
1.4 Existentially-quantified LRA

So far, we have considered formulas that may contain free, existentially quantified, and
universally quantified variables.

For the special case of conjunction of linear inequations in which all variables are exis-
tentially quantified, there are more efficient methods available.

Main idea: reduce satisfiability problem to optimization problem.

Linear Optimization

Goal:

Solve a linear optimization (also called: linear programming) problem for given num-
bers aij , bi, cj ∈ R:

maximize
∑

1≤j≤n cjxj

for
∧

1≤i≤m

∑

1≤j≤n aijxj ≤ bi

or in vectorial notation:

maximize ~c⊤~x

for A~x ≤ ~b

Simplex algorithm:

Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is exponential,
though.

Interior point methods:

First algorithm by Karmarkar (1984).

Polynomial-time worst-case complexity (but large constants).

In practice: no clear winner.

Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.

15



Main idea of Simplex:

A~x ≤ ~b describes a convex polyhedron.

Pick one vertex of the polyhedron,
then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global optimum.

Details: see special lecture on optimization.

Using an optimization procedure for checking satisfiability:

Goal: Check whether A~x ≤ ~b is satisfiable.

To use the Simplex method, we have to transform the original (possibly empty) poly-
hedron into another polyhedron that is non-empty and for which we know one initial
vertex.

Every real number can be written as the difference of two non-negative real numbers.
Use this idea to convert A~x ≤ ~b into an equisatisfiable inequation system ~y ≥ ~0,
B~y ≤ ~b for new variables ~y.

Multiply those inequations of the inequation system B~y ≤ ~b in which the number on
the right-hand side is negative by −1. We obtain two inequation systems D1~y ≤ ~g1,
D2~y ≥ ~g2, such that ~g1 ≥ ~0, ~g2 > 0.

Now solve

maximize ~1⊤(D2~y − ~z)

for ~y, ~z ≥ ~0
D1~y ≤ ~g1
D2~y − ~z ≤ ~g2

where ~z is a vector of new variables with the same size as ~g2.

Observation 1: ~0 is a vertex of the polyhedron of this optimization problem.

Observation 2: The maximum is ~1⊤~g2 if and only if ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution.

(⇒): If ~1⊤(D2~y − ~z) = ~1⊤~g2 for some ~y, ~z satisfying D2~y − ~z ≤ ~g2, then D2~y − ~z = ~g2,
hence D2~y = ~g2 + ~z ≥ ~g2.

(⇐): ~1⊤(D2~y − ~z) can never be larger than ~1⊤~g2. If ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution, choose ~z = D2~y − ~g2; then ~1⊤(D2~y − ~z) = ~1⊤~g2.

16



A Simplex variant:

Transform the satisfiability problem into the form

A~x = ~0
~l ≤ ~x ≤ ~u

(where li may be −∞ and ui may be +∞).

Relation to optimization problem is obscured.

But: More efficient if one needs an incremental decision procedure, where inequations
may be added and retracted (Dutertre and de Moura 2006).

1.5 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear real arithmetic (or more
generally, for real-closed fields). His algorithm had non-elementary complexity, how-
ever.

An improved algorithm by Collins (1975) (with further improvements by Hong) has
doubly exponential complexity: Cylindrical algebraic decomposition (CAD).

Implementation: QEPCAD.

Cylindrical Algebraic Decomposition

Given: First-order formula over atoms of the form fi(~x) ∼ 0, where the fi are polynomials
over variables ~x.

Goal: Decompose Rn into a finite number of regions such that all polynomials have
invariant sign on every region X :

∀i ( ∀~x ∈ X. fi(~x) < 0
∨ ∀~x ∈ X. fi(~x) = 0
∨ ∀~x ∈ X. fi(~x) > 0 )

Note: Implementation needs exact arithmetic using algebraic numbers (i. e., zeroes of
univariate polynomials with integer coefficients).

