max planck institut informatik Universität des Saarlandes FR Informatik

Uwe Waldmann

June 30, 2014

Tutorials for "Automated Reasoning II" Exercise sheet 10

Exercise 10.1:

Consider the base specification $SP = (\Sigma, \mathcal{C})$ with $\Sigma = (\Xi, \Omega, \emptyset)$, where $\Xi = \{int\}, \Omega$ contains *int*-sorted constants $0, 1, -1, 2, -2, \ldots$, a Skolem constant $k : \rightarrow int, -: int \rightarrow int$, and $+: int \times int \rightarrow int$, and \mathcal{C} is the isomorphy class of \mathbb{Z} (with k interpreted by an arbitrary integer number).

We extend SP by a new sort list, new operator symbols $cons : int \times list \rightarrow list, car : list \rightarrow int, cdr : list \rightarrow list, empty : \rightarrow list, and <math>a : \rightarrow list$, and the clauses

$car(cons(x,y))\approx x$	(1)
$cdr(cons(x,y))\approx y$	(2)
$cons(k,a) \approx cons(3,empty)$	(3)
$k+5 \approx 7$	(4)

Use the hierarchic superposition calculus to show that the hierarchic specification is inconsistent.

Exercise 10.2:

As mentioned in the lecture, it is not necessary for the completeness of hierarchic superposition to abstract out concrete numbers. This does not hold for Skolem constants, though. Give a simple example of a hierarchic specification that can be refuted using hierarchic superposition if Skolem constants are abstracted out, but that cannot be refuted if the abstraction of Skolem constants is avoided.

Exercise 10.3:

Are the two terms b + x and y + c (with constants b, c) unifiable with respect to associativity? If yes, compute a μ CSU.

Exercise 10.4:

Are the two terms b + x and x + c (with constants b, c) unifiable with respect to associativity? If yes, compute a μ CSU. Bring your solution (or solution attempt) to the tutorial on July 7.