
4 Higher-Order Logic

Desired for applications, e. g., in mathematics:

quantifications over functions and predicates,

functions and predicates applied to functions and predicates,

partially applied functions,

anonymous functions,

first-class booleans,

expressivity: define, e. g., “the” natural numbers, “the” reals.

Higher-order logic satisfies these needs.

4.1 The Starting Point: λ-Calculus

Untyped λ-calculus (Church 1930).

Syntax:

Terms: t ::= c (Constant)
| x (Variable)
| (t1 t2) (Application)
| (λx. t) (Abstraction)

Substitution:

x{x 7→ s} = s.

y{x 7→ s} = y if y 6= x.

c{x 7→ s} = c.

(t1 t2){x 7→ s} = (t1{x 7→ s} t2{x 7→ s}).

(λx. t){x 7→ s} = (λx. t).

(λy. t){x 7→ s} = (λz. (t{y 7→ z}{x 7→ s})) if y 6= x, z fresh.

Conversion rules (to be applied to arbitrary subterms):

t →α t′

if t and t′ are equal upto renaming of bound variables.

((λx. t) s) →β t{x 7→ s}.

84

(λx. (t x)) →η t

if x does not occur freely in t.

Properties of the untyped λ-calculus:

β-conversion may not terminate.

Works as a model of computation (Turing-complete).

But basing a logic on it leads to problems (similarly to Russell’s paradox).

Solution: introduce types.

4.2 Typed λ-Calculus

Typed λ-calculus:

Developed by Church in 1940.

Also known as Simple Type Theory.

Note: Many variants (syntax and semantics).

Types

Types are defined recursively:

o is the type of Booleans, of order 0.

ι is the type of individuals, of order 1.

if τ1 and τ2 are types then τ1 → τ2 is a type, of order max(order(τ1) + 1, order(τ2))

We also write τ1 → · · · → τn → τ or τ1, . . . , τn → τ for τ1 → (· · · → (τn → τ) . . .).

Terms

Given a non-empty set of constants and a collection of non-empty sets of variables for
each type,

constants are terms,

variables are terms,

if t1 and t2 are terms then (t1 t2) is a term,

if x is a variable and t is a term then λx. t is a term.

85

Types of Terms

Given a non-empty set S of typed constants and a collection of non-empty sets of vari-
ables for each type, the term t is of type

o if t ∈ {⊤,⊥},

τ if t ∈ S has type τ ,

τ if t = x(τ) is a variable of type τ ,

τ1 → τ2 if t = λx(τ1). t1(τ2),

τ2 if t = (t1(τ1→τ2) t2(τ1)).

A term is well-typed if a type can be associated to it according to the previous definition.
We only consider well-typed terms in what follows.

Normal Forms

For well-typed terms, we can define two kinds of normal forms:

βη-short normal form:

Apply β forward exhaustively (terminates because of typing), then apply η forward
exhaustively.

βη-long normal form:

Apply β forward exhaustively (terminates because of typing), then apply η backward
exhaustively (respecting the types).

4.3 Semantics

A well-founded formula is a term of type o.

How to evaluate the truth of such a formula?

86

Classical Models

Let D be a non-empty set, for each type τ we define the following collection, denoted as
the frame of the type

the frame of τ = o is Jo,DK = {0, 1}

the frame of τ = ι is Jι, DK = D

the frame of τ = τ1 → τ2 is Jτ1 → τ2, DK, the collection of all functions mapping
Jτ1, DK into Jτ2, DK

A higher-order classical model is a structure M = 〈D, I〉 where D is a non-empty set
called the domain of the model and I is the interpretation of the model, a mapping such
that

if c(τ) is a constant then I(c) ∈ Jτ,DK,

I(=(τ→τ→o)) is the equality relation on Jτ,DK.

By adding an assignment function α such that for any variable x(τ), α(x) ∈ Jτ,DK, it
becomes possible to evaluate the truth value of higher-order formulas as in first-order
logic.

