

Universität des Saarlandes FR Informatik

Uwe Waldmann

June 17, 2024

Tutorials for "Automated Reasoning II" Exercise sheet 6

Exercise 6.1:

Compute R_{∞} for the clause set $\{f(x) \approx b\}$ and the signature $\Sigma = (\{f/1, g/1, b/0\}, \emptyset)$; use the LPO with g > f > b.

Exercise 6.2:

Let N be a set of equational clauses such that $\perp \notin N$. In Thm. 3.9, we have shown that whenever N is saturated up to redundancy, then every ground instance $C\theta \in G_{\Sigma}(N)$ is either productive or true in $R_{C\theta}$. The converse does not hold, not even for ground unit clauses: Give a (small) set of ground unit clauses N such that $\perp \notin N$ and every $C \in N$ is either productive or true in R_C , but N is not saturated up to redundancy.

Exercise 6.3:

Prove: If N is a set of clauses, then every inference between clauses in $G_{\Sigma}(N)$ is a ground instance of an inference between clauses in N or redundant w.r.t. $G_{\Sigma}(N)$.

Exercise 6.4:

How would you redefine the fairness of a run if saturation is defined using redundant inferences? Try to find the easiest possible definition. Reprove Lemma 3.16 for the new definitions of saturation and fairness.

Exercise 6.5:

Let $D = D' \lor t \approx t'$ and C[u] be two clauses such that there is a (positive or negative) superposition inference between D and C with conclusion $C_0 = (D' \lor C[t'])\sigma$, where σ is the mgu of t and u. Suppose that $t\sigma$ occurs at least once in $C[t']\sigma$. Let C'_0 be the clause that we obtain from C_0 if every occurrence of $t\sigma$ within $C[t']\sigma$ is replaced by $t'\sigma$. (As an example, consider $D = g(x) \not\approx g(y) \lor f(x, y) \approx f(y, x), C = h(f(g(b), z)) \approx f(g(b), z), t = f(x, y),$ $t\sigma = f(g(b), z), C_0 = g(g(b)) \not\approx g(z) \lor h(f(z, g(b))) \approx f(g(b), z), C'_0 = g(g(b)) \not\approx g(z) \lor h(f(z, g(b))) \approx f(z, g(b)).$

- (a) C'_0 is entailed by D and C_0 . Why?
- (b) C_0 is not redundant w.r.t. $\{D, C'_0\}$. Why?
- (c) The inference that produces C_0 is redundant w.r.t. $\{D, C'_0\}$. Why?

Bring your solution (or solution attempt) to the tutorial on June 24.