
3 Superposition

First-order calculi considered so far:

Resolution: for first-order clauses without equality.

(Unfailing) Knuth-Bendix Completion: for unit equations.

Goal:

Combine the ideas of ordered resolution (overlap maximal literals in a clause) and
Knuth-Bendix completion (overlap maximal sides of equations) to get a calculus for
equational clauses.

3.1 Recapitulation

Atom: either P (s1, . . . , sm) with P ∈ Π or s ≈ t.

Literal: Atom or negated atom.

Clause: (possibly empty) disjunction of literals (all variables implicitly universally quan-
tified).

For refutational theorem proving, it is sufficient to consider sets of clauses: every first-
order formula F can be translated into a set of clauses N such that F is unsatisfiable if
and only if N is unsatisfiable.

In the non-equational case, unsatisfiability can for instance be checked using the (or-
dered) resolution calculus.

(Ordered) resolution: inference rules:

Ground case: Non-ground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A, A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨A ∨A′

(C ′ ∨A)σ

where σ = mgu(A, A′).
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Ordering restrictions:

Let ≻ be a well-founded and total ordering on ground atoms.

Literal ordering ≻L: compares literals by comparing lexicographically first the respec-
tive atoms using ≻ and then their polarities (negative > positive).

Clause ordering ≻C : compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions (ground case):

Inference are necessary only if the following conditions are satisfied:

– The left premise of a Resolution inference is not larger than or equal to the right
premise.

– The literals that are involved in the inferences ([¬] A) are maximal in the respec-
tive clauses (strictly maximal for the left premise of Resolution).

Ordering restrictions (non-ground case):

Lift the ground ordering to non-ground literals: A literal L is called [strictly] maximal
in a clause C if and only if there exists a ground substitution σ such that for all other
literals L′ in C: Lσ 6≺ L′σ [Lσ 6� L′σ].

Resolution is (even with ordering restrictions) refutationally complete:

Dynamic view of refutational completeness:

If N is unsatisfiable (N |= ⊥) then fair derivations from N produce ⊥.

Static view of refutational completeness:

If N is saturated, then N is unsatisfiable if and only if ⊥ ∈ N .

Proving refutational completeness for the ground case:

We have to show:

If N is saturated (i. e., if sufficiently many inferences have been computed), and⊥ /∈ N ,
then N is satisfiable (i. e., has a model).
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Constructing a candidate interpretation:

Suppose that N be saturated and ⊥ /∈ N . We inspect all clauses in N in ascending
order and construct a sequence of Herbrand interpretations (starting with the empty
interpretation: all atoms are false).

If a clause C is false in the current interpretation, and has a positive and strictly maximal
literal A, then extend the current interpretation such that C becomes true: add A to
the current interpretation. (Then C is called productive.)

Otherwise, leave the current interpretation unchanged.

The sequence of interpretations has the following properties:

(1) If an atom is true in some interpretation, then it remains true in all future inter-
pretations.

(2) If a clause is true at the time where it is inspected, then it remains true in all
future interpretations.

(3) If a clause C = C ′ ∨A is productive, then C remains true and C ′ remains false in
all future interpretations.

Show by induction: if N is saturated and ⊥ /∈ N , then every clause in N is either true
at the time where it is inspected or productive.

Note:
For the induction proof, it is not necessary that the conclusion of an inference is contained
in N . It is sufficient that it is redundant w. r. t. N .

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Proving refutational completeness for the non-ground case:

If Ciθ is a ground instance of the clause Ci for i ∈ {0, . . . , n} and

Cn, . . . , C1

C0

and

Cnθ, . . . , C1θ

C0θ

are inferences, then the latter inference is called a ground instance of the former.
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For a set N of clauses, let GΣ(N) be the set of all ground instances of clauses in N .

Construct the interpretation from the set GΣ(N) of all ground instances of clauses
in N :

N is saturated and does not contain ⊥
⇒ GΣ(N) is saturated and does not contain ⊥
⇒ GΣ(N) has a Herbrand model I
⇒ I is a model of N .

