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1 Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is undecidable.

To get decidability results, we have to impose restrictions on

• signatures,

• formulas,

• and/or algebras.

1.1 Theories and Fragments

So far, we have considered the validity or satisfiability of “unstructured” sets of formu-
las.

We will now split these sets of formulas into two parts: a theory (which we keep fixed)
and a set of formulas that we consider relative to the theory.

A first-order theory T is defined by

its signature Σ = (Ω,Π)

its axioms, that is, a set of closed Σ-formulas.

(We often use the same symbol T for a theory and its set of axioms.)

Note: This is the syntactic view of theories. There is also a semantic view, where one
specifies a class of Σ-algebras M and considers Th(M), that is, all closed Σ-formulas
that hold in the algebras ofM.

A Σ-algebra that satisfies all axioms of T is called a T -algebra (or T -interpretation).

T is called consistent if there is at least one T -algebra. (We will only consider consistent
theories.)

We can define models, validity, satisfiability, entailment, equivalence, etc., relative to a
theory T :

A T -algebra that is a model of a Σ-formula F is also called a T -model of F .

A Σ-formula F is called T -valid, if A, β |= F for all T -algebras A and assignments β.

A Σ-formula F is called T -satisfiable, if A, β |= F for some T -algebra and assignment
β (and otherwise T -unsatisfiable).

(T -satisfiability of sets of formulas, T -entailment, T -equivalence: analogously.)

A fragment is some syntactically restricted class of Σ-formulas.

Typical restriction: only certain quantifier prefixes are permitted.

2



1.2 Equality

Theory of equality:

Signature: arbitrary

Axioms: none
(but the equality predicate ≈ has a fixed interpretation)

Alternatively:

Signature contains a binary predicate symbol ∼ instead of the built-in ≈

Axioms: reflexivity, symmetry, transitivity, congruence for ∼

In general, satisfiability of first-order formulas w. r. t. equality is undecidable.

However, we will show that it is decidable for ground first-order formulas.

Note: It suffices to consider conjunctions of literals. Arbitrary ground formulas can be
converted into DNF; a formula in DNF is satisfiable if and only if one of its conjunctions
is satisfiable.

Note that our problem can be written in several ways:

An equational clause
∀~x (A1 ∨ . . . ∨An ∨ ¬B1 ∨ . . . ∨ ¬Bk) is T -valid

iff

∃~x (¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧Bk) is T -unsatisfiable

iff

the Skolemized (ground!) formula
(¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧Bk){~x 7→ ~c} is T -unsatisfiable

iff

(A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bk){~x 7→ ~c} is T -valid

Other names:

The theory is also known as EUF (equality with uninterpreted function symbols).

The decision procedures for the ground fragment are called congruence closure algo-
rithms.
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Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

u1 ≈ v1 ∧ . . . ∧ un ≈ vn ∧ ¬ s1 ≈ t1 ∧ . . . ∧ ¬ sk ≈ tk

Idea:

transform E = {u1 ≈ v1, . . . , un ≈ vn} into an equivalent convergent TRS R and
check whether si↓R = ti↓R.

if si↓R = ti↓R for some i:
si↓R = ti↓R ⇔ si ↔

∗
E ti ⇔ E |= si ≈ ti ⇒ unsat.

if si↓R = ti↓R for no i:
TΣ(X)/R = TΣ(X)/E is a model of the conjunction ⇒ sat.

In principle, one could use Knuth-Bendix completion to convert E into an equivalent
convergent TRS R.

If done properly (see exercises), Knuth-Bendix completion terminates for ground in-
puts.

However, for the ground case, one can optimize the general procedure.

First step:

Flatten terms: Introduce new constant symbols c1, c2, . . . for all subterms:

g(a, h(h(b))) ≈ h(a)

is replaced by

a ≈ c1 ∧ b ≈ c2 ∧ h(c2) ≈ c3 ∧ h(c3) ≈ c4 ∧ g(c1, c4) ≈ c5 ∧ h(c1) ≈ c6 ∧ c5 ≈ c6

Result: only two kinds of equations left.

D-equations: f(ci1, . . . , cin) ≈ ci0 for f/n ∈ Ω, n ≥ 0.
C-equations: ci ≈ cj .

⇒ efficient indexing (e. g., using hash tables),
obvious termination for D-equations.
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Inference Rules

The congruence closure algorithm is presented as a set of inference rules working on a
set of equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the set of C-equations and R = R0 is the set of D-equations
oriented left-to-right. At the end, E should be empty; then R is the result.

Notation: The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

Simplify:

E ∪ {c
.
≈ c′}, R ∪ {c→ c′′}

E ∪ {c′′
.
≈ c′}, R ∪ {c→ c′′}

Delete:

E ∪ {c ≈ c}, R

E, R

Orient:

E ∪ {c
.
≈ c′}, R

E, R ∪ {c→ c′}
if c ≻ c′

Collapse:

E, R ∪ {t[c]p → c′, c→ c′′}

E, R ∪ {t[c′′]p → c′, c→ c′′}
if p 6= ε

Deduce:

E, R ∪ {t→ c, t→ c′}

E ∪ {c ≈ c′}, R ∪ {t→ c}

Note: for ground rewrite rules, critical pair computation does not involve substitution.
Therefore, every critical pair computation can be replaced by a simplification, either
using Deduce or Collapse.

Theorem 1.1 Let E0 be a finite set of C-equations, let R0 be a finite set of D-equations
oriented left-to-right w.r.t. ≻, and let ≻ be a total ordering on constants. Then the
inference system terminates with a final state (En, Rn) where En = ∅, Rn is terminating
and confluent, and ≈E0∪R0

equals ≈Rn
.
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Strategy

The inference rules are applied according to the following strategy:

(1) If there is an equation in E, use Simplify as long as possible for this equation, then
use either Delete or Orient. Repeat until E is empty.

(2) If Collapse is applicable, apply it, if now Deduce is applicable, apply it as well.
Repeat until Collapse is no longer applicable.

(3) If E is non-empty, go to (1), otherwise return R.

Implementation

Instead of fixing the ordering ≻ in advance, it is preferable to define it on the fly during
the algorithm:

If we orient an equation c ≈ c′ between two constant symbols, we try to make that
constant symbol larger that occurs less often in R ⇒ fewer Collapse steps.

Additionally:

Use various index data structures so that all the required operations can be performed
efficiently.

Use a union-find data structure to represent the equivalence classes encoded by the
C-rules.

Average runtime for an implementation using hash tables: O(m logm), where m is the
number of edges in the graph representation of the initial C and D-equations.

One Small Problem

The inference rules are sound in the usual sense: The conclusions are entailed by the
premises, so every T -model of the premises is a T -model of the conclusions.

For the initial flattening, however, we get a weaker result: We have to extend the T -
models of the original equations to obtain models of the flattened equations. That is, we
get a new algebra with the same universe as the old one, with the same interpretations
for old functions and predicate symbols, but with appropriately chosen interpretations
for the new constants.

Consequently, the relations ≈E and ≈R for the original E and the final R are not the
same. For instance, c3 ≈E c7 does not hold, but c3 ≈R c7 may hold.
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On the other hand, the model extension preserves the universe and the interpretations
for old symbols. Therefore, if s and t are terms over the old symbols, we have s ≈E t iff
s ≈R t.

This is sufficient for our purposes: The terms si and ti that we want to normalize using
R do not contain new symbols.

Other Predicate Symbols

If the initial ground conjunction contains also non-equational literals [¬] P (t1, . . . , tn),
treat these like equational literals [¬] P (t1, . . . , tn) ≈ true. Then use the same algorithm
as before.

History

Congruence closure algorithms have been published, among others, by Shostak (1978).
by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a completion proce-
dure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the Downey/Sethi/
Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the presentation
of Bachmair and Tiwari.

Literature

Leo Bachmair, Ashish Tiwari: Abstract Congruence Closure and Specializations. Proc.
CADE-17, 2000, pp 64–78, LNCS 1831, Springer.

Peter J. Downey, Ravi Sethi, Robert E. Tarjan: Variations on the Common Subexpres-
sion Problem. Journal of the ACM, 27(4):758–771, 1980.

Deepak Kapur: Shostak’s congruence closure as completion. Proc. 8th RTA, 1997, pp.
23–37, LNCS 1232, Springer.

Greg Nelson, Derek C. Oppen: Fast Decision Procedures Based on Congruence Closure.
Journal of the ACM, 27(2):356–364, 1980.

Robert E. Shostak: An algorithm for reasoning about equality. Communications of the
ACM, 21(7):583–585, 1978.
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1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {</2}) and the pre-
defined binary predicate ≈.

The equational part of linear rational arithmetic is described by the theory of divisible
torsion-free abelian groups:

∀x, y, z (x+ (y + z) ≈ (x+ y) + z) (associativity)

∀x, y (x+ y ≈ y + x) (commutativity)

∀x (x+ 0 ≈ x) (identity)

∀x ∃y (x+ y ≈ 0) (inverse)

For all n ≥ 1: ∀x (x+ · · ·+ x
︸ ︷︷ ︸

n times

≈ 0→ x ≈ 0) (torsion-freeness)

For all n ≥ 1: ∀x ∃y (y + · · ·+ y
︸ ︷︷ ︸

n times

≈ x) (divisibility)

¬ 1 ≈ 0 (non-triviality)

Note: Quantification over natural numbers is not part of our language. We really need
infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible
abelian groups:

∀x (¬ x < x) (irreflexivity)

∀x, y, z (x < y ∧ y < z → x < z) (transitivity)

∀x, y (x < y ∨ y < x ∨ x ≈ y) (totality)

∀x, y, z (x < y → x+ z < y + z) (compatibility)

0 < 1 (non-triviality)

Note: The second non-triviality axiom renders the first one superfluous. Moreover, as
soon as we add the axioms of compatible strict total orderings, torsion-freeness can be
omitted. Every ordered divisible abelian group is obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered (F.-W. Levi
1913).

Examples: Q, R, Qn, Rn, . . .
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The signature can be extended by further symbols:

≤/2, >/2, ≥/2, 6≈/2: defined using < and ≈

−/1: Skolem function for inverse axiom

−/2: defined using +/2 and −/1

divn/1: Skolem functions for divisibility axiom for all n ≥ 1.

multn/1: defined by ∀x (multn(x) ≈ x+ · · ·+ x
︸ ︷︷ ︸

n times

) for all n ≥ 1.

multq/1: defined using multn, divn, − for all q ∈ Q.

(We usually write q · t or qt instead of multq(t).)

q/0 (for q ∈ Q): defined by q ≈ q · 1.

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over
the base signature.

When · is considered as a binary operator, (ordered) divisible torsion-free abelian groups
correspond to (ordered) rational vector spaces.

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination: every formula ∃xF or ∀xF
in linear rational arithmetic can be converted into an equivalent formula without the
variable x.

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in
1936.

Observation: Every literal over the variables x, y1, . . . , yn can be converted into an
ODAG-equivalent literal x ∼ t[~y] or 0 ∼ t[~y], where ∼ ∈ {<,>,≤,≥,≈, 6≈} and t[~y]
has the form

∑

i qi · yi + q0.

In other words, we can either eliminate x completely or isolate in on one side of the
literal, and we can replace every negative ordering literal by a positive one.

Moreover, we can convert every 6≈-literal into an ODAG-equivalent disjunction of two
<-literals.
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We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation x ≈ t[~y], we can eliminate the quantifier ∃x by
substitution:

∃x (x ≈ t[~y] ∧ F )

is equivalent to

F{x 7→ t[~y]}

If x occurs only in inequations, then

∃x
(
∧

i x < si(~y) ∧
∧

j x ≤ tj(~y)

∧
∧

k x > uk(~y) ∧
∧

l x ≥ vl(~y) ∧
∧

m 0 ∼m wm(~y)
)

is equivalent to

∧

i

∧

k si(~y) > uk(~y) ∧
∧

j

∧

k tj(~y) > uk(~y)

∧
∧

i

∧

l si(~y) > vl(~y) ∧
∧

j

∧

l tj(~y) ≥ vl(~y)

∧
∧

m 0 ∼m wm(~y)

Proof: (⇒) by transitivity;
(⇐) take 1

2
(min{si, tj}+max{uk, vl}) as a witness.

Extension to arbitrary formulas:

Transform into prenex formula;

if innermost quantifier is ∃: transform matrix into DNF and move ∃ into disjunction;

if innermost quantifier is ∀: replace ∀xF by ¬∃x¬F , then eliminate ∃.

Consequence: every closed formula over the signature of ODAGs is ODAG-equivalent to
either ⊤ or ⊥.

Consequence: ODAGs are a complete theory, i. e., every closed formula over the signature
of ODAGs is either valid or unsatisfiable w. r. t. ODAGs.

Consequence: every closed formula over the signature of ODAGs holds either in all
ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs.

(These properties do not hold for extended signatures!)
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Fourier-Motzkin: Complexity

One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

m quantifiers ∃ . . .∃:

naive implementation produces a doubly exponential number of inequations, therefore
needs O(n2m) runtime (the number of necessary inequations grows only exponentially,
though).

m quantifiers ∃∀∃∀ . . . ∃:

CNF/DNF conversion (exponential!) required after each step;
therefore non-elementary runtime.

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic was developed
by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution method”.

For simplicity, we consider only one particular ODAG, namely Q (as we have seen above,
the results are the same for all ODAGs).

Let F (x, ~y) be a positive boolean combination of linear (in-)equations x ∼i si(~y) and
0 ∼j s′j(~y) with ∼i,∼j ∈ {≈, 6≈, <,≤, >,≥}, that is, a formula built from linear (in-)
equations, ∧ and ∨ (but without ¬).

Goal: Find a finite set T of “test points” so that

∃xF (x, ~y) |=|
∨

t∈T

F (x, ~y) {x 7→ t}

In other words: We want to replace the infinite disjunction ∃x by a finite disjunction.

If we keep the values of the variables ~y fixed, then we can consider F as a function
F : x 7→ F (x, ~y) from Q to {0, 1}.