The evaluation VM,α(t) of a term t given a model M = 〈D, I〉 and an assignment α is
recursively defined as

I(c) if t is a constant c

α(x) if t is a variable x

the function from Jτ1, DK to Jτ2, DK that maps every a ∈ Jτ1, DK to VM,α[x 7→a](t) ∈
Jτ2, DK if t = λx(τ1). t(τ2)

(VM,α(t1))(VM,α(t2)) if t = (t1(τ1→τ2) t2(τ1))

Truth evaluation:

Given a model M = 〈D, I〉 and an assignment α, a well-founded formula F is true in
M with respect to α, denoted as M, α |= F iff VM,α(F) = 1

F is satisfiable in M iff there exists an assignment α such that M, α |= F

F is valid in M, denoted M |= F iff for all assignments α, M, α |= F

F is valid, denoted |= F iff for all models M, M |= F

These notions extend straightforwardly to sets of formulas.

87

Problems with the Classical Semantics

HOL with classical semantics (cHOL) is very expressive, but:

• In FOL, every unsatisfiable set of formulas has a finite unsatisfiable subset. This
is no longer the case in cHOL. (Loss of compactness)

• No proof procedure able to derive all consequences of a set of formulas can exist
in cHOL. (Loss of strong completeness)

• No proof procedure able to derive all valid sets of formulas can exist in cHOL.
(Loss of weak completeness)

• The status of validity of some formulas is unclear.

Henkin Semantics

To solve the previously mentioned issues, it is possible to generalize the notion of a
model by relaxing the notion of a frame into that of a Henkin frame. Given a non-empty
set D,

Jo,DK = {0, 1}

Jι, DK = D

Jτ1 → τ2, DK is the collection of all some functions mapping Jτ1, DK into Jτ2, DK with

some additional closure conditions.

Henkin vs Classical Semantics

• Every classical model is a Henkin model, therefore every formula true in all Henkin
models is true in all classical models.

• There are formulas true in all classical models that are not true in all Henkin
models.

• There are (weak) complete proof procedures for HOL with Henkin semantics.

88

4.4 Higher-Order Term Unification

We consider unification modulo α, β, η.

In FOL, there exists a unique mgu for two unifiable terms.

This is no longer true in HOL.

For example, consider t1 = y x and t2 = c where x, y are variables and c is a constant.
The unifiers of t1 and t2 are {y 7→ λz. c} and {y 7→ λz. z, x 7→ c}.

Some equations do not even have finite complete sets of unifiers, e. g., f (x c) = x (f c)
with f and c constants.

Even worse, the higher-order unification problem is undecidable.

Huet’s Pre-Unification Algorithm

Given:

a unification problem E, i.e. a finite set of equations in βη-long normal form.

Goal:

find a substitution σ such that Eσ contains only syntactically equal equations.

Rigid and Flexible Terms

Every term can be written in the form λx1 . . . xn. u0 u1 . . . uk (n ≥ 0, k ≥ 0), where u0

is a constant or a bound or free variable.

u0 is called the head of the term.

A term is called rigid if its head symbol is a constant or a bound variable. Otherwise its
head symbol is a free variable and the term is called flexible.

Rigid-Rigid Equations

Two rules can be applied depending on the head symbols in the rigid-rigid equation.

Simplify :

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. f v1 . . . vp}

E ∪ {λx1 . . . xn. u1 ≈ λx1 . . . xn. v1, . . . , λx1 . . . xn. up ≈ λx1 . . . xn. vp}

where f is a constant or a bound variable.

89

Fail:

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. g v1 . . . vq}

⊥

where f and g are distinct constants or bound variables.

Flexible-Rigid Equations

There is only one rule to handle flexible-rigid equations.

Generate:

E

Eσ

where

(λx1 . . . xn. z u1 . . . up ≈ λx1 . . . xn. f v1 . . . vq) ∈ E,
z is a free variable, f is a constant or bound variable,
h ∈ {f, y1, . . . , yp} if f is a constant and h ∈ {y1, . . . , yp} otherwise,
z1, . . . , zr are fresh free variables,
σ = {z 7→ λy1, . . . , yp. h (z1 y1 . . . yp) . . . (zr y1 . . . yp)}.

