Tutorials for "Automated Reasoning II" Exercise sheet 8

Exercise 8.1:

A group is a set G with a binary function $\cdot: G \times G \rightarrow G$, a unary function ${ }^{-1}: G \rightarrow G$, and an element $e \in G$, that satisfy the axioms

$$
\begin{gathered}
a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
a \cdot e=a \\
a \cdot a^{-1}=e
\end{gathered}
$$

for all $a, b, c \in G$. (It is sufficient to assert that e is a right identity and that ${ }_{-}^{-1}$ is a right inverse. One can prove from these axioms that e is also a left identity and that ${ }_{-}{ }^{-1}$ is also a left inverse.)

For a group element $a \in G$ and a positive integer n, we define a^{n} recursively by $a^{1}=a$ and $a^{n+1}=a \cdot\left(a^{n}\right)$. We say that $a \in G$ has order n if $a^{n}=e$ and if n is the smallest positive integer with this property. We say that $a \in G$ has order ∞ if there is no positive integer n such that $a^{n}=e$. (Note that every group has exactly one element with order 1, namely e itself.)

We say that some $a \in G$ commutes with some $b \in G$ if $a \cdot b=b \cdot a$. The center of a group G is the set of all elements $a \in G$ that commute with every $b \in G$.

Formalize the following problem in unsorted first-order logic with equality and use the theorem prover SPASS to prove it: If a group G has exactly one element with order 2, then this element is in the center of G.

Notes:

- You can either download the prover from http://www.spass-prover.org/ or use the interactive web interface on that site. (Do not use the file upload form on that site; it is currently broken.)
- A sample SPASS input file containing the definition of a group and the conjecture that the right identity element in a group is also a left identity is available from the tutorial web page.
- In SPASS input files, the connectives \vee and \neg are written or (_,_) and not (_).
- Even though the presentation above refers to integer numbers, you should formalize the problem without referring to integer numbers.
- It is advisable to formalize the problem without defining auxiliary predicates like commutes (_) or center (_). (With auxiliary predicates, the problem becomes noticably harder for SPASS.)

Exercise 8.2:

Prove the lifting lemma (Lemma 3.7) for Equality Factoring inferences.

Exercise 8.3:

Suppose that we redefine the literal ordering for ground equational literals in such a way that a positive literal $s \approx t$ is mapped to $(\{s, t\}, 0)$, a negative literal $s \not \approx t$ is mapped to $(\{s, t\}, 1)$, and the literal ordering \succ_{L} compares these pairs using the lexicographic combination of the multiset extension of \succ and the ordering $>$ on natural numbers. What would go wrong in the refutational completeness proof for superposition?

Exercise 8.4:

Compute the rewrite systems R_{C} and R_{∞} for the set of clauses

$$
\begin{gather*}
f(a) \approx d \vee f(a) \approx c \tag{1}\\
a \not \approx d \vee f(b) \approx f(d) \tag{2}\\
f(c) \approx f(d) \tag{3}\\
f(d) \approx d \vee f(d) \approx b \tag{4}\\
a \approx b \tag{5}\\
c \approx d \tag{6}
\end{gather*}
$$

Use the KBO with $f>a>b>c>d$ and weight 1 for all symbols as term ordering. Which is the smallest clause C such that C is neither productive nor true in R_{C} ?

Exercise 8.5:

Compute R_{∞} for the clause set $\{f(x) \approx a\}$ and the signature $\Sigma=(\{f / 1, g / 1, a / 0\}, \emptyset)$; use the LPO with $g>f>a$.

Bring your solution (or solution attempt) to the tutorial on June 30.