The value of each of the atoms si(~y) ∼i x changes only at si(~y), and the value of F can
only change if the value of one of its atoms changes.

Let δ(~y) = min{ |si(~y)− sj(~y)| | si(~y) 6= sj(~y) }

F is a piecewise constant function; more precisely, the set of all x with F (x, ~y) = 1 is
a finite union of intervals. (The union may be empty, the individual intervals may be
finite or infinite and open or closed.)
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Moreover, each of the intervals has either length 0 (i. e., it consists of one point), or its
length is at least δ(~y).

If the set of all x for which F (x, ~y) is 1 is non-empty, then

(i) F (x, ~y) = 1 for all x ≤ r(~y) for some r(~y) ∈ Q

(ii) or there is some point where the value of F (x, ~y) switches from 0 to 1 when we
traverse the real axis from −∞ to +∞.

We use this observation to construct a set of test points.

We start with some “sufficiently small” test point r(~y) to take care of case (i).

For case (ii), we observe that F (x, ~y) can only switch from 0 to 1 if one of the atoms
switches from 0 to 1. (We consider only positive boolean combinations of atoms, and ∧
and ∨ are monotonic w. r. t. truth values.)

x ≤ si(~y) and x < si(~y) do not switch from 0 to 1 when x grows.

x ≥ si(~y) and x ≈ si(~y) switch from 0 to 1 at si(~y)
⇒ si(~y) is a test point.

x > si(~y) and x 6≈ si(~y) switch from 0 to 1 “right after” si(~y)
⇒ si(~y) + ε (for some 0 < ε < δ(~y)) is a test point.

If r(~y) is sufficiently small and 0 < ε < δ(~y), then

T := {r(~y)} ∪ { si(~y) | ∼i ∈ {≥,=} }
∪ { si(~y) + ε | ∼i ∈ {>, 6=} }.

is a set of test points.

Problem:
We don’t know how small r(~y) has to be for case (i), and we don’t know δ(~y) for
case (ii).

Idea:
We consider the limits for r → −∞ and for εց 0, that is, we redefine

T := {−∞} ∪ { si(~y) | ∼i ∈ {≥,=} }
∪ { si(~y) + ε | ∼i ∈ {>, 6=} }.

How can we eliminate the infinitesimals ∞ and ε when we substitute elements of T
for x ?
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Virtual substitution:

(x < s(~y)) {x 7→ −∞} := lim
r→−∞

(r < s(~y)) = ⊤

(x ≤ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≤ s(~y)) = ⊤

(x > s(~y)) {x 7→ −∞} := lim
r→−∞

(r > s(~y)) = ⊥

(x ≥ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≥ s(~y)) = ⊥

(x ≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r 6≈ s(~y)) = ⊤

(x < s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε < s(~y)) = (u < s(~y))

(x ≤ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≤ s(~y)) = (u < s(~y))

(x > s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε > s(~y)) = (u ≥ s(~y))

(x ≥ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≥ s(~y)) = (u ≥ s(~y))

(x ≈ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε 6≈ s(~y)) = ⊤

We have traversed the real axis from −∞ to +∞. Alternatively, we can traverse it from
+∞ to −∞. In this case, the test points are

T ′ := {+∞} ∪ { si(~y) | ∼i ∈ {≤,=} }
∪ { si(~y)− ε | ∼i ∈ {<, 6=} }.

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T ′ and take the smaller set.

For a universally quantified formulas ∀xF , we replace it by ¬∃x¬F , push inner negation
downwards, and then continue as before.

Note that there is no CNF/DNF transformation required. Loos-Weispfenning quantifier
elimination works on arbitrary positive formulas.
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Loos-Weispfenning: Complexity

One LW-step for ∃ or ∀:

as the number of test points is at most one plus the number of atoms (one plus half
of the number of atoms, if there are only ordering literals), the formula size grows
quadratically; therefore O(n2) runtime.

Multiple quantifiers of the same kind:

∃x2 ∃x1. F (x1, x2, ~y)

❀ ∃x2.
(∨

t1∈T1
F (x1, x2, ~y) {x1 7→ t1}

)

❀
∨

t1∈T1
(∃x2. F (x1, x2, ~y) {x1 7→ t1})

❀
∨

t1∈T1

∨

t2∈T2
(F (x1, x2, ~y) {x1 7→ t1} {x2 7→ t2})

m quantifiers ∃ . . .∃ or ∀ . . .∀:

formula size is multiplied by n in each step, therefore O(nm+1) runtime.

m quantifiers ∃∀∃∀ . . . ∃:

doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant; so an efficient
implementation must make heavy use of simplification techniques.

Literature

Andreas Dolzmann: Algorithmic Strategies for Applicable Real Qunantifier Elimination.
PhD thesis, Universität Passau, 2000.

Jean-Baptiste Joseph Fourier: Solution d’une question particulière du calcul des inégalités.
Nouveau Bulletin des Sciences par la Société philomahique de Paris, 1826.

F. Levi: Arithmetische Gesetze im Gebiete discreter Gruppen. Rendiconti del Circolo
Matematico di Palermo, 35:225–236, 1913.

Rüdiger Loos, Volker Weispfenning: Applying Linear Quantifier Elimination. The Com-
puter Journal, 36(5):450–462, 1993.
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1.4 Existentially-quantified LRA

So far, we have considered formulas that may contain free, existentially quantified, and
universally quantified variables.

For the special case of conjunction of linear inequations in which all variables are exis-
tentially quantified, there are more efficient methods available.

Main idea: reduce satisfiability problem to optimization problem.

Linear Optimization

Goal:

Solve a linear optimization (also called: linear programming) problem for given num-
bers aij , bi, cj ∈ R:

maximize
∑

1≤j≤n cjxj

for
∧

1≤i≤m

∑

1≤j≤n aijxj ≤ bi

or in vectorial notation:

maximize ~c⊤~x

for A~x ≤ ~b

Simplex algorithm:

Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is exponential,
though.

Interior point methods:

First algorithm by Karmarkar (1984).

Polynomial-time worst-case complexity (but large constants).

In practice: no clear winner.

Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.
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Main idea of Simplex:

A~x ≤ ~b describes a convex polyhedron.

Pick one vertex of the polyhedron,
then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global optimum.

Details: see special lecture on optimization.

Using an optimization procedure for checking satisfiability:

Goal: Check whether A~x ≤ ~b is satisfiable.

To use the Simplex method, we have to transform the original (possibly empty) poly-
hedron into another polyhedron that is non-empty and for which we know one initial
vertex.

Every real number can be written as the difference of two non-negative real numbers.
Use this idea to convert A~x ≤ ~b into an equisatisfiable inequation system ~y ≥ ~0,
B~y ≤ ~b for new variables ~y.

Multiply those inequations of the inequation system B~y ≤ ~b in which the number on
the right-hand side is negative by −1. We obtain two inequation systems D1~y ≤ ~g1,
D2~y ≥ ~g2, such that ~g1 ≥ ~0, ~g2 > 0.

Now solve

maximize ~1⊤(D2~y − ~z)

for ~y, ~z ≥ ~0
D1~y ≤ ~g1
D2~y − ~z ≤ ~g2

where ~z is a vector of new variables with the same size as ~g2.

Observation 1: ~0 is a vertex of the polyhedron of this optimization problem.

Observation 2: The maximum is ~1⊤~g2 if and only if ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution.

(⇒): If ~1⊤(D2~y − ~z) = ~1⊤~g2 for some ~y, ~z satisfying D2~y − ~z ≤ ~g2, then D2~y − ~z = ~g2,
hence D2~y = ~g2 + ~z ≥ ~g2.

(⇐): ~1⊤(D2~y − ~z) can never be larger than ~1⊤~g2. If ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution, choose ~z = D2~y − ~g2; then ~1⊤(D2~y − ~z) = ~1⊤~g2.
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A Simplex variant:

Transform the satisfiability problem into the form

A~x = ~0
~l ≤ ~x ≤ ~u

(where li may be −∞ and ui may be +∞).

Relation to optimization problem is obscured.

But: More efficient if one needs an incremental decision procedure, where inequations
may be added and retracted (Dutertre and de Moura 2006).

1.5 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear real arithmetic (or more
generally, for real-closed fields). His algorithm had non-elementary complexity, how-
ever.

An improved algorithm by Collins (1975) (with further improvements by Hong) has
doubly exponential complexity: Cylindrical algebraic decomposition (CAD).

Implementation: QEPCAD.

Cylindrical Algebraic Decomposition

Given: First-order formula over atoms of the form fi(~x) ∼ 0, where the fi are polynomials
over variables ~x.

Goal: Decompose Rn into a finite number of regions such that all polynomials have
invariant sign on every region X :

∀i ( ∀~x ∈ X. fi(~x) < 0
∨ ∀~x ∈ X. fi(~x) = 0
∨ ∀~x ∈ X. fi(~x) > 0 )

Note: Implementation needs exact arithmetic using algebraic numbers (i. e., zeroes of
univariate polynomials with integer coefficients).
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1.6 Real Arithmetic incl. Transcendental Functions

Real arithmetic with exp/log: decidability unknown.

Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if x ∈ Z:

∃y (sin(y) = 0 ∧ 3 < y ∧ y < 4 ∧ sin(x · y) = 0)

(note that necessarily y = π).

Consequence: Peano arithmetic (which is undecidable) can be encoded in real arith-
metic with trigonometric functions.

However, real arithmetic with transcendental functions is decidable for formulas that are
stable under perturbations, i. e., whose truth value does not change if numeric constants
are modified by some sufficiently small ε.

Example:

Stable under perturbations: ∃x x2 ≤ 5

Not stable under perturbations: ∃x x2 ≤ 0
(Formula is true, but if we subtract an arbitrarily small ε > 0 from the right-hand
side, it becomes false.)

Unsatisfactory from a mathematical point of view, but sufficient for engineering appli-
cations (where stability under perturbations is necessary anyhow).

Approach:

Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are stable under perturbations;
may loop forever if the formula is not stable under perturbations.

1.7 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic.

Decidable (Presburger, 1929), but quantifier elimination is only possible if additional
divisibility operators are present:

∃x (y = 2x) is equivalent to divides(2, y) but not to any quantifier-free formula over
the base signature.

Cooper (1972): Quantifier elimination procedure, triple exponential for arbitrarily
quantified formulas.
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The Omega Test

Omega test (Pugh, 1991): variant of Fourier–Motzkin for conjunctions of (in-)equations
in linear integer arithmetic.

Idea:

• Perform easy transformations, e. g.:
3x+ 6y ≤ 8 7→ 3x+ 6y ≤ 6 7→ x+ 2y ≤ 2
3x+ 6y = 8 7→ ⊥
(since 3x+ 6y must be divisible by 3).

• Eliminate equations
(easy, if one coefficient is 1; tricky otherwise).

• If only inequations are left:
no real solutions → unsatisfiable for Z
“sufficiently many” real solutions → satisfiable for Z
otherwise: branch

What does “sufficiently many” mean?

Consider inequations ax ≤ s and bx ≥ t with a, b ∈ N>0 and polynomials s, t.

If these inequations have real solutions, the interval of solutions ranges from 1
b
t to 1

a
s.

The longest possible interval of this kind that does not contain any integer number
ranges from i+ 1

b
to i+ 1− 1

a
for some i ∈ Z; it has the length 1− 1

a
− 1

b
.

Consequence:

If 1
a
s > 1

b
t + (1 − 1

a
− 1

b
), or equivalently, bs ≥ at + ab − a− b + 1 is satisfiable, then

the original problem must have integer solutions.

It remains to consider the case that bs ≥ at is satisfiable (hence there are real solutions)
but bs ≥ at+ ab− a− b+1 is not (hence the interval of real solutions need not contain
an integer).

In the latter case, bs ≤ at + ab − a − b holds, hence for every solution of the original
problem:

t ≤ bx ≤ b
a
s ≤ t+ (b− 1− b

a
)

and if x is an integer, t ≤ bx ≤ t+
⌊
b− 1− b

a

⌋

⇒ Branch non-deterministically:
Add one of the equations bx = t+ i for i ∈ {0, . . . , ⌊b− 1− b

a

⌋
}.

Alternatively, if b > a:
Add one of the equations ax = s− i for i ∈ {0, . . . , ⌊a− 1− a

b

⌋
}.
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Note: Efficiency depends highly on the size of coefficients. In applications from program
verification, there is almost always some variable with a very small coefficient. If all
coefficients are large, the branching step gets expensive.

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to optimization problem (like Sim-
plex). ILP, MILP: (mixed) integer linear programming.

Two basic approaches:

Branching: If the simplex algorithm finds a solution with x = 2.7, add the inequation
x ≤ 2 or the inequation x ≥ 3.

Cutting planes: Derive an inequation that holds for all real solutions, then round it to
obtain an inequation that holds for all integer solutions, but not for the real solution
found previously.

Example:

Given: 2x− 3y ≤ 1
2x+ 3y ≤ 5
−5x− 4y ≤ −7

Simplex finds an extremal solution x = 3
2
, y = 2

3
.

From the first two inequations, we see that 4x ≤ 6, hence x ≤ 3
2
. If x ∈ Z, we conclude

x = ⌊x⌋ ≤ ⌊3
2
⌋ = 1.

⇒ Add the inequation x ≤ 1, which holds for all integer solutions, but cuts off the
solution (3

2
, 2
3
).

In practice:

Use both: Alternate between branching and cutting steps.
Better performance than the individual approaches.

1.8 Difference Logic

Difference Logic (DL):

Fragment of linear rational or integer arithmetic.

Formulas: conjunctions of atoms x− y < c or x− y ≤ c,
x, y ∈ X ,
c ∈ Q (or c ∈ Z).
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One special variable x0 whose value is fixed to 0 is permitted;
this allows to express atoms like x < 3 in the form x− x0 < 3.

Solving difference logic:

Let F be a conjunction in DL.
For simplicity: only non-strict inequalities.