Flexible-Flexible Equations

The following result, also by Huet, handles flexible-flexible equations.

Proposition 4.1 A unification problem E containing only flexible-flexible equations

has always a solution.

Proof. For every type τ let wτ be a fixed fresh variable of type τ . Define θ as the
substitution that maps every free variable occurring in E with type (τ1 . . . τp → τ0) to
the function λy1 . . . yp. wτ .

Consider any flexible-flexible equation

e = (λx1 . . . xn. y(τ1...τp→τ0) u1 . . . up ≈ λx1 . . . xn. z(τ ′
1
...τ ′

q
→τ0) v1 . . . vq).

Then eθ equals λx1 . . . xn. wτ ≈ λx1 . . . xn. wτ .

We say that a unification problem with only flexible-flexible equations is a solved unifi-
cation problem.

90

The Whole Procedure

A reasonable strategy consists in applying Fail and Simplify eagerly, and Generate only
when there is no rigid-rigid equation left.

Generate is non-deterministic, making this procedure branching.

Theorem 4.2 The procedure made of the rules Fail, Simplify, and Generate is sound

and complete.

Note that the procedure does not enumerate a complete set of unifiers, if there are
flexible-flexible pairs left at the end.

Higher-order unification is only semi-decidable.

When solutions exist, Huet’s algorithm will find one and terminate, but when there is
no solution, it may loop forever.

4.5 Resolution in Higher-Order Logic

To avoid enumerating infinitely many unifiers, Huet’s HO resolution procedure delays
the computation of unifiers by using constraints.

Once a contradiction has been derived, the corresponding unification problem can then
be solved using Huet’s pre-unification algorithm.

Resolution:
D ∨B JK1K C ∨ ¬A JK2K

D ∨ C JK1 ∧K2 ∧A ≈ BK

Factoring:
C ∨ A ∨ B JKK

C ∨ A JK ∧A ≈ BK

The resolution rules are not always sufficient to guess the necessary substitution based
on the available terms.

Example 4.3 Consider the formula x(o) where x is a Boolean variable. The set {x} is

saturated by resolution, but still the formula x is unsatisfiable. However, we can guess

the substitution σ = {x 7→ ¬y} and resolution can then derive the empty clause from x

and ¬y.

91

To overcome this issue, Huet introduces additional splitting rules, e. g.,

C ∨ A JXK

C ∨ ¬x(o) JX ∧ A ≈ ¬xK

C ∨ A JXK

C ∨ x(o) ∨ y(o) JX ∧ A ≈ (x ∨ y)K

With Huet’s set of splitting rules, resolution is sound and refutationally complete.

In practice, several improvements are possible.

As soon as a constraint becomes unsatisfiable, delete the corresponding clause.

If a constraint has a small enough set of solutions, generate all applied clauses to
replace the constrained original one.

4.6 Superposition in Higher-Order Logic

HO resolution lacks built-in equality, ordering restrictions, and a redundancy concept
and is therefore very inefficient in practice.

Can we extend superposition to HO logic?

λ-Free Higher-Order Logic

Step 1: λ-free higher-order logic:

higher-order functions,

partially applied functions,

variables ranging over function types,

but no λ-abstraction

Can in principle be encoded in FOL using an “apply” function:

f (g y) (x g) → app(app(f, app(g, y)), (app(x, g))),

but encoding is inconvenient for superposition provers.

Extending the superposition calculus to this scenario is rather straightforward, except
for one problem:

Reduction orderings are compatible with contexts:
t > t′ ⇒ s t > s t′

but typically not with arguments:
s > s′ 6⇒ s t > s′ t.

92

Solution:

Restrict superpositions to “green subterms”, that is, subterms that correspond to
first-order subterms.