17



1.6 Real Arithmetic incl. Transcendental Functions

Real arithmetic with exp/log: decidability unknown.

Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if x ∈ Z:

∃y (sin(y) = 0 ∧ 3 < y ∧ y < 4 ∧ sin(x · y) = 0)

(note that necessarily y = π).

Consequence: Peano arithmetic (which is undecidable) can be encoded in real arith-
metic with trigonometric functions.

However, real arithmetic with transcendental functions is decidable for formulas that are
stable under perturbations, i. e., whose truth value does not change if numeric constants
are modified by some sufficiently small ε.

Example:

Stable under perturbations: ∃x x2 ≤ 5

Not stable under perturbations: ∃x x2 ≤ 0
(Formula is true, but if we subtract an arbitrarily small ε > 0 from the right-hand
side, it becomes false.)

Unsatisfactory from a mathematical point of view, but sufficient for engineering appli-
cations (where stability under perturbations is necessary anyhow).

Approach:

Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are stable under perturbations;
may loop forever if the formula is not stable under perturbations.

1.7 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic.

Decidable (Presburger, 1929), but quantifier elimination is only possible if additional
divisibility operators are present:

∃x (y = 2x) is equivalent to divides(2, y) but not to any quantifier-free formula over
the base signature.

Cooper (1972): Quantifier elimination procedure, triple exponential for arbitrarily
quantified formulas.

18



The Omega Test

Omega test (Pugh, 1991): variant of Fourier–Motzkin for conjunctions of (in-)equations
in linear integer arithmetic.

Idea:

• Perform easy transformations, e. g.:
3x+ 6y ≤ 8 7→ 3x+ 6y ≤ 6 7→ x+ 2y ≤ 2
3x+ 6y = 8 7→ ⊥
(since 3x+ 6y must be divisible by 3).

• Eliminate equations
(easy, if one coefficient is 1; tricky otherwise).

• If only inequations are left:
no real solutions → unsatisfiable for Z
“sufficiently many” real solutions → satisfiable for Z
otherwise: branch

What does “sufficiently many” mean?

Consider inequations ax ≤ s and bx ≥ t with a, b ∈ N>0 and polynomials s, t.

If these inequations have real solutions, the interval of solutions ranges from 1

b
t to 1

a
s.

The longest possible interval of this kind that does not contain any integer number
ranges from i+ 1

b
to i+ 1− 1

a
for some i ∈ Z; it has the length 1− 1

a
− 1

b
.

Consequence:

If 1

a
s > 1

b
t + (1 − 1

a
− 1

b
), or equivalently, bs ≥ at + ab − a− b + 1 is satisfiable, then

the original problem must have integer solutions.

It remains to consider the case that bs ≥ at is satisfiable (hence there are real solutions)
but bs ≥ at+ ab− a− b+1 is not (hence the interval of real solutions need not contain
an integer).

In the latter case, bs ≤ at + ab − a − b holds, hence for every solution of the original
problem:

t ≤ bx ≤ b
a
s ≤ t+ (b− 1− b

a
)

and if x is an integer, t ≤ bx ≤ t+
⌊

b− 1− b
a

⌋

⇒ Branch non-deterministically:
Add one of the equations bx = t+ i for i ∈ {0, . . . , ⌊b− 1− b

a

⌋

}.

Alternatively, if b > a:
Add one of the equations ax = s− i for i ∈ {0, . . . , ⌊a− 1− a

b

⌋

}.

19



Note: Efficiency depends highly on the size of coefficients. In applications from program
verification, there is almost always some variable with a very small coefficient. If all
coefficients are large, the branching step gets expensive.

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to optimization problem (like Sim-
plex). ILP, MILP: (mixed) integer linear programming.

Two basic approaches:

Branching: If the simplex algorithm finds a solution with x = 2.7, add the inequation
x ≤ 2 or the inequation x ≥ 3.