Define a weighted graph G:

Vertices V : Variables in F .

Edges E: x− y ≤ c ❀ edge (x, y) with weight c.

Theorem: F is unsatisfiable iff G has a negative cycle.

Can be checked in O(|V | · |E|) using the Bellman-Ford algorithm.

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2n), in device drivers also
combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant, Kroening, et al.):
successful.

1.10 Decision Procedures for Data Structures

There are decision procedures for, e. g.,

Arrays (read, write)

Lists (car, cdr, cons)

Sets or multisets with cardinalities

Bitvectors

Note: There are usually restrictions on quantifications. Unrestricted universal quantifi-
cation can lead to undecidability.
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1.11 Combining Decision Procedures

Problem:

Let T1 and T2 be first-order theories over the signatures Σ1 and Σ2.

Assume that we have decision procedures for the satisfiability of existentially quanti-
fied formulas (or the validity of universally quantified formulas) w. r. t. T1 and T2.

Can we combine them to get a decision procedure for the satisfiability of existentially
quantified formulas w. r. t. T1 ∪ T2 ?

General assumption:

Σ1 and Σ2 are disjoint.

The only symbol shared by T1 and T2 is built-in equality.

We consider only conjunctions of literals.

For general formulas, convert to DNF first and consider each conjunction individually.

Abstraction

To be able to use the individual decision procedures, we have to transform the original
formula in such a way that each atom contains only symbols of one of the signatures
(plus variables).

This process is known as variable abstraction or purification.

We apply the following rule as long as possible:

∃~x (F [t])

∃~x, y (F [y] ∧ t ≈ y)

if the top symbol of t belongs to Σi and t occurs in F directly below a Σj-symbol
or in a (positive or negative) equation s ≈ t where the top symbol of s belongs to
Σj (i 6= j), and if y is a new variable.

It is easy to see that the original and the purified formula are equivalent.
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Stable Infiniteness

Problem:

Even if the Σ1-formula F1 and the Σ2-formula F2 do not share any symbols (not even
variables), and if F1 is T1-satisfiable and F2 is T2-satisfiable, we cannot conclude that
F1 ∧ F2 is (T1 ∪ T2)-satisfiable.

Example:

Consider

T1 = {∀x, y, z (x ≈ y ∨ x ≈ z ∨ y ≈ z)}

and

T2 = {∃x, y, z (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}.

All T1-models have at most two elements, and all T2-models have at least three ele-
ments.

Since T1 ∪ T2 is contradictory, there are no (T1 ∪ T2)-satisfiable formulas.

To ensure that T1-models and T2-models can be combined to (T1 ∪T2)-models, we require
that both T1 and T2 are stably infinite.

A first-order theory T is called stably infinite, if every existentially quantified formula
that has a T -model has also a T -model with a (countably) infinite universe.

Note: By the Löwenheim–Skolem theorem, “countable” is redundant here.

Shared Variables

Even if ∃~xF1 is T1-satisfiable and ∃~xF2 is T2-satisfiable, it can happen that ∃~x (F1 ∧ F2)
is not (T1 ∪ T2)-satisfiable, for instance because the shared variables x and y must be
equal in all T1-models of ∃~xF1 and different in all T2-models of ∃~x F2.

Example:

Consider

F1 = (x+ (−y) ≈ 0),

and

F2 = (f(x) 6≈ f(y))

where T1 is linear rational arithmetic and T2 is EUF.

We must exchange information about shared variables to detect the contradiction.

24



The Nelson–Oppen Algorithm (Non-deterministic Version)

Suppose that ∃~xF is a purified conjunction of Σ1 and Σ2-literals.

Let F1 be the conjunction of all literals of F that do not contain Σ2-symbols; let F2 be
the conjunction of all literals of F that do not contain Σ1-symbols. (Equations between
variables are in both F1 and F2.)

The Nelson–Oppen algorithm starts with the pair F1, F2 and applies the following infer-
ence rules.

Unsat:

F1, F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i.

Branch:

F1, F2

F1 ∧ (x ≈ y), F2 ∧ (x ≈ y) | F1 ∧ (x 6≈ y), F2 ∧ (x 6≈ y)

if x and y are two different variables appearing in
both F1 and F2 such that neither x ≈ y nor x 6≈ y
occurs in both F1 and F2

“|” means non-deterministic (backtracking!) branching of the derivation into two sub-
derivations. Derivations are therefore trees. All branches need to be reduced until ter-
mination.

Clearly, all derivation paths are finite since there are only finitely many shared variables
in F1 and F2, therefore the procedure represented by the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.
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Theorem 1.2 (Soundness) If “Branch” can be applied to F1, F2, then ∃~x (F1 ∧ F2)
is satisfiable in T1 ∪ T2 if and only if one of the successor configurations of F1, F2 is
satisfiable in T1 ∪ T2.

Corollary 1.3 If all paths in a derivation tree from F1, F2 end in ⊥, then ∃~x (F1 ∧ F2)
is unsatisfiable in T1 ∪ T2.

For completeness we need to show that if one branch in a derivation terminates with
an irreducible configuration F1, F2 (different from ⊥), then ∃~x (F1 ∧ F2) (and, thus, the
initial formula of the derivation) is satisfiable in the combined theory.

As ∃~x (F1 ∧ F2) is irreducible by “Unsat”, the two formulas are satisfiable in their re-
spective component theories, that is, we have Ti-models Ai of ∃~xFi for i ∈ {1, 2}. We are
left with combining the models into a single one that is both a model of the combined
theory and of the combined formula. These constructions are called amalgamations.

Let F be a Σi-formula and let S be a set of variables of F . F is called compatible with
an equivalence ∼ on S if the formula

∃~z
(

F ∧
∧

x,y∈S, x∼y

x ≈ y ∧
∧

x,y∈S, x 6∼y

x 6≈ y
)

(1)

is Ti-satisfiable whenever F is Ti-satisfiable. This expresses that F does not contradict
equalities between the variables in S as given by ∼.

Proposition 1.4 If F1, F2 is a pair of conjunctions over T1 and T2, respectively, that is
irreducible by “Branch”, then both F1 and F2 are compatible with some equivalence ∼
on the shared variables S of F1 and F2.

Proof. If F1, F2 is irreducible by the branching rule, then for each pair of shared vari-
ables x and y, both F1 and F2 contain either x ≈ y or x 6≈ y. Choose ∼ to be the
equivalence given by all (positive) variable equations between shared variables that are
contained in F1.
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Let Σ = (Ω,Π); let Σ′ = (Ω′,Π′) with Ω′ ⊆ Ω and Π′ ⊆ Π be a subsignature of Σ.

Let A be a Σ-algebra. Then the reduct A|Σ′ is the Σ′-algebra A′ with

UA′ = UA,
fA′ = fA for all f ∈ Ω′, and
PA′ = PA for all P ∈ Π′.

Lemma 1.5 (Amalgamation Lemma) Let T1 and T2 be two stably infinite theories
over disjoint signatures Σ1 and Σ2. Furthermore let F1, F2 be a pair of conjunctions of
literals over T1 and T2, respectively, both compatible with some equivalence ∼ on the
shared variables of F1 and F2. Then F1 ∧ F2 is (T1 ∪ T2)-satisfiable if and only if each Fi

is Ti-satisfiable.

Proof. The “only if” part is obvious.

For the “if” part, assume that each of the Fi is Ti-satisfiable. That is, there exist models
Ai of Ti and variable assignments βi such that Ai, βi |= Fi. As the Fi are compatible with
an equivalence ∼ on their shared variables, we may assume that the βi also satisfy the
extended conjunctions in (1) with S the set of shared variables. In particular, whenever
we have two shared variables x and y, β1(x) = β1(y) if and only if β2(x) = β2(y). Since
the theories are stably infinite we may additionally assume that the Ai have countably
infinite universes, hence there are bijections ρi from the domain of Ai to N such that
ρ1(β1(x))) = ρ2(β2(x)) for each shared variable x. Now define A to be the algebra having
N as its domain; for f or P in Σi define fA(n1, . . . , nk) = ρi(fAi

(ρ−1
i (n1), . . . , ρ

−1
i (nk)))

and PA(n1, . . . , nk) ⇔ PAi
(ρ−1

i (n1), . . . , ρ
−1
i (nk)). Define β(x) = ρi(βi(x)) if x is a vari-

able occurring in Fi. By construction of the ρi this definition is independent of the choice
of i. Clearly A|Σi

, β |= Fi, for i = 1, 2, hence A, β |= F1 ∧ F2. Moreover, the reducts A|Σi

are isomorphic (via ρi) to Ai and thus are models of Ti, so that A is a model of T1 ∪ T2
as required.

Theorem 1.6 The non-deterministic Nelson–Oppen algorithm is terminating and com-
plete for deciding satisfiability of pure conjunctions of literals F1 and F2 over T1 ∪ T2 for
signature-disjoint, stably infinite theories T1 and T2.

Proof. Suppose that F1, F2 is irreducible by the inference rules of the Nelson–Oppen
algorithm. Applying the amalgamation lemma in combination with Prop. 1.4 we infer
that F1, F2 is satisfiable w. r. t. T1 ∪ T2.
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Convexity

The number of possible equivalences of shared variables grows superexponentially with
the number of shared variables, so enumerating all possible equivalences non-determin-
istically is going to be inefficient.

A much faster variant of the Nelson–Oppen algorithm exists for convex theories.

A first-order theory T is called convex w. r. t. equations, if for every conjunction Γ
of Σ-equations and non-equational Σ-literals and for all Σ-equations Ai (1 ≤ i ≤ n),
whenever T |= ∀~x (Γ → A1 ∨ . . . ∨ An), then there exists some index j such that
T |= ∀~x (Γ→ Aj).

Theorem 1.7 If a first-order theory T is convex w. r. t. equations and has no trivial
models (i. e., models with only one element), then T is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose T is not stably
infinite. Then there exists a T -satisfiable conjunction of literals ∃~xF that has only finite
T -models. As T is a first-order theory and first-order logic is compact, all T -models of
∃~xF are bounded in cardinality by some number m.

Let y1, . . . , ym+1 be fresh variables not occurring in F . Then the formula F0 = ∃~x F
∧ ∃y1 . . . ym+1

∧

1≤i<j≤m+1 yi 6≈ yj is T -unsatisfiable since it expresses the fact that ∃~x F
has a model with more than m elements. Therefore, T |= ¬F0.

We can write F in the form F+ ∧ F−, where F− contains the negative equational literals
in F and F+ contains the rest. Then T |= ¬F0 can be written as T |= ∀~x ~y (¬F+ ∨¬F− ∨
∨

1≤i<j≤m+1 yi ≈ yj), or equivalently, T |= ∀~x, ~y (F+ → (¬F− ∨
∨

1≤i<j≤m+1 yi ≈ yj)).
Note that ¬F− is a disjunction of positive equational literals.

Assume that T |= ∀~x, ~y (F+ → A) for some literal A of ¬F− ∨
∨

1≤i<j≤m+1 yi ≈ yj. If
A is a literal of ¬F−, then T |= ∀~x, ~y (F+ → A) |= ∀~x, ~y (F+ → ¬F−) |= ∀~x, ~y¬F ,
which cannot hold since F is T -satisfiable. Otherwise A is a literal yi ≈ yj, then T |=
∀~x, ~y (F+ → yi ≈ yj). This cannot hold either: Note that ∃~x F and thus ∃~xF+ is T -
satisfiable. So let A be some T -model of ∃~xF+. By assumption, A is not a trivial model,
therefore there is an A-assignment β to ~x, ~y that satisfies F+ and maps yi and yj to two
arbitrary different elements. Consequently, A, β 6|= (F+ → yi ≈ yj).
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Lemma 1.8 Suppose T is convex, F a conjunction of literals, and S a subset of its
variables. Let, for any pair of variables xi and xj in S, xi ∼ xj if and only if T |=
∀~x (F → xi ≈ xj). Then F is compatible with ∼.

Proof. We show that with this choice of ∼ the constraint (1), that is,

∃~z
(

F ∧
∧

x,y∈S, x∼y

x ≈ y ∧
∧

x,y∈S, x 6∼y

x 6≈ y
)

is T -satisfiable whenever F is. Suppose, to the contrary, that F is T -satisfiable but (1)
is not, that is,

T |= ∀~z
(

F →
∨

x,y∈S, x∼y

x 6≈ y ∨
∨

x,y∈S, x 6∼y

x ≈ y
)

or, equivalently,

T |= ∀~z
(

F+ ∧
∧

x,y∈S, x∼y

x ≈ y → ¬F− ∨
∨

x,y∈S, x 6∼y

x ≈ y
)

.

where F− contains the negative equational literals in F and F+ contains the rest. By
convexity of T , the antecedent implies one of the equations of the succedent.

Suppose that this equation A comes from ¬F−. Then

T |= ∀~z
(

F+ ∧
∧

x,y∈S, x∼y

x ≈ y → A)

and therefore

T |= ∀~z
(

F+ ∧
∧

x,y∈S, x∼y

x ≈ y → ¬F−)

which means

T |= ∀~z
(

(F+ ∧ F−) ∧
∧

x,y∈S, x∼y

x ≈ y → ⊥)

which cannot hold since F = (F+ ∧ F−) is T -satisfiable and entails the equations x ≈ y
with x ∼ y.

So the equation A must come from the last part of the disjunction. In other words, there
exists a pair of different variables x′ and y′ in S such that x′ 6∼ y′ and

T |= ∀~z
(

F+ ∧
∧

x,y∈S, x∼y

x ≈ y → x′ ≈ y′
)

.

Since

T |= ∀~z
(

F →
∧

x,y∈S, x∼y

x ≈ y
)

,

we derive T |= ∀~z
(

F → x′ ≈ y′
)

, which is impossible.
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The Nelson–Oppen Algorithm (Deterministic Version for Convex Theories)

Unsat:

F1, F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i.