It is possible to encode an arbitrary predicate P using a function fP and a new con-
stant true:

P (t1, . . . , tn) ; fP (t1, . . . , tn) ≈ true

¬ P (t1, . . . , tn) ; ¬ fP (t1, . . . , tn) ≈ true

In equational logic it is therefore sufficient to consider the case that Π = ∅, i. e., equality
is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

3.2 The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and
its completeness proof. Precise definitions will be given later.

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)
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Ordering wishlist:

Like in resolution, we want to perform only inferences between (strictly) maximal
literals.

Like in completion, we want to perform only inferences between (strictly) maximal
sides of literals.

Like in resolution, in inferences with two premises, the left premise should not be
larger than the right one.

The ordering should be total on ground literals.

Consequences:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be a bit larger than the corresponding
positive literals.

Additionally, we need the following property: If s ≻ t ≻ u, then s 6≈ u must be larger
than s ≈ t. In other words, we must compare first the larger term, then the polarity,
and finally the smaller term.

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Constructing a candidate interpretation:

We want to use roughly the same ideas as in the completeness proof for resolution.

But: a Herbrand interpretation does not work for equality: The equality symbol ≈ must
be interpreted by equality in the interpretation.

Solution: Productive clauses contribute ground rewrite rules to a TRS R.

The interpretation has the universe TΣ(∅)/R = TΣ(∅)/≈R; a ground atom s ≈ t holds
in the interpretation, if and only if s ≈R t if and only if s↔∗

R t.

We will construct R in such a way that it is terminating and confluent. In this case,
s ≈R t if and only if s ↓R t.
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One problem:

The completeness proof for the resolution calculus depends on the following property:

If C = C ′ ∨ A with a strictly maximal and positive literal A is false in the current
interpretation, then adding A to the current interpretation cannot make any literal of
C ′ true.

This property does not hold for superposition:

Let b ≻ c ≻ d. Assume that the current rewrite system (representing the current
interpretation) contains the rule c→ d. Now consider the clause b ≈ d ∨ b ≈ c.

We need a further inference rule to deal with clauses of this kind, either the “Merging
Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring”
rule due to Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

How do the non-ground versions of the inference rules for superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering
restrictions, replace ≻ by 6�.

However:

As in Knuth-Bendix completion, we do not want to consider overlaps at or below a
variable position.

Consequence: there are inferences between ground instances Dθ and Cθ of clauses D
and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.
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3.3 The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 3.1 All inference rules of the superposition calculus are correct, i. e., for every
rule

Cn, . . . , C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Exercise. 2
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Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Inferences have to be computed only if the following ordering restrictions are satisfied:

– In superposition inferences, after applying the unifier to both premises, the left
premise is not greater than or equal to the right one.

– The last literal in each premise is maximal in the respective premise, i. e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is not smaller than the rhs (in superposition inferences:
neither smaller nor equal).

A ground clause C is called redundant w. r. t. a set of ground clauses N , if it follows
from clauses in N that are smaller than C.

A clause is redundant w. r. t. a set of clauses N , if all its ground instances are redundant
w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

3.4 Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.
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Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing ⊥. Using induction on the clause ordering we
define sets of rewrite rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃

D≺CC ED.

The set EC contains the rewrite rule s→ t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N) ED.

Lemma 3.2 If EC = {s→ t} and ED = {u→ v}, then s ≻ u if and only if C ≻C D.

Corollary 3.3 The rewrite systems RC and R∞ are convergent.

Proof. Obviously, s ≻ t for all rules s→ t in RC and R∞.

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u → v in ED and s → t in EC such that u is a subterm
of s. As ≻ is a reduction ordering that is total on ground terms, we get u ≺ s and
therefore D ≺C C and ED ⊆ RC . But then s would be reducible by RC , contradicting
condition (f). 2

Lemma 3.4 If D �C C and EC = {s→ t}, then s ≻ u for every term u occurring in a
negative literal in D and s � v for every term v occurring in a positive literal in D.