To cover other replacements, add an inference rule

C ∨ s ≈ s′

C ∨ s x ≈ s′ x
(ArgCong)

Consider applied and non-applied occurrences of the same symbol as distinct when
checking redundancy.

Additionally: more complicated variable condition.

Higher-Order LogicWithout First-Class Booleans

Step 2: Higher-order logic without first-class Booleans:

+ λ-abstractions,

but Boolean terms only at the outermost level.

New problems:

There are no ground-total simplification ordering upto β-conversion.

Unification is infinitary.

Subterms of ground instances do no longer correspond to subterms of non-ground
clauses.

Solution:

Calculus works on βη-short terms; ordering restrictions are sometimes relaxed.

Enumerate CSU using a full unification procedure (e. g., Jensen and Pietrzykowski,
Snyder and Gallier, or Vukmirović, Bentkamp, and Nummelin), use dovetailing.

New inference rule

D ∨ t ≈ t′ C ∨ s[u] ≈ s′

(D ∨ C ∨ s[z t′] ≈ s′)σ
(FluidSup)

if σ ∈ CSU(z t, u).

93

Full Higher-Order Logic

Step 3: Full higher-order logic:

No more restrictions for occurrences of Boolean terms and variables.

Solution:

HO calculus is based on non-clausal FO superposition.

Hoisting rules, e. g.,

C[t(o)]

C[⊥] ∨ t ≈ ⊤

C[t(o)]

C[⊤] ∨ t ≈ ⊥

+ Fluid hoisting rules

+ Rules to “invent” Boolean formula structure.

Developed and implemented in Zipperposition (Bentkamp et al.)

Successful in practice, in particular for problems coming from interactive proof assistents
(mainly FO, but with some HO part).

Alternative Approach: Combinators

All λ-terms can be constructed by composing the following combinators:

S = λx y z. x z (y z)

K = λx y. x

I = λx. x

Instead of adding λ-abstractions, one can add S, K, and I to the λ-free calculus.

Problem: Choose a good ordering.

94

Literature

Peter B. Andrews: An introduction to mathematical logic and type theory - to truth
through proof. Computer science and applied mathematics, Academic Press, ISBN 978-
0-12-058535-9, pp. I-XV, 1-304, 1986.

Peter B. Andrews: Classical Type Theory. Handbook of Automated Reasoning: 965-1007,
2001.

Heiko Becker, Jasmin Christian Blanchette, Uwe Waldmann, Daniel Wand: A Transfinite
Knuth-Bendix Order for Lambda-Free Higher-Order Terms. CADE: 432-453, 2017.

Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Uwe Waldmann: Superpo-
sition for Lambda-Free Higher-Order Logic. Log. Meth. Comput. Sci., 17(2):1:1-1:38”,
2021.

Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirović, Uwe Wald-
mann: Superposition with Lambdas. J. Autom. Reason, 65(7):893–940, 2021.

Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirović: Superpo-
sition for Full Higher-Order Logic. CADE-28, 396–412, 2021.

Christoph Benzmüller, Dale Miller: Automation of Higher-Order Logic. Computational
Logic: 215-254, 2014.

Jasmin Christian Blanchette, Uwe Waldmann, Daniel Wand: A Lambda-Free Higher-
Order Recursive Path Order. FoSSaCS: 461-479, 2017.

Alonzo Church: A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56-68, 1940.

Gilles Dowek: Higher-Order Unification and Matching. Handbook of Automated Rea-
soning: 1009-1062, 2001.

Melvin Fitting: Types Tableaus and Gödel’s God. Studia Logica 81(3): 425-427, 2005.

Gérard P. Huet: A Mechanization of Type Theory. IJCAI: 139-146, 1973.

Petar Vukmirović, Alexander Bentkamp, Visa Nummelin: Efficient Full Higher-Order
Unification, FSCD 2020, 5:1–5:17, 2020.

Petar Vukmirović, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Num-
melin, Sophie Tourret: Making higher-order superposition work, CADE-28, 415–432,
2021.

95

