
Automated Reasoning I, 2021

Midterm Exam, Sample Solution

Assignment 1

Part (a) Let (V,E) be given, let C = {0, 1, 2}
be the set of “colors”. Let Π = {P c

v | v ∈ V, c ∈
C }, where P c

v is supposed to be true in a model
if and only if φ(v) = c. Then N is the following
set of clauses over Π:

•
∨

c∈C P c
v for every v ∈ V (that is, v is

mapped to some c ∈ C by φ).

• ¬P c
v ∨¬P c′

v for every v ∈ V and all c, c′ ∈ C

with c < c′ (that is, v is not mapped to both
c and c′).

• ¬P c
v ∨ ¬P c

v′ for every edge (v, v′) ∈ E and
every c ∈ C (that is, v and v′ are not both
mapped to c).

Part (b) There are several possible transla-
tions. We can for instance extend Π and N

from Part (a) in the following way: Let Π′ =

Π ∪ {Qc,c′

v,v′ | (v, v′) ∈ E, c, c′ ∈ C, c < c′ },
where the propositional variable Q

c,c′

v,v′
is sup-

posed to be true in a model only if φ(v) = c

and φ(v′) = c′ or φ(v) = c′ and φ(v′) = c. Then
N ′ adds the following clauses to N :

•
∨

(v,v′)∈E Q
c,c′

v,v′
for all c, c′ ∈ C with c < c′

(that is, at least one edge connects two ver-
tices with colors c and c′).

• ¬Qc,c′

v,v′
∨ P c

v ∨ P c
v′ for every edge (v, v′) ∈ E

and all c, c′ ∈ C with c < c′ (that is, one of
v and v′ is mapped to c).

• ¬Qc,c′

v,v′
∨ P c′

v ∨ P c′

v′ for every edge (v, v′) ∈ E

and all c, c′ ∈ C with c < c′ (that is, one of
v and v′ is mapped to c′).

Assignment 2

Part (a) Since clause (6) is a conflict
clause and contains the complement of the
deduced literal S, we resolve (6) with the
clause used to propagate S, namely (5),
and obtain T ∨ ¬U ∨ ¬W (which is not a
backjump clause). By resolving this clause
with the clause used to propagate ¬T , namely
(4), we obtain P ∨ ¬U ∨ ¬W (10) (which

is a backjump clause). The best possible
successor state for this backjump clause is
¬P d W ¬U ‖ N ∪ {(10)}.

Grading scheme: 4 points for computing the
1UIP backjump clause; 3 points for determin-
ing the optimal successor state.

Part (b) Clause (9) is an asymmetric tautol-
ogy w. r. t. N \ {(9)}; therefore is has the RAT
property and may be deleted. To see that we
add the negation of (9), that is, the three unit
clauses ¬S (11), U (12), and ¬V (13) to N and
try to derive a contradiction by unit propaga-
tion. (Note that we may not use (9) itself for
unit propagation.) We obtain

¬S U ¬V Q ¬P W ‖ N \ {(9)} ∪
(11) (12) (13) (2) (8) (1) {(11), (12), (13)}

At this point, (5) is a conflict clause, so we
have shown that N \ {(9)} ∪ {¬ (9)} |= ⊥ and
therefore N \ {(9)} |= {(9)}.

Assignment 3

Assume that A 6|= F and A 6|= C and that
every propositional variable that occurs in F

occurs also in C. We have to show that B |= F

implies B |= C for every valuation B: Sup-
pose that B |= F . Then there must exist a
propositional variable P that occurs in F and
for which A(P ) 6= B(P ). By assumption, the
propositional variable P occurs also in C. Now
there are two possibilities: Either A(P ) = 1,
then A 6|= C implies that C contains the neg-
ative literal ¬P , and since B(P ) = 0 we have
B(C) = 1. Otherwise A(P ) = 0, then A 6|= C

implies that C contains the positive literal P ,
and since B(P ) = 1 we have again B(C) = 1.