Corollary 3.5 If D ∈ GΣ(N) is true in RD, then D is true in R∞ and RC for all
C ≻C D.

Proof. If a positive literal of D is true in RD, then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD, hence s 6 ↓RD
t. As the

rules in R∞ \RD have left-hand sides that are larger than s and t, they cannot be used
in a rewrite proof of s ↓ t, hence s 6 ↓RC

t and s 6 ↓R∞
t. 2
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Corollary 3.6 If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞

and RC for all C ≻C D.

Proof. Obviously, D is true in R∞ and RC for all C ≻C D.

Since all negative literals of D′ are false in RD, it is clear that they are false in R∞ and
RC . For the positive literals u′ ≈ v′ of D′, condition (e) ensures that they are false in
RD ∪ {u → v}. Since u′ � u and v′ � u and all rules in R∞ \ RD have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of u′ ↓ v′, hence
u′ 6 ↓RC

v′ and u′ 6 ↓R∞
v′. 2

Lemma 3.7 (“Lifting Lemma”) Let C be a clause and let θ be a substitution such
that Cθ is ground. Then every equality resolution or equality factoring inference from
Cθ is a ground instance of an inference from C.

Proof. Exercise. 2

Lemma 3.8 (“Lifting Lemma”) Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be two
clauses (without common variables) and let θ be a substitution such that Dθ and Cθ
are ground.

If there is a superposition inference between Dθ and Cθ where uθ and some subterm of
sθ are overlapped, and uθ does not occur in sθ at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C.

Proof. Exercise. 2

Theorem 3.9 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground
clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w. r. t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D ≻C Cθ.

Proof. We use induction on the clause ordering ≻C and assume that (i)–(iii) are already
satisfied for all clauses in GΣ(N) that are smaller than Cθ. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 3.5 and 3.6. So it remains to show (ii) and the “only if” part of (i).
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Case 1: Cθ is redundant w. r. t. GΣ(N).

If Cθ is redundant w. r. t. GΣ(N), then if follows from clauses in GΣ(N) that are smaller
than Cθ. By part (iii) of the induction hypothesis, these clauses are true in RCθ. Hence
Cθ is true in RCθ.

Case 2: xθ is reducible by RCθ.

Suppose there is a variable x occurring in C such that xθ is reducible by RCθ, say
xθ →RCθ

w. Let the substitution θ′ be defined by xθ′ = w and yθ′ = yθ for every
variable y 6= x. The clause Cθ′ is smaller than Cθ. By part (iii) of the induction
hypothesis, it is true in RCθ. By congruence, every literal of Cθ is true in RCθ if and
only if the corresponding literal of Cθ′ is true in RCθ; hence Cθ is true in RCθ.

Case 3: Cθ contains a maximal negative literal.

Suppose that Cθ does not fall into Case 1 or 2 and that Cθ = C ′θ ∨ sθ 6≈ s′θ, where
sθ 6≈ s′θ is maximal in Cθ. If sθ ≈ s′θ is false in RCθ, then Cθ is clearly true in RCθ

and we are done. So assume that sθ ≈ s′θ is true in RCθ, that is, sθ ↓RCθ
s′θ. Without

loss of generality, sθ � s′θ.

Case 3.1: sθ = s′θ.

If sθ = s′θ, then there is an equality resolution inference

C ′θ ∨ sθ 6≈ s′θ

C ′θ
.

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

C ′ ∨ s 6≈ s′

C ′σ

where C = C ′ ∨ s 6≈ s′ is contained in N and θ = ρ ◦ σ. (Without loss of generality,
σ is idempotent, therefore C ′θ = C ′σρ = C ′σσρ = C ′σθ, so C ′θ is a ground instance of
C ′σ.) Since Cθ is not redundant w. r. t. GΣ(N), C is not redundant w. r. t. N . As N is
saturated up to redundancy, the conclusion C ′σ of the inference from C is contained in
N ∪ Red(N). Therefore, C ′θ is either contained in GΣ(N) and smaller than Cθ, or it
follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, clauses in GΣ(N) that are smaller than Cθ are true
in RCθ, thus C ′θ and Cθ are true in RCθ.
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Case 3.2: sθ ≻ s′θ.