Propagate:

F1, F2

F1 ∧ (x ≈ y), F2 ∧ (x ≈ y)

if x and y are two different variables appearing in
both F1 and F2 such that
T1 |= ∀~x (F1 → x ≈ y) and T2 6|= ∀~x (F2 → x ≈ y)
or T2 |= ∀~x (F2 → x ≈ y) and T1 6|= ∀~x (F1 → x ≈ y).

Theorem 1.9 If T1 and T2 are signature-disjoint theories that are convex w. r. t. equa-
tions and have no trivial models, then the deterministic Nelson–Oppen algorithm is
terminating, sound and complete for deciding satisfiability of pure conjunctions of liter-
als F1 and F2 over T1 ∪ T2.

Proof. Termination and soundness are obvious: there are only finitely many different
equations that can be added, and each of them is entailed by given formulas.

For completeness, we have to show that every configuration that is irreducible by “Unsat”
and “Propagate” is satisfiable w. r. t.. T1 ∪ T2: Let F1, F2 be such a configuration. As it is
irreducible by “Propagate”, we have, for every equation x ≈ y between shared variables,
T1 |= ∀~x (F1 → x ≈ y) if and only if T2 |= ∀~x (F2 → x ≈ y). Consequently, F1 and F2 are
compatible with the same equivalence on the shared variables of F1 and F2. Moreover,
each of the formulas Fi is Ti-satisfiable, and since convexity implies stable infiniteness, Fi

has a Ti-model with a countably infinite universe. Hence, by the amalgamation lemma,
F1 ∧ F2 is (T1 ∪ T2)-satisfiable.

Corollary 1.10 The deterministic Nelson–Oppen algorithm for convex theories requires
at most O(n3) calls to the individual decision procedures for the component theories,
where n is the number of shared variables.

Iterating Nelson–Oppen

The Nelson–Oppen combination procedures can be iterated to work with more than two
component theories by virtue of the following observations where signature disjointness
is assumed:
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Theorem 1.11 If T1 and T2 are stably infinite, then so is T1 ∪ T2.

Proof. The non-deterministic Nelson–Oppen algorithm is sound and complete for T1 ∪
T2, that is, an existentially quantified conjunction F over Σ1 ∪ Σ2 is satisfiable if and
only if in every derivation from the purified form of F there exists a branch leading to
some irreducible constraint F1, F2 entailing F . The amalgamation lemma 1.5 constructs
a model with a countably infinite universe for F from the models of F1 and F2.

Lemma 1.12 A first-order theory T is convex w. r. t. equations if and only if for every
conjunction Γ of Σ-equations and non-equational Σ-literals and for all equations xi ≈ x′

i

(1 ≤ i ≤ n), whenever T |= ∀~x (Γ → x1 ≈ x′
1 ∨ . . . ∨ xn ≈ x′

n), then there exists some
index j such that T |= ∀~x (Γ→ xj ≈ x′

j).

Lemma 1.13 Let T be a first-order theory that is convex w. r. t. equations. Let F is a
conjunction of literals; let F− be the conjunction of all negative equational literals in F
and let F+ be the conjunction of all remaining literals in F . If T |= ∀~x (F → x ≈ y),
then ∃~x F is T -unsatisfiable or T |= ∀~x (F+ → x ≈ y).

Proof. T |= ∀~x (F → x ≈ y) is equivalent to T |= ∀~x (F+ → (¬F− ∨ x ≈ y)). By
convexity of T we know that T |= ∀~x (F+ → x ≈ y) or T |= ∀~x (F+ → A) for some
literal ¬A in F−. In the latter case, ∃~x (F+ ∧ ¬A) is T -unsatisfiable; hence ∃~x F , that
is, ∃~x (F+ ∧ F−) is T -unsatisfiable as well.

Theorem 1.14 If T1 and T2 are convex w. r. t. equations and do not have trivial models,
then so is T1 ∪ T2.

Proof. Suppose that T1 and T2 are convex w. r. t. equations and do not have trivial
models. Then clearly T1 ∪ T2 cannot have trivial models either, since any such model
would also be a trivial model of T1 and T2.

Assume furthermore that T |= ∀~x (Γ → x1 ≈ x′
1 ∨ . . . ∨ xn ≈ x′

n) for some conjunction
Γ of (Σ1 ∪ Σ2)-equations and non-equational (Σ1 ∪ Σ2)-literals. Then ∃~x (Γ ∧ x1 6≈ x′

1 ∧
. . .∧ xn 6≈ x′

n) is T -unsatisfiable, and we can detect this by some run of the deterministic
Nelson–Oppen algorithm starting with ∃~x, ~y (Γ1 ∧ Γ2 ∧ x1 6≈ x′

1 ∧ . . . ∧ xn 6≈ x′
n), where

Γ1 ∧ Γ2 is the result of purifying Γ. This run consists of a sequence of “Propagate” steps
followed by a final “Unsat” step, and without loss of generality, we use the “Propagate”
rule only if “Unsat” cannot be applied. Consequently, whenever we add an equation
x ≈ y that is entailed by F1 w. r. t. T1 or by F2 w. r. t. T2, then it is by Lemma 1.13
already entailed by the positive and the non-equational literals in F1 or F2. Furthermore,
due to the convexity of T1 and T2, the final “Unsat” step depends on at most one
negative equational literal in F1 or F2. We can therefore construct a similar Nelson–
Oppen derivation that starts with only the positive and the non-equational literals in
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Γ1 and Γ2, plus at most one negative equational literal that may be needed for the
“Unsat” step. If a negative equational literal is needed, it is one of the xj 6≈ x′

j ; then
∃~x (Γ ∧ xj 6≈ x′

j) is T -unsatisfiable and ∀~x (Γ → xj ≈ x′
j) is T -valid; if no negative

equational literal is needed at all, then ∃~xΓ is T -unsatisfiable, so ∀~x (Γ → xj ≈ x′
j) is

T -valid for every j.

Extensions

Many-sorted logics:

read/2 becomes read : array × int→ data.
write/3 becomes write : array × int× data→ array.
Variables: x : data

Only one declaration per function/predicate/variable symbol.
All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, intA.

Interpretations of function and predicate symbols correspond to their declarations:
readA : arrayA × intA → dataA

If we consider combinations of theories with shared sorts but disjoint function and pred-
icate symbols, then we get essentially the same combination results as before.

However, stable infiniteness and/or convexity are only required for the shared sorts.

Non-stably infinite theories:

If we impose stronger conditions on one theory, we can relax the conditions on the
other one.

For instance, EUF can be combined with any other theory; stable infiniteness is not
required.

Non-disjoint combinations:

Have to ensure that both decision procedures interpret shared symbols in a compatible
way.

Some results, e. g. by Ghilardi, using strong model theoretical conditions on the the-
ories.
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Another Combination Method

Shostak’s method:

Applicable to combinations of EUF and solvable theories.

A Σ-theory T is called solvable, if there exists an effectively computable function solve

such that, for any T -equation s ≈ t:

(A) solve(s ≈ t) = ⊥ if and only if T |= ∀~x (s 6≈ t);

(B) solve(s ≈ t) = ∅ if and only if T |= ∀~x (s ≈ t); and otherwise

(C) solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, where

– the xi are pairwise different variables occurring in s ≈ t;

– the xi do not occur in the uj; and

– T |= ∀~x ((s ≈ t) ↔ ∃~y (x1 ≈ u1 ∧ . . . ∧ xn ≈ un)), where ~y are the variables
occurring in one of the uj but not in s ≈ t, and ~x ∩ ~y = ∅.

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by computing some unique normal
form

Main idea of the procedure:

If s ≈ t is a positive equation and solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, replace
s ≈ t by x1 ≈ u1 ∧ . . .∧ xn ≈ un and use these equations to eliminate the xi elsewhere.

Practical problem:

Solvability is a rather restrictive condition.
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2 Satisfiability Modulo Theories (SMT)

So far:

decision procedures for satisfiability for various fragments of first-order theories;

often only for ground conjunctions of literals.

Goals:

extend decision procedures efficiently to ground CNF formulas;

later: extend to non-ground formulas (we will often lose completeness, however).

2.1 The CDCL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses),
where the atoms represent ground formulas over some theory T , check whether it is
satisfiable in T (and optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated literals nor comple-
mentary literals.

For propositional CDCL (“Conflict-Driven Clause Learning”), we have considered partial
valuations, i. e., partial mappings from propositional variables to truth values.

A partial valuation A corresponds to a set M of literals that does not contain comple-
mentary literals, and vice versa:

A(L) is true, if L ∈M .

A(L) is false, if L ∈M .

A(L) is undefined, if neither L ∈M nor L ∈ M .

We will now consider partial mappings from ground T -atoms to truth values (which
correspond to sets of T -literals).

In order to check whether a (partial) valuation is permissible, we identify the valuation
A or the set M with the conjunction of all literals in M :

The valuation A or the set M is called T -satisfiable, if the literals in M have a T -
model.

Since the elements of M can be interpreted both as propositional variables and as ground
T -formulas, we have to distinguish between two notions of entailment:
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We write M |= F if F is entailed by M propositionally. We write M |=T F if the ground
T -formulas represented by M entail F .

M is called a T -model of F , if it is T -satisfiable and M |= F .

We write F |=T G, if the formula F entails G w. r. t. T , that is, if every T -model of F
is also a model of G.

Idea

Naive Approach:

Use CDCL to find a propositionally satisfying valuation.

If the valuation found is T -satisfiable, stop; otherwise continue CDCL search.

Note: The CDCL procedure may not use “pure literal” checks.

Improvements:

Check already partial valuations for T -satisfiability.

If T -decision procedure yields explanations, use them for non-chronological backjump-
ing.

If T -decision procedure can provide T -entailed literals, use them for propagation.

Since T -satisfiability checks may be costly, learn clauses that incorporate useful T -
knowledge, in particular explanations for backjumping.

CDCL(T)

The “CDCL Modulo Theories” procedure is modelled by a transition relation⇒CDCL(T )

on a set of states.

States:

• fail

• M ‖ N ,

where M is a list of annotated literals (“trail”) and N is a set of clauses.

Annotated literal:

• L: deduced literal, due to propagation.

• Ld: decision literal (guessed literal).
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CDCL(T) Rules from CDCL

Unit Propagate:

M ‖ N ∪ {C ∨ L} ⇒CDCL(T ) M L ‖ N ∪ {C ∨ L}

if C is false under M and L is undefined under M .

Decide:

M ‖ N ⇒CDCL(T ) M Ld ‖ N

if L is undefined under M .

Fail:

M ‖ N ∪ {C} ⇒CDCL(T ) fail

if C is false under M and M contains no decision literals.

Specific CDCL(T) Rules

T -Learn:

M ‖ N ⇒CDCL(T ) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Forget:

M ‖ N ∪ {C} ⇒CDCL(T ) M ‖ N

if N |=T C.

T -Propagate:

M ‖ N ⇒CDCL(T ) M L ‖ N

if M |=T L where L is undefined in M , and L or L occurs in N .

T -Backjump:

M ′ Ld M ′′ ‖ N ⇒CDCL(T ) M ′ L′ ‖ N

if M ′ Ld M ′′ |= ¬C for some C ∈ N
and if there is some “backjump clause” C ′ ∨ L′ such that
N |=T C ′ ∨ L′ and M ′ |= ¬C ′,
L′ is undefined under M ′, and
L′ or L′ occurs in N or in M ′ Ld M ′′.
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Note: We don’t need a special rule to handle the case that M ′ Ld M ′′ |=T ⊥. If the trail
contains a T -inconsistent subset, we can always add the negation of that subset using
T -Learn and apply T -Backjump afterwards.

CDCL(T) Properties

The system CDCL(T ) consists of the rules Decide, Fail, Unit Propagate, T -Propagate,
T -Backjump, T -Learn and T -Forget.

Lemma 2.1 If we reach a state M ‖ N starting from ∅ ‖ N , then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from T , N , and decision literals occurring
before L in M .

Proof. By induction on the length of the derivation. ✷

Lemma 2.2 If no clause is learned infinitely often, then every derivation starting from
∅ ‖ N terminates.

Proof. Similar to the propositional case.

Lemma 2.3 If ∅ ‖ N ⇒∗
CDCL(T ) M ‖ N ′ and there is some conflicting clause in

M ‖ N ′, that is, M |= ¬C for some clause C in N ′, then either Fail or T -Backjump
applies to M ‖ N ′.

Proof. Similar to the propositional case. ✷

Lemma 2.4 If ∅ ‖ N ⇒∗
CDCL(T ) M ‖ N ′ and M is T -unsatisfiable, then either there

is a conflicting clause in M ‖ N ′, or else T -Learn applies to M ‖ N ′, generating a
conflicting clause.

Proof. If M is T -unsatisfiable, then there are literals L1, . . . , Ln in M such that ∅ |=T

L1 ∨ . . . ∨ Ln. Hence the conflicting clause L1 ∨ . . . ∨ Ln is either in M ‖ N ′, or else it
can be learned by one T -Learn step. ✷
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Theorem 2.5 Consider a derivation ∅ ‖ N ⇒∗
CDCL(T ) S, where no more rules of the

CDCL(T) procedure are applicable to S except T -Learn or T -Forget, and if S has the
form M ‖ N ′ then M is T -satisfiable. Then

(1) If S has the form M ‖ N ′, then M is a T -model of N and N ′.

(2) If S is fail then N and N ′ are T -unsatisfiable.

Proof. (1) Observe that the “Decide” rule is applicable as long as there are undefined
literals in the clause set. Hence all literals in N ′ must be defined. Furthermore no clause
in N ′ can be false under M , otherwise “Fail” or “Backjump” would be applicable. So
M is a T -model of every clause in N ′. Moreover, the side conditions of “T -Learn” and
“T -Forget” ensure that N ′ |=T N , therefore M is also a T -model of every clause in N .

(2) If we reach fail , then in the previous step we must have reached a state M ‖ N ′

such that some clause C ∈ N ′ is false under M and M contains no decision literals.
By part (2) of Lemma 2.1, every literal L in M follows from T and N . On the other
hand, we have C ∈ N ′, and the side conditions of “T -Learn” and “T -Forget” ensure
that N |=T N ′ and N ′ |=T N . Therefore N |=T C. So N and N ′ must be T -unsatisfiable.

