Sophie Tourret

April 17, 2018

Tutorials for "Automated Reasoning II" Exercise sheet 2

Exercise 2.1:

The quantifier elimination algorithms for linear rational arithmetic can also be applied to non-linear formulas, provided that all the bound variables occur only linearly. That is, the atoms can have the form $0 \sim \sum_{i} s_{i}(\vec{z}) \cdot x_{i}$ where the coefficients $s_{i}(\vec{z})$ are terms that may contain arbitrary arithmetic operations, say ($z_{1}+z_{3}^{2}$) or even $\left(\sin z_{2}+e^{z_{5}}+3\right)$, but no bound variables. There is one additional problem, though. Why? How can you solve it?

Exercise 2.2:

(1) Use the nondeterministic Nelson-Oppen method to show that the following formula is unsatisfiable in the combination of EUF and linear integer arithmetic:

$$
\exists x, y(x+y \approx 0 \wedge f(x)+f(-y) \approx 1)
$$

(If you choose the equations to split cleverly, the proof is quite short.)
(2) Use the deterministic Nelson-Oppen method for the same problem.

Exercise 2.3:

Find a simple example that demonstrates that the deterministic Nelson-Oppen combination procedure is incomplete if one of the theories is not convex.

Exercise 2.4:

Is the theory of abelian groups stably infinite? Give an explanation.

Exercise 2.5:

Is the theory described by the following set of axioms stably infinite? Give an explanation.

$$
\begin{aligned}
& \forall x(x * 0 \approx 0) \\
& \forall x(x * 1 \approx x)
\end{aligned}
$$

Bring your solution (or solution attempt) to the tutorial on April 25.