If sθ ↓RCθ
s′θ and sθ ≻ s′θ, then sθ must be reducible by some rule in some EDθ ⊆ RCθ.

(Without loss of generality we assume that C and D are variable disjoint; so we can use
the same substitution θ.) Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ = {tθ → t′θ}. Since Dθ
is productive, D′θ is false in RCθ. Besides, by part (ii) of the induction hypothesis, Dθ
is not redundant w. r. t. GΣ(N), so D is not redundant w. r. t. N . Note that tθ cannot
occur in sθ at or below a variable position of s, say xθ = w[tθ], since otherwise Cθ would
be subject to Case 2 above. Consequently, the negative superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] 6≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ

is a ground instance of a negative superposition inference from D and C. By saturation
up to redundancy, its conclusion is either contained in GΣ(N) and smaller than Cθ, or
it follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, these clauses are true in RCθ, thus D′θ ∨ C ′θ ∨
sθ[t′θ] 6≈ s′θ is true in RCθ. Since D′θ and sθ[t′θ] 6≈ s′θ are false in RCθ, both C ′θ and
Cθ must be true.

Case 4: Cθ does not contain a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as C ′θ ∨ sθ ≈
s′θ, where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ → s′θ} or C ′θ is true in
RCθ or sθ = s′θ, then there is nothing to show, so assume that ECθ = ∅ and that C ′θ is
false in RCθ. Without loss of generality, sθ ≻ s′θ.

Case 4.1: sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.

If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written as
C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there is a equality

factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

This inference is a ground instance of an inference from C. By saturation, its conclusion
is true in RCθ. Trivially, t′θ = s′θ implies t′θ ↓RCθ

s′θ, so t′θ 6≈ s′θ must be false and Cθ
must be true in RCθ.

Case 4.2: sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some rule in
EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}. Since Dθ is productive,
Dθ is not redundant and D′θ is false in RCθ. We can now proceed in essentially the
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same way as in Case 3.2: If tθ occurred in sθ at or below a variable position of s,
say xθ = w[tθ], then Cθ would be subject to Case 2 above. Otherwise, the positive

superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] ≈ s′θ

is a ground instance of a positive superposition inference from D and C. By saturation
up to redundancy, its conclusion is true in RCθ. Since D′θ and C ′θ are false in RCθ,
sθ[t′θ] ≈ s′θ must be true in RCθ. On the other hand, tθ ≈ t′θ is true in RCθ, so by
congruence, sθ[tθ] ≈ s′θ and Cθ are true in RCθ.

Case 4.3: sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible by RCθ. Then there
are three possibilities: Cθ can be true in RCθ, or C ′θ can be true in RCθ ∪ {sθ → s′θ},
or ECθ = {sθ → s′θ}. In the first and the third case, there is nothing to show. Let us
therefore assume that Cθ is false in RCθ and C ′θ is true in RCθ ∪ {sθ → s′θ}. Then
C ′θ = C ′′θ ∨ tθ ≈ t′θ, where the literal tθ ≈ t′θ is true in RCθ ∪ {sθ → s′θ} and
false in RCθ. In other words, tθ ↓RCθ∪{sθ→s′θ} t′θ, but not tθ ↓RCθ

t′θ. Consequently,
there is a rewrite proof of tθ →∗ u ←∗ t′θ by RCθ ∪ {sθ → s′θ} in which the rule
sθ → s′θ is used at least once. Without loss of generality we assume that tθ � t′θ. Since
sθ ≈ s′θ ≻L tθ ≈ t′θ and sθ ≻ s′θ we can conclude that sθ � tθ ≻ t′θ. But then there
is only one possibility how the rule sθ → s′θ can be used in the rewrite proof: We must
have sθ = tθ and the rewrite proof must have the form tθ → s′θ →∗ u←∗ t′θ, where the
first step uses sθ → s′θ and all other steps use rules from RCθ. Consequently, s′θ ≈ t′θ
is true in RCθ. Now observe that there is an equality factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

whose conclusion is true in RCθ by saturation. Since the literal t′θ 6≈ s′θ must be false
in RCθ, the rest of the clause must be true in RCθ, and therefore Cθ must be true in
RCθ, contradicting our assumption. This concludes the proof of the theorem. 2

