G$ has order n if n is the smallest positive integer such that $a^{n}=e$. We say that $a \in G$ has order ∞ if there is no positive integer n such that $a^{n}=e$. (Note that every group has exactly one element with order 1, namely e itself.)

We say that some $a \in G$ commutes with some $b \in G$ if $a \cdot b=b \cdot a$. The center of a group G is the set of all elements $a \in G$ that commute with every $b \in G$.

Formalize the following problem in unsorted first-order logic with equality and use the theorem prover E to prove it: If a group G has exactly one element with order 2, then this element is in the center of G.

Notes:

- You can download the latest version of E from https://www.eprover.org/.
- A sample E input file containing the definition of a group and the conjecture that the right identity element in a group is also a left identity is available from the tutorial web page. Use eprover --auto --proof-object group.p | less to run E on it.
- Even though the presentation above refers to integer numbers, you should formalize the problem without referring to integer numbers.
- It is advisable to formalize the problem without defining auxiliary predicates like commutes (_) or center (_). (With auxiliary predicates, the problem becomes noticably harder for first-order theorem provers.)

Exercise 8.2:

Compute minimal complete sets of unifiers for the following equality problems. (There is no need to construct and solve diophantine equation systems; the solutions are relatively obvious.)
(1) $\{x+y \approx a+b\}$ w.r.t. ACU.
(2) $\{x+y \approx a+b\}$ w.r.t. AC.
(3) $\{x+y \approx x\}$ w.r.t. ACU.
(4) $\{x+y \approx x\}$ w.r.t. AC.
(5) $\{x+y+a \approx z+b\}$ w.r.t. ACU.
(6) $\{x+y+a \approx z+z\}$ w.r.t. ACU.
(7) $\{a+x+x \approx y+b\}$ w.r.t. A.

Bring your solution (or solution attempt) to the tutorial on July 16.

