Tutorials for "Automated Reasoning II" Exercise sheet 2

Exercise 2.1:

The Fourier-Motzkin algorithm would be unsound if we omitted the non-triviality axioms from the definition of ODAGs. Where do we need non-triviality?

Exercise 2.2:

Describe the rules for virtual substitution for the test points in the set T^{\prime} that is described on page 13 of the lecture notes.

Exercise 2.3:

The quantifier elimination algorithms for linear rational arithmetic can also be applied to non-linear formulas, provided that all the bound variables occur only linearly. That is, the atoms can have the form $0 \sim \sum_{i} s_{i}(\vec{z}) \cdot x_{i}$ where the coefficients $s_{i}(\vec{z})$ are terms that may contain arbitrary arithmetic operations, say $\left(z_{1}+z_{3}^{2}\right)$ or even ($\sin z_{2}+e^{z_{5}}+3$), but no bound variables. There is one additional problem, though. Why? How can you solve it?

Exercise 2.4:

Use the nondeterministic Nelson-Oppen method to show that the following formula is unsatisfiable in the combination of EUF and linear integer arithmetic:

$$
\exists x, y(x+y \approx 0 \wedge f(x)+f(-y) \approx 1)
$$

(If you choose the equations to split cleverly, the proof is quite short.)

Bring your solution (or solution attempt) to the tutorial on May 19.