A Σ-interpretation A is called term-generated, if for every b ∈ UA there is a ground term
t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 3.10 Let N be a set of (universally quantified) Σ-clauses and let A be a term-
generated Σ-interpretation. Then A is a model of GΣ(N) if and only if it is a model
of N .
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Proof. (⇒): Let A |= GΣ(N); let (∀~xC) ∈ N . Then A |= ∀~xC iff A(γ[xi 7→ ai])(C) = 1
for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai; define θ such that
xiθ = ti, then A(γ[xi 7→ ai])(C) = A(γ ◦ θ)(C) = A(γ)(Cθ) = 1 since Cθ ∈ GΣ(N).

(⇐): Let A be a model of N ; let C ∈ N and Cθ ∈ GΣ(N). Then A(γ)(Cθ) =
A(γ ◦ θ)(C) = 1 since A |= N . 2

Theorem 3.11 (Refutational Completeness: Static View) Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ /∈ N , then the interpre-
tation R∞ (that is, TΣ(∅)/R∞) is a model of all ground instances in GΣ(N) according
to part (iii) of the model construction theorem. As TΣ(∅)/R∞ is term-generated, it is a
model of N . 2

So far, we have considered only inference rules that add new clauses to the current set
of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form N0 ⊢ N1 ⊢ N2 ⊢ . . . , where each Ni+1 is
obtained from Ni by adding the consequence of some inference from clauses in Ni.

Under which circumstances are we allowed to delete (or simplify) a clause during the
derivation?

A run of the superposition calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, N∞ =
⋃

i≥0 Ni and N∗ =
⋃

i≥0

⋂

j≥i Nj . The set N∗ of all persistent clauses is
called the limit of the run.

Lemma 3.12 If N ⊆ N ′, then Red(N) ⊆ Red(N ′).

Proof. Obvious. 2

Lemma 3.13 If N ′ ⊆ Red(N), then Red(N) ⊆ Red(N \N ′).

Proof. Follows from the compactness of first-order logic and the well-foundedness of
the multiset extension of the clause ordering. 2

52



Lemma 3.14 Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run. Then Red(Ni) ⊆ Red(N∞) and
Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. 2

Corollary 3.15 Ni ⊆ N∗ ∪Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. 2

A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 3.16 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. 2

Theorem 3.17 (Refutational Completeness: Dynamic View) Let N0 ⊢ N1 ⊢ N2 ⊢
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has
a term-generated model. Since every clause in N0 is contained in N∗ or redundant
w. r. t. N∗, this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. 2
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3.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several
ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed
to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the
existing ones.

This process is called simplification.

Examples:

Subsumption:
If N contains clauses D and C = C ′ ∨Dσ, where C ′ is non-empty, then D subsumes
C and C is redundant.
Example: f(x) ≈ g(x) subsumes f(y) ≈ a ∨ f(h(y)) ≈ g(h(y)).

Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause C ′ ∨ L ∨ L can
be simplified to C ′ ∨ L; a clause C ′ ∨ s 6≈ s can be simplified to C ′.

Condensation:
If we obtain a clause D from C by applying a substitution, followed by deletion of
duplicated literals, and if D subsumes C, then C can be simplified to D.
Example: By applying {y → g(x)} to C = f(g(x)) ≈ a ∨ f(y) ≈ a and deleting the
duplicated literal, we obtain f(g(x)) ≈ a, which subsumes C.

Semantic tautology deletion:
Every clause that is a tautology is redundant. Note that in the non-equational case,
a clause is a tautology if and only if it contains two complementary literals, whereas
in the equational case we need a congruence closure algorithm to detect that a clause
like x 6≈ y ∨ f(x) ≈ f(y) is tautological.

