Exercise 1.1:
Use the congruence closure algorithm to check whether the equational clause

\[\forall x, y \ f(f(x)) \not\approx x \lor f(x) \not\approx y \lor f(f(y)) \not\approx g(y) \lor x \approx y \lor h(x, y) \approx h(x, g(y)) \]

is valid.

Exercise 1.2:
On page 4 of the lecture notes we have sketched a flattening operation for sets of equations. Formalize it using an appropriate transition system in such a way that any two different D-equations have always different left-hand sides.

Exercise 1.3:
The Fourier-Motzkin algorithm would be unsound if we omitted the non-triviality axioms from the definition of ODAGs. Where do we need non-triviality?

Exercise 1.4:
Describe the rules for virtual substitution for the test points in the set \(T' \) that is defined on page 13 of the lecture notes.

Exercise 1.5:
Use the Loos-Weispfenning algorithm to eliminate \(\exists x \) from the formula

\[\exists x \ ((2x - y > 0 \lor x \geq 2) \land (y - x \geq -1 \lor x < 1) \land \neg (x \geq 3y)) \]

Simplify the result as much as possible.

Bring your solution (or solution attempt) to the tutorial on April 30.