✷
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The Solver Interface

The general CDCL(T ) procedure has to be connected to a “Solver” for T , a theory
module that performs at least T -satisfiability checks.

The solver is initialized with a list of all literals occurring in the input of the CDCL(T )
procedure.

Internally, it keeps a stack I of theory literals that is initially empty. The solver performs
the following operations on I:

SetTrue(L: T -Literal):

Check whether I ∪ {L} is T -satisfiable.

If no: return an explanation for L, that is, a subset J of I such that J |=T L.

If yes: push L on I.

Optionally: Return a list of literals that are T -consequences of I ∪ {L} (and have not
yet been detected before).

Note: Depending on T , detecting (all) T -consequences may be very cheap or very
expensive.

Backtrack(n: N):

Pop n literals from I.

Explanation(L: T -Literal):

Return an explanation for L, that is, a subset J of I such that J |=T L.

We assume that L has been returned previously as a result of some SetTrue(L′) op-
eration. No literal of J may occur in I after L′.

Computing Backjump Clauses

Backjump clauses for a conflict can then be computed as in the propositional case:

Start with the conflicting clause.

Resolve with the clauses used for Unit Propagate or the explanations produced by the
solver until a backjump clause (or ⊥) is found.
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2.2 Heuristic Instantiation

CDCL(T) is limited to ground (or existentially quantified) formulas. Even if we have
decidability for more than the ground fragment of a theory T , we cannot use this in
CDCL(T).

Most current SMT implementations offer a limited support for universally quantified
formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add
them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in ∀~xC as “trigger” (automatically, but can be
overridden manually).

If there is a ground instance Cθ of ∀~xC such that tθ occurs (modulo congruence) in
the current set of ground clauses for every t ∈ trigger(C), add Cθ to the set of ground
clauses (incrementally).

Conditions for trigger terms (or atoms):

(1) Every quantified variable of the clause occurs in some trigger term (therefore more
than one trigger term may be necessary).

(2) A trigger term is not a variable itself.

(3) A trigger is not explicitly forbidden by the user.

(4) There is no larger instance of the term in the formula:
(If f(x) were selected as a trigger in ∀xP (f(x), f(g(x))), a ground term f(a)
would produce an instance P (f(a), f(g(a))), which would produce an instance
P (f(g(a)), f(g(g(a)))), and so on.)

(5) No proper subterm satisfies (1)–(4).

Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom P (a) is not an instance of the trigger atom P (x+ 1); it is however
equivalent (in linear algebra) to P ((a− 1) + 1), which is an instance and may therefore
produce a new ground clause.

Heuristic instantiation is obviously incomplete

e. g., it does not find the contradiction for f(x, a) ≈ x, f(b, y) ≈ y, a 6≈ b

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.
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2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with “known”
ground terms is sufficient for completeness.

Scenario:

Σ0 = (Ω0,Π0): base signature;
T0: Σ0-theory.

Σ1 = (Ω0 ∪ Ω1,Π0): signature extension;
K: universally quantified Σ1-clauses;
G: ground clauses.

Assumption: clauses in G are Σ1-flat and Σ1-linear:

only constants as arguments of Ω1-symbols,

if a constant occurs in two terms below an Ω1-symbol, then the two terms are identical,

no term contains the same constant twice below an Ω1-symbol.

Example: Monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x ≤ y ∨ f(x) ≤ f(y)) }.

G = { f(3) ≥ 6, f(5) ≤ 9 }.

Observation: If we choose interpretations for f(3) and f(5) that satisfy the G and
monotonicity axiom, then it is always possible to define f for all remaining integers
such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x < y ∨ f(x) < f(y)) }.

G = { f(3) > 6, f(5) < 9 }.

Observation: Even though we can choose interpretations for f(3) and f(5) that satisfy
G and the strict monotonicity axiom (map f(3) to 7 and f(5) to 8), we cannot define
f(4) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

like (usual) total algebras, but fA may be a partial function.
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There are several ways to define equality in partial algebras (strong equality, Evans
equality, weak equality, etc.). Here we use weak equality:

an equation s ≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined and
equal or if at least one of them is undefined;

a negated equation s 6≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined
and different or if at least one of them is undefined.

If a partial algebra A satisfies a set of formulas N w. r. t. weak equality, it is called a
weak partial model of N .

A partial algebra A embeds weakly into a partial algebra B if there is an injective total
mapping h : UA → UB such that if fA(a1, . . . , an) is defined inA then fB(h(a1), . . . , h(an))
is defined in B and equal to h(fA(a1, . . . , an)).

A theory extension T0 ⊆ T0 ∪K is called local, if for every set G, T0 ∪K ∪G is satisfiable
if and only if T0 ∪K[G] ∪G has a (partial) model, where K[G] is the set of instances of
clauses in K in which all terms starting with an Ω1-symbol are ground terms occurring
in K or G.

If every weak partial model of T0 ∪K can be embedded into a a total model, then the
theory extension T0 ⊆ T0 ∪K is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to dif-
ferent kinds of locality.

Examples of local theory extensions:

free functions, constructors/selectors, monotonic functions, Lipschitz functions.
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2.4 Goal-driven Instantiation

Instantiation is used to refute the current model discovered by the ground solver.

Rather than a fast but loosely guided instantiation technique, we can search for the most
suitable instance if it exists.

Scenario:

M : a model of the ground formula returned by the ground SMT solver.

Q: the set of universally quantified clauses contained in the original input.

Problem:

Find a clause ∀xC ∈ Q and a grounding substitution σ such that M ∪ Cσ is unsat-
isfiable, if it exists.

E-ground (Dis)unification Problem

Given

E: a set of ground equality literals,
N : a set of equality literals,

find σ such that E |= Nσ.

The E-ground (dis)unification problem can be used to encode the goal-driven instantia-
tion problem:

For M and each ∀xC ∈ Q, try to solve the E-ground (dis)unification problem M |=
(¬C)σ.

Congruence Closure with Free Variables

CCFV (Barbosa et al, 2017) decomposes N into sets of smaller constraints by replacing
terms with equivalent smaller ones until either

1. a variable assignment is possible, and the decomposition restarts afterwards,

2. a contradiction occurs, and the corresponding search branch is closed,

3. a substitution satisfying the problem is found.

CCFV is sound, complete and terminating for the E-ground (dis)unification problem.

Modern implementations: CVC4, VeriT.

43



Literature

Haniel Barbosa, Pascal Fontaine, Andrew Reynolds: Congruence Closure with Free Vari-
ables. Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2017,
LNCS 10206, pp. 214-230, Springer, 2017.

David Detlefs, Greg Nelson, James B. Saxe: Simplify: A Theorem Prover for Program
Checking. Journal of the ACM, 52(3):365–473, 2005.

Yeting Ge, Leonardo de Moura: Complete instantiation for quantified formulas in Sat-
isfiabiliby Modulo Theories. International Conference on Computer Aided Verification,
CAV 2009 LNCS 5643, pp. 306–320, Springer, 2009.

Leonardo de Moura, Nikolaj Bjørner: Efficient E-Matching for SMT solvers. Automated
Deduction, CADE-21, LNAI 4603, pp. 183–198, Springer, 2007.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT and SAT Modulo
Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

Viorica Sofronie-Stokkermans: Hierarchic reasoning in local theory extensions. Auto-
mated Deduction, CADE-20, LNAI 3632, pp. 219–234, Springer, 2005.

44



3 Superposition

First-order calculi considered so far:

Resolution: for first-order clauses without equality.

(Unfailing) Knuth-Bendix Completion: for unit equations.

Goal:

Combine the ideas of ordered resolution (overlap maximal literals in a clause) and
Knuth-Bendix completion (overlap maximal sides of equations) to get a calculus for
equational clauses.

3.1 Recapitulation

First-order logic:

Atom: either P (s1, . . . , sm) with P ∈ Π or s ≈ t.

Literal: Atom or negated atom.

Clause: (possibly empty) disjunction of literals (all variables implicitly universally
quantified).

Refutational theorem proving:

For refutational theorem proving, it is sufficient to consider sets of clauses: every first-
order formula F can be translated into a set of clauses N such that F is unsatisfiable
if and only if N is unsatisfiable.

In the non-equational case, unsatisfiability can for instance be checked using the (or-
dered) resolution calculus.

(Ordered) resolution: inference rules:

Ground case: Non-ground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A,A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨A ∨A′

(C ′ ∨A)σ

where σ = mgu(A,A′).
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Ordering restrictions:

Let ≻ be a well-founded and total ordering on ground atoms.

Literal ordering ≻L: compares literals by comparing lexicographically first the respec-
tive atoms using ≻ and then their polarities (negative > positive).

Clause ordering ≻C : compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions (ground case):

Inference are necessary only if the following conditions are satisfied:

– The left premise of a Resolution inference is not larger than or equal to the right
premise.

– The literals that are involved in the inferences ([¬]A) are maximal in the respec-
tive clauses (strictly maximal for the left premise of Resolution).

Ordering restrictions (non-ground case):

Define the atom ordering ≻ also for non-ground atoms.

Need stability under substitutions: A ≻ B implies Aσ ≻ Bσ.

Note: ≻ cannot be total on non-ground atoms.

For literals involved in inferences we have the same maximality requirements as in the
ground case.

Resolution is (even with ordering restrictions) refutationally complete:

Dynamic view of refutational completeness:

If N is unsatisfiable (N |= ⊥) then fair derivations from N produce ⊥.

Static view of refutational completeness:

If N is saturated, then N is unsatisfiable if and only if ⊥ ∈ N .

Proving refutational completeness for the ground case:

We have to show:

IfN is saturated (i. e., if sufficiently many inferences have been computed), and⊥ /∈ N ,
then N is satisfiable (i. e., has a model).
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Constructing a candidate interpretation:

Suppose that N be saturated and ⊥ /∈ N . We inspect all clauses in N in ascending
order and construct a sequence of Herbrand interpretations (starting with the empty
interpretation: all atoms are false).

If a clause C is false in the current interpretation, and has a positive and strictly maximal
literal A, then extend the current interpretation such that C becomes true: add A to
the current interpretation. (Then C is called productive.)

Otherwise, leave the current interpretation unchanged.

The sequence of interpretations has the following properties:

(1) If an atom is true in some interpretation, then it remains true in all future inter-
pretations.

(2) If a clause is true at the time where it is inspected, then it remains true in all
future interpretations.

(3) If a clause C = C ′ ∨A is productive, then C remains true and C ′ remains false in
all future interpretations.

Show by induction: if N is saturated and ⊥ /∈ N , then every clause in N is either true
at the time where it is inspected or productive.

Note:
For the induction proof, it is not necessary that the conclusion of an inference is contained
in N . It is sufficient that it is redundant w. r. t. N .

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Proving refutational completeness for the non-ground case:

If Ciθ is a ground instance of the clause Ci for i ∈ {0, . . . , n} and

Cn, . . . , C1

C0

and

Cnθ, . . . , C1θ

C0θ

are inferences, then the latter inference is called a ground instance of the former.
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For a set N of clauses, let GΣ(N) be the set of all ground instances of clauses in N .

Construct the interpretation from the set GΣ(N) of all ground instances of clauses
in N :

N is saturated and does not contain ⊥
⇒ GΣ(N) is saturated and does not contain ⊥
⇒ GΣ(N) has a Herbrand model I
⇒ I is a model of N .

It is possible to encode an arbitrary predicate P using a function fP and a new con-
stant true :

P (t1, . . . , tn) ❀ fP (t1, . . . , tn) ≈ true

¬ P (t1, . . . , tn) ❀ ¬ fP (t1, . . . , tn) ≈ true

In equational logic it is therefore sufficient to consider the case that Π = ∅, i. e., equality
is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

3.2 The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and
its completeness proof. Precise definitions will be given later.

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)
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Ordering wishlist:

Like in resolution, we want to perform only inferences between (strictly) maximal
literals.

Like in completion, we want to perform only inferences between (strictly) maximal
sides of literals.

Like in resolution, in inferences with two premises, the left premise should not be
larger than the right one.

Like in resolution and completion, the conclusion should then be smaller than the
larger premise.

The ordering should be total on ground literals.

Consequences:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be a bit larger than the corresponding
positive literals.

Additionally, we need the following property: If s ≻ t ≻ u, then s 6≈ u must be larger
than s ≈ t. In other words, we must compare first the larger term, then the polarity,
and finally the smaller term.

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Constructing a candidate interpretation:

We want to use roughly the same ideas as in the completeness proof for resolution.

But: a Herbrand interpretation does not work for equality: The equality symbol ≈ must
be interpreted by equality in the interpretation.

Solution: Productive clauses contribute ground rewrite rules to a TRS R.
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The interpretation has the universe TΣ(∅)/R = TΣ(∅)/≈R; a ground atom s ≈ t holds
in the interpretation, if and only if s ≈R t if and only if s↔∗

R t.

We will construct R in such a way that it is terminating and confluent. In this case,
s ≈R t if and only if s ↓R t.

One problem:

The completeness proof for the resolution calculus depends on the following property:

If C = C ′ ∨ A with a strictly maximal and positive literal A is false in the current
interpretation, then adding A to the current interpretation cannot make any literal of
C ′ true.

This property does not hold for superposition:

Let b ≻ c ≻ d. Assume that the current rewrite system (representing the current
interpretation) contains the rule c→ d. Now consider the clause b ≈ d ∨ b ≈ c.

We need a further inference rule to deal with clauses of this kind, either the “Merging
Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring”
rule due to Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

How do the non-ground versions of the inference rules for superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering
restrictions, use 6� instead of ≻.

However:

As in Knuth-Bendix completion, we do not want to consider overlaps at or below a
variable position.