Cutting planes: Derive an inequation that holds for all real solutions, then round it to
obtain an inequation that holds for all integer solutions, but not for the real solution
found previously.

Example:

Given: 2x− 3y ≤ 1
2x+ 3y ≤ 5

−5x− 4y ≤ −7

Simplex finds an extremal solution x = 3

2
, y = 2

3
.

From the first two inequations, we see that 4x ≤ 6, hence x ≤ 3

2
. If x ∈ Z, we conclude

x = ⌊x⌋ ≤ ⌊3

2
⌋ = 1.

⇒ Add the inequation x ≤ 1, which holds for all integer solutions, but cuts off the
solution (3

2
, 2

3
).

In practice:

Use both: Alternate between branching and cutting steps.
Better performance than the individual approaches.

1.8 Difference Logic

Difference Logic (DL):

Fragment of linear rational or integer arithmetic.

Formulas: conjunctions of atoms x− y < c or x− y ≤ c,
x, y ∈ X ,
c ∈ Q (or c ∈ Z).

20



One special variable x0 whose value is fixed to 0 is permitted;
this allows to express atoms like x < 3 in the form x− x0 < 3.

Solving difference logic:

Let F be a conjunction in DL.
For simplicity: only non-strict inequalities.

Define a weighted graph G:

Vertices V : Variables in F .

Edges E: x− y ≤ c ❀ edge (x, y) with weight c.

Theorem: F is unsatisfiable iff G has a negative cycle.

Can be checked in O(|V | · |E|) using the Bellman-Ford algorithm.

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2n), in device drivers also
combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant, Kroening, et al.):
successful.

1.10 Decision Procedures for Data Structures

There are decision procedures for, e. g.,

Arrays (read, write)

Lists (car, cdr, cons)

Sets or multisets with cardinalities

Bitvectors

Note: There are usually restrictions on quantifications. Unrestricted universal quantifi-
cation can lead to undecidability.

21



Literature: Further Decision Procedures

Aaron R. Bradley, Zohar Manna: The Calculus of Computation. Springer, 2007.

Aaron R. Bradley, Zohar Manna, Henny B. Sipma: What’s decidable about arrays?
Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS 3855, pp.
427-442, Springer, 2006.

Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strichman,
Bryan Brady: Deciding bit-vector arithmetic with abstraction. 13th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07),
LNCS 4424, pp. 358–372, Springer, 2007.

George E. Collins: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. 2nd. GI Conf. Automata Theory and Formal Languages, LNCS 33, pp.
134–183, Springer, 1975.

D. C. Cooper: Theorem Proving in Arithmetic Without Multiplication. Machine Intel-
ligence, vol. 7, pp. 91–99. American Elsevier, New York, 1972.

George B. Dantzig: Linear Programming and Extensions. Princeton Univ. Press, 1963.

L. V. Kantorovich: Mathematical Methods in the Organization and Planning of Produc-
tion. Publication House of the Leningrad State University, 1939. Translated in Manage-
ment Science, 6:366–422, 1960.

Narendra Karmarkar: A New Polynomial Time Algorithm for Linear Programming.
Combinatorica, 4(4):373–395, 1984.

Daniel Kroening, Ofer Strichman: Decision Procedures – An Algorithmic Point of View.
Springer, 2008.

Mojżesz Presburger: Über der Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Ren-
dus Premier Congrès des Mathématiciens des Pays Slaves, Warsaw, pp. 92-101, 1929.

William Pugh: The Omega Test: a fast and practical integer programming algorithm for
dependence analysis. Comm. of the ACM, 35(8):102-114, 1992.

Stefan Ratschan: Approximate Quantified Constraint Solving by Cylindrical Box De-
composition. Reliable Computing, 8(1):21–42, 2002.

Alfred Tarski: A Decision Method for Elementary Algebra and Geometry. Univ. of Cal-
ifornia Press, Berkeley, 1951.

22