Rewriting:
If N contains a unit clause D = s ≈ t and a clause C[sσ], such that sσ ≻ tσ and
C ≻C Dσ, then C can be simplified to C[tσ].
Example: If D = f(x, x) ≈ g(x) and C = h(f(g(y), g(y))) ≈ h(y), and ≻ is an LPO
with h > f > g, then C can be simplified to h(g(g(y))) ≈ h(y).
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Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function
that overrides the ordering restrictions for negative literals.

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

We indicate selected literals by a box:

¬f(x) ≈ a ∨ g(x, y) ≈ g(x, z)

The second ordering condition for inferences is replaced by

– The last literal in each premise is either selected, or there is no selected literal in
the premise and the literal is maximal in the premise (strictly maximal for positive
literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution infer-
ences and as the second premise in negative superposition inferences.

Refutational completeness is proved essentially as before:

We assume that each ground clause in GΣ(N) inherits the selection of one of the
clauses in N of which it is a ground instance (there may be several ones!).

In the proof of the model construction theorem, we replace case 3 by “Cθ contains a
selected or maximal negative literal” and case 4 by “Cθ contains neither a selected
nor a maximal negative literal”.

In addition, for the induction proof of this theorem we need one more property, namely:
(iv) If Cθ has selected literals then ECθ = ∅.

Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy, if the conclusion of every inference from clauses in
N \Red(N) is contained in N ∪ Red(N).

This definition ensures that in the proof of the model construction theorem, the conclu-
sion C0θ of a ground inference follows from clauses in GΣ(N) that are smaller than or
equal to itself, hence they are smaller than the premise Cθ of the inference, hence they
are true in RCθ by induction.
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However, a closer inspection of the proof shows that it is actually sufficient that the
clauses from which C0θ follows are smaller than Cθ – it is not necessary that they are
smaller than C0θ itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion C0 and right (or only) premise C is called redundant
w. r. t. a set of ground clauses N , if one of its premises is redundant w. r. t. N , or if C0

follows from clauses in N that are smaller than C.

An inference is redundant w. r. t. a set of clauses N , if all its ground instances are
redundant w. r. t. GΣ(N).

Recall that a clause can be redundant w. r. t. N without being contained in N . Analo-
gously, an inference can be redundant w. r. t. N without being an inference from clauses
in N .

The set of all inferences that are redundant w. r. t. N is denoted by RedInf (N).

Saturation is then redefined in the following way:

N is saturated up to redundancy, if every inference from clauses in N is redundant
w. r. t. N .

Using this definition, the model construction theorem can be proved essentially as be-
fore.

The connection between redundant inferences and clauses is given by the following lem-
mas. They are proved in the same way as the corresponding lemmas for redundant
clauses:

Lemma 3.18 If N ⊆ N ′, then RedInf (N) ⊆ RedInf (N ′).

Lemma 3.19 If N ′ ⊆ Red(N), then RedInf (N) ⊆ RedInf (N \N ′).

Splitting

Motivation:

A clause like f(x) = a ∨ g(y) = b has rather undesirable properties in the superposi-
tion calculus: It does not have negative literals that one could select; it does not have
a unique maximal literal; moreover, after performing a superposition inference with
this clause, the conclusion often does not have a unique maximal literal either.

On the other hand, the two unit clauses f(x) = a and g(y) = b have much nicer
properties.
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If a clause ∀~x, ~y C1(~x) ∨ C2(~y) consists of two non-empty variable-disjoint subclauses,
then it is equivalent to the disjunction

(

∀~x C1(~x)
)

∨
(

∀~y C2(~y)
)

.

In this case, superposition derivations can branch in a tableau-like manner:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

where C1 and C2 do not have common variables.

If ⊥ is found on the left branch, backtrack to the right one.

If C1 is ground, the general rule can be improved:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2} ∪ {¬C1}

where C1 is ground.

Note: ¬C1 denotes the conjunction of all negations of literals in C1.

In practice, splitting is most useful if both split clauses contain at least one positive
literal.