Consequence: there are inferences between ground instances Dθ and Cθ of clauses D
and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.
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3.3 The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 3.1 All inference rules of the superposition calculus are correct, i. e., for every
rule

Cn, . . . , C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Exercise. ✷
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Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Inferences have to be computed only if the following ordering restrictions are satisfied
(after applying the unifier to the premises):

– In superposition inferences, the left premise is not greater than or equal to the
right one.

– The last literal in each premise is maximal in the respective premise, i. e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is neither smaller nor equal than the rhs (except in equality
resolution inferences).

A ground clause C is called redundant w. r. t. a set of ground clauses N , if it follows
from clauses in N that are smaller than C.

A clause is redundant w. r. t. a set of clauses N , if all its ground instances are redundant
w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

3.4 Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.
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Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing ⊥. Using induction on the clause ordering we
define sets of rewrite rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃

D≺CC ED.

The set EC contains the rewrite rule s→ t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N)ED.

Lemma 3.2 If EC = {s→ t} and ED = {u→ v}, then s ≻ u if and only if C ≻C D.

Proof. (⇒): By condition (b), s ≈ t is strictly maximal in C and u ≈ v is strictly
maximal in D, and since the literal ordering is total on ground literals, this implies that
all other literals in C or in D are actually smaller than s ≈ t or u ≈ v, respectively.

Moreover, s ≻ t and u ≻ v by condition (c). Therefore s ≻ u implies {s, t} ≻mul {u, v}.
Hence s ≈ t ≻L u ≈ v �L L for every literal L of D, and thus C ≻C D.

(⇐): Let C ≻C D, then ED ⊆ RC . By condition (f), s must be irreducible w. r. t. RC ,
so s 6= u.

Assume that s 6≻ u. By totality, this implies s � u, and since s 6= u, we obtain s ≺ u.
But then C ≺C D can be shown in the same way as in the (⇒)-part, contradicting the
assumption. ✷
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Corollary 3.3 The rewrite systems RC and R∞ are convergent (i. e., terminating and
confluent).

Proof. By condition (c), s ≻ t for all rules s → t in RC and R∞, so RC and R∞ are
terminating.

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u → v in ED and s → t in EC such that u is a subterm
of s. As ≻ is a reduction ordering that is total on ground terms, we get u ≺ s and
therefore D ≺C C and ED ⊆ RC . But then s would be reducible by RC , contradicting
condition (f).

Now the absence of critical pairs implies local confluence, and termination and local
confluence imply confluence. ✷

Lemma 3.4 If D �C C and EC = {s→ t}, then s ≻ u for every term u occurring in a
negative literal in D and s � u for every term u occurring in a positive literal in D.

Proof. If s � u for some term u occurring in a negative literal u 6≈ v in D, then
{u, u, v, v} ≻mul {s, t}. So u 6≈ v ≻L s ≈ t �L L for every literal L of C, and therefore
D ≻C C.

Similarly, if s ≺ u for some term u occurring in a positive literal u ≈ v in D, then
{u, v} ≻mul {s, t}. So u ≈ v ≻L s ≈ t �L L for every literal L of C, and therefore
D ≻C C. ✷

Corollary 3.5 If D ∈ GΣ(N) is true in RD, then D is true in R∞ and RC for all
C ≻C D.

Proof. If a positive literal of D is true in RD, then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD, hence s 6 ↓RD
t. As the

rules in R∞ \RD have left-hand sides that are larger than s and t, they cannot be used
in a rewrite proof of s ↓ t, hence s 6 ↓RC

t and s 6 ↓R∞
t. ✷

Corollary 3.6 If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞

and RC for all C ≻C D.

Proof. Obviously, D is true in R∞ and RC for all C ≻C D.

Since all negative literals of D′ are false in RD, it is clear that they are false in R∞ and
RC . For the positive literals u′ ≈ v′ of D′, condition (e) ensures that they are false in
RD ∪ {u → v}. Since u′ � u and v′ � u and all rules in R∞ \ RD have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of u′ ↓ v′, hence
u′ 6 ↓RC

v′ and u′ 6 ↓R∞
v′. ✷
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Lemma 3.7 (“Lifting Lemma”) Let C be a clause and let θ be a substitution such
that Cθ is ground. Then every equality resolution or equality factoring inference from
Cθ is a ground instance of an inference from C.

Proof. Exercise. ✷

Lemma 3.8 (“Lifting Lemma”) Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be two
clauses (without common variables) and let θ be a substitution such that Dθ and Cθ
are ground.

If there is a superposition inference between Dθ and Cθ where uθ and some subterm of
sθ are overlapped, and uθ does not occur in sθ at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C.

Proof. Exercise. ✷

Theorem 3.9 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground
clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w. r. t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D ≻C Cθ.

Proof. We use induction on the clause ordering ≻C and assume that (i)–(iii) are already
satisfied for all clauses in GΣ(N) that are smaller than Cθ. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 3.5 and 3.6. So it remains to show (ii) and the “only if” part of (i).

Case 1: Cθ is redundant w. r. t. GΣ(N).

If Cθ is redundant w. r. t. GΣ(N), then it follows from clauses in GΣ(N) that are smaller
than Cθ. By part (iii) of the induction hypothesis, these clauses are true in RCθ. Hence
Cθ is true in RCθ.

Case 2: xθ is reducible by RCθ.

Suppose there is a variable x occurring in C such that xθ is reducible by RCθ, say
xθ →RCθ

w. Let the substitution θ′ be defined by xθ′ = w and yθ′ = yθ for every variable
y 6= x. The clause Cθ′ is smaller than Cθ. By part (iii) of the induction hypothesis, it
is true in RCθ. By congruence, every literal of Cθ is true in RCθ if and only if the
corresponding literal of Cθ′ is true in RCθ; hence Cθ is true in RCθ.
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Case 3: Cθ contains a maximal negative literal.

Suppose that Cθ does not fall into Case 1 or 2 and that Cθ = C ′θ ∨ sθ 6≈ s′θ, where
sθ 6≈ s′θ is maximal in Cθ. If sθ ≈ s′θ is false in RCθ, then Cθ is clearly true in RCθ and
we are done. So assume that sθ ≈ s′θ is true in RCθ, that is, sθ ↓RCθ

s′θ. Without loss
of generality, sθ � s′θ.

Case 3.1: sθ = s′θ.

If sθ = s′θ, then there is an equality resolution inference

C ′θ ∨ sθ 6≈ s′θ

C ′θ
.

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

C ′ ∨ s 6≈ s′

C ′σ

where C = C ′ ∨ s 6≈ s′ is contained in N and θ = ρ ◦ σ. (Without loss of generality,
σ is idempotent, therefore C ′θ = C ′σρ = C ′σσρ = C ′σθ, so C ′θ is a ground instance
of C ′σ.) Since Cθ is not redundant w. r. t. GΣ(N), C is not redundant w. r. t. N . As N
is saturated up to redundancy, the conclusion C ′σ of the inference from C is contained
in N ∪ Red(N). Therefore, C ′θ is either contained in GΣ(N) and smaller than Cθ, or it
follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, clauses in GΣ(N) that are smaller than Cθ are true
in RCθ, thus C

′θ and Cθ are true in RCθ.

Case 3.2: sθ ≻ s′θ.

If sθ ↓RCθ
s′θ and sθ ≻ s′θ, then sθ must be reducible by some rule in some EDθ ⊆ RCθ.

(Without loss of generality we assume that C and D are variable disjoint; so we can use
the same substitution θ.) Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ = {tθ → t′θ}. Since Dθ
is productive, D′θ is false in RCθ. Besides, by part (ii) of the induction hypothesis, Dθ
is not redundant w. r. t. GΣ(N), so D is not redundant w. r. t. N . Note that tθ cannot
occur in sθ at or below a variable position of s, say xθ = w[tθ], since otherwise Cθ would
be subject to Case 2 above. Consequently, the negative superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] 6≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ

is a ground instance of a negative superposition inference from D and C. By saturation
up to redundancy, its conclusion is either contained in GΣ(N) and smaller than Cθ, or
it follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, these clauses are true in RCθ, thus D′θ ∨ C ′θ ∨
sθ[t′θ] 6≈ s′θ is true in RCθ. Since D′θ and sθ[t′θ] 6≈ s′θ are false in RCθ, both C ′θ and
Cθ must be true.
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Case 4: Cθ does not contain a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as C ′θ ∨ sθ ≈
s′θ, where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ→ s′θ} or C ′θ is true in RCθ

or sθ = s′θ, then there is nothing to show, so assume that ECθ = ∅ and that C ′θ is false
in RCθ. Without loss of generality, sθ ≻ s′θ.

Case 4.1: sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.

If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written as
C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there is a equality

factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

This inference is a ground instance of an inference from C. By saturation, its conclusion
is true in RCθ. Trivially, t

′θ = s′θ implies t′θ ↓RCθ
s′θ, so t′θ 6≈ s′θ must be false and Cθ

must be true in RCθ.

Case 4.2: sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some rule in
EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}. Since Dθ is productive,
Dθ is not redundant and D′θ is false in RCθ. We can now proceed in essentially the
same way as in Case 3.2: If tθ occurred in sθ at or below a variable position of s,
say xθ = w[tθ], then Cθ would be subject to Case 2 above. Otherwise, the positive

superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] ≈ s′θ

is a ground instance of a positive superposition inference from D and C. By saturation
up to redundancy, its conclusion is true in RCθ. Since D′θ and C ′θ are false in RCθ,
sθ[t′θ] ≈ s′θ must be true in RCθ. On the other hand, tθ ≈ t′θ is true in RCθ, so by
congruence, sθ[tθ] ≈ s′θ and Cθ are true in RCθ.
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Case 4.3: sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible by RCθ. Then there
are three possibilities: Cθ can be true in RCθ, or C

′θ can be true in RCθ ∪ {sθ → s′θ},
or ECθ = {sθ → s′θ}. In the first and the third case, there is nothing to show. Let us
therefore assume that Cθ is false in RCθ and C ′θ is true in RCθ ∪ {sθ → s′θ}. Then
C ′θ = C ′′θ ∨ tθ ≈ t′θ, where the literal tθ ≈ t′θ is true in RCθ ∪ {sθ → s′θ} and false
in RCθ. In other words, tθ ↓RCθ∪{sθ→s′θ} t

′θ, but not tθ ↓RCθ
t′θ. Consequently, there is a

rewrite proof of tθ →∗ u←∗ t′θ by RCθ ∪ {sθ → s′θ} in which the rule sθ → s′θ is used at
least once. Without loss of generality we assume that tθ � t′θ. Since sθ ≈ s′θ ≻L tθ ≈ t′θ
and sθ ≻ s′θ we can conclude that sθ � tθ ≻ t′θ. But then there is only one possibility
how the rule sθ → s′θ can be used in the rewrite proof: We must have sθ = tθ and
the rewrite proof must have the form tθ → s′θ →∗ u ←∗ t′θ, where the first step uses
sθ → s′θ and all other steps use rules from RCθ. Consequently, s

′θ ≈ t′θ is true in RCθ.
Now observe that there is an equality factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

whose conclusion is true in RCθ by saturation. Since the literal t′θ 6≈ s′θ must be false in
RCθ, the rest of the clause must be true in RCθ, and therefore Cθ must be true in RCθ,
contradicting our assumption. This concludes the proof of the theorem. ✷

A Σ-interpretation A is called term-generated, if for every b ∈ UA there is a ground term
t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 3.10 Let N be a set of (universally quantified) Σ-clauses and let A be a term-
generated Σ-interpretation. Then A is a model of GΣ(N) if and only if it is a model
of N .

Proof. (⇒): Let A |= GΣ(N); let (∀~xC) ∈ N . Then A |= ∀~xC iff A(γ[xi 7→ ai])(C) = 1
for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai; define θ such that
xiθ = ti, then A(γ[xi 7→ ai])(C) = A(γ ◦ θ)(C) = A(γ)(Cθ) = 1 since Cθ ∈ GΣ(N).

(⇐): Let A be a model of N ; let ∀~xC ∈ N and Cθ ∈ GΣ(N). Then A |= ∀~xC and
therefore A |= C. Consequently A(γ)(Cθ) = A(γ ◦ θ)(C) = 1. ✷

Theorem 3.11 (Refutational Completeness: Static View) Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ /∈ N , then the interpre-
tation R∞ (that is, TΣ(∅)/R∞) is a model of all ground instances in GΣ(N) according
to part (iii) of the model construction theorem. As TΣ(∅)/R∞ is term-generated, it is a
model of N . ✷
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So far, we have considered only inference rules that add new clauses to the current set
of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form N0 ⊢ N1 ⊢ N2 ⊢ . . . , where each Ni+1 is
obtained from Ni by adding the consequence of some inference from clauses in Ni.

Under which circumstances are we allowed to delete (or simplify) a clause during the
derivation?

A run of the superposition calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, N∞ =
⋃

i≥0Ni and N∗ =
⋃

i≥0

⋂

j≥iNj. The set N∗ of all persistent clauses is
called the limit of the run.

Lemma 3.12 If N ⊆ N ′, then Red(N) ⊆ Red(N ′).

Proof. Obvious. ✷

Lemma 3.13 If N ′ ⊆ Red(N), then Red(N) ⊆ Red(N \N ′).

Proof. Follows from the compactness of first-order logic and the well-foundedness of
the multiset extension of the clause ordering. ✷

Lemma 3.14 Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run. Then Red(Ni) ⊆ Red(N∞) and
Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. ✷

Corollary 3.15 Ni ⊆ N∗ ∪Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. ✷
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A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 3.16 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. ✷

Theorem 3.17 (Refutational Completeness: Dynamic View) LetN0 ⊢ N1 ⊢ N2 ⊢
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has
a term-generated model. Since every clause in N0 is contained in N∗ or redundant
w. r. t. N∗, this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. ✷
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3.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several
ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed
to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the
existing ones.

This process is called simplification.

Examples:

Subsumption:
If N contains clauses D and C = C ′ ∨Dσ, where C ′ is non-empty, then D subsumes
C and C is redundant.
Example: f(x) ≈ g(x) subsumes f(y) ≈ a ∨ f(h(y)) ≈ g(h(y)).

Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause C ′ ∨ L ∨ L can
be simplified to C ′ ∨ L; a clause C ′ ∨ s 6≈ s can be simplified to C ′.

Condensation:
If we obtain a clause D from C by applying a substitution, followed by deletion of
duplicated literals, and if D subsumes C, then C can be simplified to D.
Example: By applying {y → g(x)} to C = f(g(x)) ≈ a ∨ f(y) ≈ a and deleting the
duplicated literal, we obtain f(g(x)) ≈ a, which subsumes C.

Semantic tautology deletion:
Every clause that is a tautology is redundant. Note that in the non-equational case,
a clause is a tautology if and only if it contains two complementary literals, whereas
in the equational case we need a congruence closure algorithm to detect that a clause
like x 6≈ y ∨ f(x) ≈ f(y) is tautological.

Rewriting:
If N contains a unit clause D = s ≈ t and a clause C[sσ], such that sσ ≻ tσ and
C ≻C Dσ, then C can be simplified to C[tσ].
Example: If D = f(x, x) ≈ g(x) and C = h(f(g(y), g(y))) ≈ h(y), and ≻ is an LPO
with h > f > g, then C can be simplified to h(g(g(y))) ≈ h(y).
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Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function
that overrides the ordering restrictions for negative literals.

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

We indicate selected literals by a box:

¬f(x) ≈ a ∨ g(x, y) ≈ g(x, z)

The second ordering condition for inferences is replaced by

– The last literal in each premise is either selected, or there is no selected literal in
the premise and the literal is maximal in the premise (strictly maximal for positive
literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution infer-
ences and as the second premise in negative superposition inferences.

Refutational completeness is proved essentially as before:

We assume that each ground clause in GΣ(N) inherits the selection of one of the
clauses in N of which it is a ground instance (there may be several ones!).

In the proof of the model construction theorem, we replace case 3 by “Cθ contains a
selected or maximal negative literal” and case 4 by “Cθ contains neither a selected
nor a maximal negative literal”.

In addition, for the induction proof of this theorem we need one more property, namely:
(iv) If Cθ has selected literals then ECθ = ∅.

Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy, if the conclusion of every inference from clauses in
N \Red(N) is contained in N ∪ Red(N).

This definition ensures that in the proof of the model construction theorem, the conclu-
sion C0θ of a ground inference follows from clauses in GΣ(N) that are smaller than or
equal to itself, hence they are smaller than the premise Cθ of the inference, hence they
are true in RCθ by induction.
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However, a closer inspection of the proof shows that it is actually sufficient that the
clauses from which C0θ follows are smaller than Cθ – it is not necessary that they are
smaller than C0θ itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion C0 and right (or only) premise C is called redundant
w. r. t. a set of ground clauses N , if one of its premises is redundant w. r. t. N , or if C0

follows from clauses in N that are smaller than C.

An inference is redundant w. r. t. a set of clauses N , if all its ground instances are
redundant w. r. t. GΣ(N).

Recall that a clause can be redundant w. r. t. N without being contained in N . Analo-
gously, an inference can be redundant w. r. t. N without being an inference from clauses
in N .

The set of all inferences that are redundant w. r. t. N is denoted by RedInf (N).

Saturation is then redefined in the following way:

N is saturated up to redundancy, if every inference from clauses in N is redundant
w. r. t. N .

Using this definition, the model construction theorem can be proved essentially as be-
fore.

The connection between redundant inferences and clauses is given by the following lem-
mas. They are proved in the same way as the corresponding lemmas for redundant
clauses:

Lemma 3.18 If N ⊆ N ′, then RedInf (N) ⊆ RedInf (N ′).

Lemma 3.19 If N ′ ⊆ Red(N), then RedInf (N) ⊆ RedInf (N \N ′).
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3.6 Splitting

Motivation:

A clause like f(x) ≈ a ∨ g(y) ≈ b has rather undesirable properties in the superposi-
tion calculus: It does not have negative literals that one could select; it does not have
a unique maximal literal; moreover, after performing a superposition inference with
this clause, the conclusion often does not have a unique maximal literal either.

On the other hand, the two unit clauses f(x) ≈ a and g(y) ≈ b have much nicer
properties.

Splitting with Backtracking

If a clause ∀~x, ~y C1(~x) ∨ C2(~y) consists of two non-empty variable-disjoint subclauses,
then it is equivalent to the disjunction

(
∀~x C1(~x)

)
∨
(
∀~y C2(~y)

)
.

In this case, superposition derivations can branch in a tableau-like manner:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

where C1 and C2 do not have common variables.

If ⊥ is found on the left branch, backtrack to the right one.

If C1 is ground, the general rule can be improved:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2} ∪ {¬C1}

where C1 is ground.

Note: ¬C1 denotes the conjunction of all negations of literals in C1.

In practice: most useful if both subclauses contain at least one positive literal.

Implementing Splitting

Most clauses that are derived after a splitting step do not depend on the split clause.

It is unpractical to delete them as soon as one branch is closed and to recompute them
in the other branch afterwards.

Solution: Associate a label set L to every clause C that indicates on which splits it
depends.

Inferences:
C2 ← L2 C1 ← L1

C0 ← L2 ∪ L1
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If we derive ⊥ ← L in one branch:

Determine the last split in L.

Backtrack to the corresponding right branch.

Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying clause is no longer valid
on the right branch.

Additionally: Delete splittings that did not contribute to the contradiction (branch
condensation).

AVATAR

Superposition with splitting has some similarity with CDCL.

Can we actually use CDCL?

Encoding splitting components:

Use propositional literals as labels for splitting components:

non-ground component C → propositional variable PC

positive ground component C → propositional variable PC

negative ground component C → negated propositional variable ¬PC

Therefore: splittable clauses → propositional clauses.

Implementation:

Combine a CDCL solver and a superposition prover.

The superposition prover passes splittable clauses and labelled empty clauses to the
CDCL solver.

If the CDCL solver finds contradiction: input contradictory.

Otherwise the CDCL solver extracts a boolean model and passes the associated la-
belled clauses to the superposition prover.
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3.7 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on the analysis of inferences
between ground instances of clauses.

Inferences between ground instances must be covered by inferences between original
clauses.

Non-ground clauses represent the set of all their ground instances.

Do we really need all ground instances?

Constrained Clauses

A constrained clause is a pair (C,K), usually written as C [[K]], where C is a Σ-clause
and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals s ≻ t with Σ-terms s, t.
(also possible: comparisons between literals or clauses).

Intuition: C [[K]] represents the set of all ground clauses Cθ for which Kθ evaluates to
true for some fixed term ordering. Such a Cθ is called a ground instance of C [[K]].

A clause C without constraint is identified with C [[⊤]].

A constrained clause C [[⊥]] with an unsatisfiable constraint represents no ground
instances; it can be discarded.

Constraint Superposition

Inference rules for constrained clauses:

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ [[(K2 ∧K1 ∧K)σ]]

where σ = mgu(t, u) and
u is not a variable and
K = (t ≻ t′ ∧ s[u] ≻ s′

∧ (t ≈ t′) ≻C D′

∧ (s[u] ≈ s′) ≻C C ′

∧ (s[u] ≈ s′) ≻L (t ≈ t′))

The other inference rules are modified analogously.
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To work effectively with constrained clauses in a calculus, we need methods to check the
satisfiability of constraints:

Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts of the constraint. (Note
that the calculus remains sound, if constraints are replaced by implied constraints.)

Refutational Completeness

The refutational completeness proof for constraint superposition looks mostly like in
Sect. 3.4.

Lifting works as before, so every ground infererence that is required in the proof is an
instance of some inference from the corresponding constrained clauses. (Easy.)

There is one significant problem, though.

Case 2 in the proof of Thm. 3.9 does not work for constrained clauses:

If we have a ground instance Cθ where xθ is reducible by RCθ, we can no longer
conclude that Cθ is true because it follows from some rule in RCθ and some smaller
ground instance Cθ′.

Example: Let C [[K]] be the clause f(x) ≈ a [[x ≻ a]], let θ = {x 7→ b}, and assume
that RCθ contains the rule b→ a.
Then θ satisfies K, but θ′ = {x 7→ a} does not, so Cθ′ is not a ground instance of
C [[K]].

Solution:

Assumption: We start the saturation with a set N0 of unconstrained clauses; the limit
N∗ contains constrained clauses, though.

During the model construction, we ignore ground instances Cθ of clauses in N∗ for
which xθ is reducible by RCθ.

We call a ground instance Cθ variable irreducible w. r. t. a ground TRS R, if for every
variable x occurring in a literal L of C, xθ is irreducible by all rules in R that are
smaller than Lθ.

The construction yields a TRS R∞ that is a model of all R∞-variable irreducible
ground instances of clauses in N∗.

R∞ is also a model of all R∞-variable irreducible ground instances of clauses in N0.

Since all clauses in N0 are unconstrained, every ground instance of a clause in N0

follows from rules in R∞ and some smaller or equal ground instance; so it is true in R∞.

Consequently, R∞ is a model of all ground instances of clauses in N0.
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Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints (❀ “basic superposi-
tion”):

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

D′ ∨ C ′ ∨ s[t′] ≈ s′ [[K2 ∧K1 ∧K]]

where u is not a variable and
K = (t = u)

Note: In contrast to ordering constraints, these constraints are essential for soundness.

The Drawback

Constraints reduce the number of required inferences; however, they are detrimental to
redundancy:

Since we consider only R∞-variable irreducible ground instances during the model
construction, we may use only such instances for redundancy:

A clause is redundant, if all its R∞-variable irreducible ground instances follow from
smaller R∞-variable irreducible ground instances and smaller rules in R∞.

Even worse, since we don’t know R∞ in advance, we must consider variable irreducibil-
ity w. r. t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!
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3.8 Hierarchic Superposition

The superposition calculus is a powerful tool to deal with formulas in uninterpreted
first-order logic.

What can we do if some symbols have a fixed interpretation?

Can we combine superposition with decision procedures, e. g., for linear rational arith-
metic? Can we integrate the decision procedure as a “black box”?

Sorted Logic

It is useful to treat this problem in sorted logic (cf. Sect. 1.11, page 32).

A many-sorted signature Σ = (Ξ,Ω,Π) fixes an alphabet of non-logical symbols, where

• Ξ is a set of sort symbols,

• Ω is a sets of function symbols,

• Π is a set of predicate symbols.

Each function symbol f ∈ Ω has a unique declaration f : ξ1 × · · · × ξn → ξ0; each
predicate symbol P ∈ Π has a unique declaration P : ξ1 × · · · × ξn with ξi ∈ Ξ.

In addition, each variable x has a unique declaration x : ξ.

We assume that all terms, atoms, substitutions are well-sorted.

A many-sorted algebra A consists of

• a non-empty set ξA for each ξ ∈ Ξ,

• a function fA : ξ1,A × · · · × ξn,A → ξ0,A for each f : ξ1 × · · · × ξn → ξ0 ∈ Ω,

• a subset PA ⊆ ξ1,A × · · · × ξn,A for each P : ξ1 × · · · × ξn ∈ Π.

Hierarchic Specifications

A specification SP = (Σ, C) consists of

• a signature Σ = (Ξ,Ω,Π),

• a class of term-generated Σ-algebras C closed under isomorphisms.

If C consists of all term-generated Σ-algebras satisfying the set of Σ-formulas N , we
write SP = (Σ, N).
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A hierarchic specification HSP = (SP , SP ′) consists of

• a base specification SP = (Σ, C),

• an extension SP ′ = (Σ′, N ′),

where Σ = (Ξ,Ω,Π), Σ′ = (Ξ′,Ω′,Π′), Ξ ⊆ Ξ′, Ω ⊆ Ω′, and Π ⊆ Π′.

A Σ′-algebra A is called a model of HSP = (SP , SP ′), if A is a model of N ′ and A|Σ ∈ C,
where the reduct A|Σ is defined as ((ξA)ξ∈Ξ, (fA)f∈Ω, (PA)P∈Π).

Note:

• no confusion: models of HSP may not identify elements that are different in the
base models.

• no junk: models of HSP may not add new elements to the interpretations of base
sorts.

Example:

Base specification: ((Ξ,Ω,Π), C), where

Ξ = {int}

Ω = { 0, 1,−1, 2,−2, . . . :→ int ,
− : int → int ,
+ : int × int → int }

Π = {≥ : int × int ,
> : int × int }

C = isomorphy class of Z

Extension: ((Ξ′,Ω′,Π′), N ′), where

Ξ′ = Ξ ∪ {list}

Ω′ = Ω ∪ { cons : int × list → list ,
length : list → int ,
empty :→ list ,
a :→ list }

Π′ = Π

N ′ = { length(a) ≥ 1,
length(cons(x, y)) ≈ length(y) + 1 }

Goal:

Check whether N ′ has a model in which the sort int is interpreted by Z and the
symbols from Ω and Π accordingly.

70



Hierarchic Superposition

In order to use a prover for the base theory, we must preprocess the clauses:

A term that consists only of base symbols and variables of base sort is called a base term
(analogously for atoms, literals, clauses).

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm
of a non-base term (or non-base non-equational literal) is a variable.

Every clause can be transformed into an equivalent weakly abstracted clause. We assume
that all input clauses are weakly abstracted.

A substitution is called simple, if it maps every variable of a base sort to a base term.

The inference rules of the hierarchic superposition calculus correspond to the rules of of
the standard superposition calculus with the following modifications:

• The term ordering ≻ must have the property that every base ground term (or non-
equational literal) is smaller than every non-base ground term (or non-equational
literal).

• We consider only simple substitutions as unifiers.

• We perform only inferences on non-base terms (or non-base non-equational liter-
als).

• If the conclusion of an inference is not weakly abstracted, we transform it into an
equivalent weakly abstracted clause.

While clauses that contain non-base literals are manipulated using superposition rules,
base clauses have to be passed to the base prover.

This yields one more inference rule:

Constraint Refutation:
M

⊥

where M is a set of base clauses
that is inconsistent w. r. t. C.
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Problems

There are two potential problems that are harmful to refutational completeness:

• We can only apply the constraint refutation rule to finite sets M . If C is not
compact, this is not sufficient.

• Since we only consider simple substitutions, we will only obtain a model of all
simple ground instances.

To show that we have a model of all instances, we need an additional condition
called sufficient completeness w. r. t. simple instances.

A set N of clauses is called sufficiently complete with respect to simple instances, if for
every model A′ of the set of simple ground instances of N and every ground non-base
term t of a base sort there exists a ground base term t such that t′ ≈ t is true in A′.

Note: Sufficient completeness w. r. t. simple instances ensures the absence of junk.

If the base signature contains Skolem constants, we can sometimes enforce sufficient
completeness by equating ground extension terms with a base sort to Skolem constants.

Skolem constants may harmful to compactness, though.

Completeness of Hierarchic Superposition

If the base theory is compact, the hierarchic superposition calculus is refutationally
complete for sets of clauses that are sufficiently complete with respect to simple instances
(Bachmair, Ganzinger, Waldmann, 1994; Baumgartner, Waldmann 2013).

Main proof idea:

If the set of base clauses in N has some base model, represent this model by a set E
of convergent ground equations and a set D of ground disequations.

Then show: If N is saturated w. r. t. hierarchic superposition, then E ∪ D ∪ Ñ is
saturated w. r. t. standard superposition, where Ñ is the set of simple ground instances
of clauses in N that are reduced w. r. t. E.
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A Refinement

In practice, a base signature often contains domain elements, that is, constant symbols
that are

• guaranteed to be different from each other in every base model, and

• minimal w. r. t. ≻ in their equivalent class.

Typical example for domain elements: number constants 0, 1,−1, 2,−2, . . .

If the base signature contains domain elements, then weak abstraction can be redefined
as follows:

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm of
a non-base term (or non-base non-equational literal) is a variable or a domain element.

Why does that work?
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3.9 Integrating Theories I: E-Unification

Dealing with mathematical theories naively in a superposition prover is difficult:

Some axioms (e. g., commutativity) cannot be oriented w. r. t. a reduction ordering.
⇒ Provers compute many equivalent copies of a formula.

Some axiom sets (e. g., torsion-freeness, divisibility) are infinite.
⇒ Can we tell which axioms are really needed?

Hierarchic (“black-box”) superposition is easy to implement, but conditions like com-
pactness and sufficient completeness are rather restrictive.

Can we integrate theories directly into theorem proving calculi (“white-box” integra-
tion)?

Idea:

In order to avoid enumerating entire congruence classes w. r. t. an equational theory
E, treat formulas as representatives of their congruence classes.

Compute an inference between formula C and D if an inference between some clause
represented by C and some clause represented by D would be possible.

Consequence: We have to check whether there are substitutions that make terms s
and t equal w. r. t. E.
⇒ Unification is replaced by E-unification.

E-Unification

E-unification (unification modulo an equational theory E):

For a set of equality problems {s1 ≈ t1, . . . , sn ≈ tn}, an E-unifier is a substitution σ
such that for all i ∈ {1, . . . , n}: siσ ≈E tiσ.

Recall: siσ ≈E tiσ means E |= siσ ≈ tiσ.

In general, there are infinitely many (E-)unifiers.
What about most general unifiers?

Frequent cases: E = ∅, E = AC, E = ACU:

x+ (y + z) ≈ (x+ y) + z (associativity = A)

x+ y ≈ y + x (commutativity = C)

x+ 0 ≈ x (identity (unit) = U)
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The identity axiom is also abbreviated by “1”, in particular, if the binary operation is
denoted by ∗. (ACU = AC1).

Example:

x+ y and c are ACU-unifiable with {x 7→ c, y 7→ 0} and {x 7→ 0, y 7→ c}.

x+ y and x′ + y′ are ACU-unifiable with {x 7→ z1+ z2, y 7→ z3+ z4, x
′ 7→ z1 + z3, y

′ 7→
z2 + z4} (among others).

More general substitutions:

Let X be a set of variables.
A substitution σ is more general modulo E than a substitution σ′ on X , if there exists
a substitution ρ such that xσρ ≈E xσ′ for all x ∈ X .

Notation: σ .X
E σ′.

(Why X? Because we cannot restrict to idempotent substitutions.)

Complete sets of unifiers:

Let S be an E-unification problem, let X = V ar(S).
A set C of E-unifiers of S is called complete (CSU),
if for every E-unifier σ′ of S there exists a σ ∈ C
with σ .X

E σ′.

A complete set of E-unifiers C is called minimal (µCSU),
if for all σ, σ′ ∈ C, σ .X

E σ′ implies σ = σ′.

Note: every E-unification problem has a CSU. (Why?)

The set of equations E is of unification type

unitary, if every E-unification problem has a µCSU with cardinality ≤ 1 (e. g.: E = ∅);

finitary, if every E-unification problem has a finite µCSU (e. g.: E = ACU, E = AC,
E = C);

infinitary, if every E-unification problem has a µCSU and some E-unification problem
has an infinite µCSU (e. g.: E = A);

zero (or nullary), if some E-unification problem does not have a µCSU (e. g.: E =
A ∪ {x+ x ≈ x}).
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Unification modulo ACU

Let us first consider elementary ACU-unification:
the terms to be unified contain only variables and the function symbols from Σ =
({+/2, 0/0}, ∅).

Since parentheses and the order of summands don’t matter, every term over Xn =
{x1, . . . , xn} can be written as a sum

∑n

i=1 ai xi.

The ACU-equivalence class of a term t =
∑n

i=1 ai xi ∈ TΣ(Xn) is uniquely determined
by the vector ~vn(t) = (a1, . . . , an).

Analogously, a substitution σ = { xi →
∑m

j=1 bij xj | 1 ≤ i ≤ n } is uniquely determined
by the matrix

Mn,m(σ) =






b11 · · · b1m
...

...
bn1 · · · bnm






Let t =
∑n

i=1 ai xi and σ = { xi →
∑m

j=1 bij xj | 1 ≤ i ≤ n }.

Then tσ =
∑n

i=1 ai (
∑m

j=1 bij xj)

=
∑n

i=1

∑m

j=1 ai bij xj

=
∑m

j=1

∑n

i=1 ai bij xj

=
∑m

j=1(
∑n

i=1 ai bij) xj .

Consequence:

~vm(tσ) = ~vn(t) ·Mn,m(σ).

Let S = {s1 ≈ t1, . . . , sk ≈ tk} be a set of equality problems over TΣ(Xn).

Then the following properties are equivalent:

(a) σ is an ACU-unifier of S from Xn → TΣ(Xm).

(b) ~vm(siσ) = ~vm(tiσ) for all i ∈ {1, . . . , k}.

(c) ~vn(si) ·Mn,m(σ) = ~vn(ti) ·Mn,m(σ) for all i ∈ {1, . . . , k}.

(d) (~vn(si)− ~vn(ti)) ·Mn,m(σ) = ~0m for all i ∈ {1, . . . , k}.

(e) Mk,n(S) ·Mn,m(σ) = ~0k,m.
where Mk,n(S) is the k × n matrix whose rows are the vectors ~vn(si)− ~vn(ti).

(f) The columns of Mn,m(σ) are non-negative integer solutions of the system of homo-
geneous linear diophantine equations DE(S):

Mk,n(S) ·

(
y1...
yn

)

=

(
0
...
0

)
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Computing unifiers:

Obviously: if ~y1, . . . , ~yr are solutions of DE(S) and a1, . . . , ar are natural numbers,
then a1~y1 + · · ·+ ar~yr is also a solution. (In particular, the zero vector is a solution!)

In fact, one can compute a finite set of solutions ~y1, . . . , ~yr, such that every solution
of DE(S) can be represented as such a linear combination.

Moreover, if we combine these column vectors ~y1, . . . , ~yr to an n× r matrix, this matrix
represents a most general unifier of S. (Proof: see Baader/Nipkow.)

From ACU to AC

A complete set of AC-unifiers for elementary AC-unification problems can be computed
from a most general ACU-unifier by some postprocessing.

Elementary AC-unification is finitary and the elementary unifiability problem is solvable
in polynomial time.

But that does not mean that minimal complete sets of AC-unifiers can be computed
efficiently.

E. Domenjoud has computed the exact size of AC-µCSUs for unification problems of the
following kind:

mx1 + · · ·+mxp ≈ n y1 + · · ·+ n yq

where gcd(m,n) = 1.

The number of unifiers is

(−1)p+q

p
∑

i=0

q
∑

j=0

(−1)i+j

(
p

i

)(
q

j

)

2(
m+j−1

m )(n+i−1

n )

For p = m = 1 and q = n = 4, that is, for the equation

4 x ≈ y1 + y2 + y3 + y4

this is

34 359 607 481.

Consequence:

If possible, avoid the enumeration of AC-µCSUs
(which may have doubly exponential size).

Rather: only check AC-unifiability.

Or: use ACU instead.
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Unification with Constants

So far:

Elementary unification:
terms over variables and {+, 0} or {+}.

Step 2:

Additional free constants.

Step 3:

Additional arbitrary free function symbols.
❀ Unification in the union of disjoint equational theories.

Unification with constants:

We can treat constants ai like variables xi that must be mapped to themselves.

Consequence: The algorithm is similar to the one we have seen before, but we have to
deal with homogeneous and inhomogeneous linear diophantine equations.

Some complexity bounds change, however:

Unification type:

elementary ACU-unification: unitary;
ACU-unification with constants: finitary.

Checking unifiability:

elementary ACU-unification: trivial;
ACU-unification with constants: NP-complete.

Combining Unification Procedures

The Baader–Schulz combination procedure allows to combine unification procedures for
disjoint theories (e. g., ACU and the free theory).

Basic idea (as usual): Use abstraction to convert the combined unification problem into
a union of two pure unification problems; solve them individually; combine the results.

78



Problem 1:

The individual unification procedures might map the same variable to different terms,
e. g., {x 7→ y + z} and {x 7→ f(w)}.

Solution: Guess for each variable non-deterministically which procedure treats it like
a constant.

Problem 2:

Combining the results might produce cycles, e. g., {x 7→ y + z} and {y 7→ f(x)}.

Solution: Guess an ordering of the variables non-deterministically; each individual
unifier that is computed must respect the ordering.

Note: This is a non-trivial extension that may be impossible for some unification
procedures (but it is possible for regular equational theories, i. e., theories where for
each equation u ≈ v the terms u and v contain the same variables).
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3.10 Integrating Theories II: Calculi

We can replace syntactic unification by E-unification in the superposition calculus.

Moreover, it is usually necessary to choose a term ordering in such a way that all terms
in an E-congruence class behave in the same way in comparisons (E-compatible order-
ing).

However, this is usually not sufficient.

AC and ACU

Example: Let E = AC. The clauses

a + b ≈ d
b+ c ≈ e

c + d 6≈ a+ e

are contradictory w. r. t. AC, but if a ≻ b ≻ c ≻ d ≻ e, then the maximal sides of these
clauses are not AC-unifiable.

We have to compute inferences if some part of a maximal sum overlaps with a part of
another maximal sum (the constant b in the example above).

Technically, we can do this in such a way that we first replace positive literals s ≈ t by
s + x ≈ t + x, and then unify maximal sides w. r. t. AC or ACU (Peterson and Stickel
1981, Wertz 1992, Bachmair and Ganzinger 1994).

However, it turns out that even if we integrate AC or ACU in such a way into superposi-
tion, the resulting calculus is not particularly efficient – not even for ground formulas.

This is not surprising: The uniform word problem for AC or ACU is EXPSPACE-
complete (Cardoza, Lipton, and Meyer 1976, Mayr and Meyer 1982).
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Abelian Groups

Working in Abelian groups is easier:

If we integrate also the inverse axiom, it is sufficient to compute inferences if the
maximal part of a maximal sum overlaps with the maximal part of another maximal
sum (like in Gaussian elimination).

Intuitively, in Abelian groups we can always isolate the maximal part of a sum on one
side of an equation.

What does that mean for the non-ground case?

Example:

g(y) + x 6≈ 2z ∨ f(x) + z ≈ 2y

Shielded variables (x, y):

occur below a free function symbol,
❀ cannot be mapped to a maximal term,
❀ are not involved in inferences.

Unshielded variables (z):

can be instantiated with m · u+ s, where u is maximal,
❀ must be considered in inferences,
❀ variable overlaps (similar to ACU).

Variable overlaps are ugly:

If we want to derive a contradiction from

2a ≈ c
2b ≈ d

2x 6≈ c+ d

and a ≻ b ≻ c ≻ d, we have to map x to a sum of two variables x′ + x′′, unify x′ with
a and x′′ with b.
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Divisible Torsion-free Abelian Groups

Working in divisible torsion-free Abelian groups is still easier:

DTAGs permit variable elimination.

Every clause can be converted into a DTAG-equivalent clause without unshielded
variables.

Since only overlaps of maximal parts of maximal sums have to be computed, variable
overlaps become unnecessary.

Moreover, if abstraction is performed eagerly, terms to be unified do not contain +,
so ACU-unification can be replaced by standard unification.

Other Theories

A similar case: Chaining calculus for orderings.

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

Avoids explicit inferences with transitivity.
Only maximal sides of ordering literals have to be overlapped.
But unshielded variables can be maximal.

In dense linear orderings without endpoints, all unshielded variables can be eliminated.

DTAG-superposition and chaining can be combined to get a calculus for ordered divisible
Abelian groups. Again, all unshielded variables can be eliminated.

Conclusion

Integrating theory axioms into superposition can become easier by integrating more
axioms:

Easier unification problem (AC → ACU).

More restrictive inference rules (ACU → AG).

Fewer (or no) variable overlaps (AG → DTAG).

Main drawback of all theory integration methods:

For each theory, we have to start from scratch, both for the completeness proof and
the implementation.
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