Implementing splitting:

Most clauses that are derived after a splitting step do not depend on the split clause.

It is unpractical to delete them as soon as one branch is closed and to recompute them
in the other branch afterwards.

Solution: Associate labels to clauses that indicate on which splits they depend.

If we derive ⊥ in one branch:

Backtrack to the corresponding right branch.

Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying clause is no longer valid
on the right branch.

Additionally: Delete splittings that did not contribute to the contradiction (branch
condensation).
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3.6 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on the analysis of inferences
between ground instances of clauses.

Inferences between ground instances must be covered by inferences between original
clauses.

Non-ground clauses represent the set of all their ground instances.

Do we really need all ground instances?

Constrained Clauses

A constrained clause is a pair (C, K), usually written as C [[K]], where C is a Σ-clause
and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals s ≻ t with Σ-terms s, t.
(also possible: comparisons between literals or clauses).

Intuition: C [[K]] represents the set of all ground clauses Cθ for which Kθ evaluates
to true for some fixed term ordering. Such a Cθ is called a ground instance of C [[K]].

A clause C without constraint is identified with C [[⊤]].

A constrained clause C [[⊥]] with an unsatisfiable constraint represents no ground
instances; it can be discarded.

Constraint Superposition

Inference rules for constrained clauses:

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ [[(K2 ∧K1 ∧K)σ]]

where σ = mgu(t, u) and
u is not a variable and
K = (t ≻ t′ ∧ s[u] ≻ s′

∧ (t ≈ t′) ≻C D′

∧ (s[u] ≈ s′) ≻C C ′

∧ (s[u] ≈ s′) ≻L (t ≈ t′))

The other inference rules are modified analogously.

To work with effectively with constrained clauses in a calculus, we need methods to
check the satisfiability of constraints:
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Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts of the constraint. (Note
that the calculus remains sound, if constraints are replaced by implied constraints.)

Refutational Completeness

The refutational completeness proof for constraint superposition looks mostly like in
Sect. 3.4.

Lifting works as before, so every ground infererence that is required in the proof is an
instance of some inference from the corresponding constrained clauses. (Easy.)

There is one significant problem, though.

Case 2 in the proof of Thm. 3.9 does not work for constrained clauses:

If we have a ground instance Cθ where xθ is reducible by RCθ, we can no longer
conclude that Cθ is true because it follows from some rule in RCθ and some smaller
ground instance Cθ′.

Example: Let C [[K]] be the clause f(x) ≈ a [[x ≻ a]], let θ = {x 7→ b}, and assume
that RCθ contains the rule b→ a.
Then θ satisfies K, but θ′ = {x 7→ a} does not, so Cθ′ is not a ground instance of
C [[K]].

Solution (Nieuwenhuis and Rubio, 1992):

Assumption: We start the saturation with a set N0 of unconstrained clauses; the limit
N∗ contains constrained clauses, though.

During the model construction, we ignore ground instances Cθ of clauses in N∗ for
which xθ is reducible by RCθ.

We obtain a model R∞ of all variable irreducible ground instances of clauses in N∗.

R∞ is also a model of all variable irreducible ground instances of clauses in N0.

Since all clauses in N0 are unconstrained, every ground instance of a clause in N0

follows from some rule in R∞ and some smaller ground instance; so it is true in R∞.

Consequently, R∞ is a model of all ground instances of clauses in N0.
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Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints (; “basic superposi-
tion”):

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

D′ ∨ C ′ ∨ s[t′] ≈ s′ [[K2 ∧K1 ∧K]]

where u is not a variable and
K = (t = u)

Note: In contrast to ordering constraints, these constraints are essential for soundness.

The Drawback

Constraints reduce the number of required inferences; however, they are detrimental to
redundancy:

Since we consider only variable irreducible ground instances during the model con-
struction, we may use only such instances for redundancy:

A clause is redundant, if all its variable irreducible ground instances follow from
smaller variable irreducible ground instances.

Even worse, since we don’t know R∞ in advance, we must consider variable irreducibil-
ity w. r. t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!
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