Assignment 4

Part (a) Assume that the Σ-formula F is
valid. Let A and β be an arbitrary Σ-algebra
and an assignment. We have to show that
A(β)(rep(F )) = 1. Define a Σ-algebra B such
that UB = UA, fB = fA for every f ∈ Ω,
QB = RA, and PB = PA for every P ∈ Π \ {Q}.
Obviously, B(γ)(t) = A(γ)(t) for every assign-
ment γ and Σ-term t. We show that B(γ)(G) =

1



A(γ)(rep(G)) for every Σ-formula G and every
γ by induction over the formula structure:

If G = Q(s1, . . . , sn), then rep(G) =
R(s1, . . . , sn). The tuple (A(γ)(s1), . . . ,
A(γ)(sn)) = (B(γ)(s1), . . . ,B(γ)(sn)) is
contained in QB iff it is contained in
RA by definition of QB, therefore we get
B(γ)(Q(s1, . . . , sn)) = A(γ)(R(s1, . . . , sn)) =
A(γ)(rep(Q(s1, . . . , sn))).

If G = P (t1, . . . , tm) for some P 6= Q, then
rep(G) = P (s1, . . . , sn). The tuple (A(γ)(s1),
. . . ,A(γ)(sn)) = (B(γ)(s1), . . . ,B(γ)(sn)) is
contained in PB iff it is contained in
PA, therefore we get B(γ)(P (s1, . . . , sn)) =
A(γ)(rep(P (s1, . . . , sn))).

If G = G′ ∨ G′′, then rep(G) =
rep(G′) ∨ rep(G′′). By induction,
B(γ)(G′) = A(γ)(rep(G′)) and B(γ)(G′′) =
A(γ)(rep(G′′)), therefore B(γ)(G) =
B(γ)(G′ ∨ G′′) = max{B(γ)(G′),B(γ)(G′′)} =
max{A(γ)(rep(G′)),A(γ)(rep(G′′))} =
A(γ)(rep(G′) ∨ rep(G′′)) = A(γ)(rep(G)).

If G = ¬G′, then rep(G) = ¬rep(G′). By
induction, B(γ)(G′) = A(γ)(rep(G′)), there-
fore B(γ)(G) = B(γ)(¬G′) = 1 − B(γ)(G′) =
1 − A(γ)(rep(G′)) = A(γ)(¬rep(G′)) =
A(γ)(rep(G)).

The other cases are handled analogously.
Since F is supposed to be valid, we have

therefore A(β)(rep(F )) = B(β)(F ) = 1.

Part (b) Let F = Q(b) ∧ ¬R(b), then
rep(F ) = R(b) ∧ ¬R(b). Clearly, F is satisfi-
able, but rep(F ) is unsatisfiable.

Assignment 5

The NNF transformation of

∃w ∀x∃z ¬∃y ∀v
(

¬P (c, v, f(x), y)

∧
(

Q(v, z) → R(x, z, w)
)

)

yields

∃w ∀x∃z ∀y ∃v
(

P (c, v, f(x), y)

∨
(

Q(v, z) ∧ ¬R(x, z, w)
)

)

Miniscoping proceeds bottom-up. First, we
move ∃v inside the disjunction and then inside
the conjunction. Second, we move ∀y inside the

disjunction. Third, we move ∃z inside the dis-
junction:

∃w ∀x
(

∀y ∃v P (c, v, f(x), y)

∨ ∃z
(

∃v Q(v, z) ∧ ¬R(x, z, w)
)

)

At this point, none of the miniscoping rules is
applicable anymore. Variable renaming yields

∃w ∀x
(

∀y ∃v P (c, v, f(x), y)

∨ ∃z
(

∃v′Q(v′, z) ∧ ¬R(x, z, w)
)

)

Skolemization starts with the outermost exis-
tential quantifier. First, w is replaced by a new

constant b. We obtain

∀x
(

∀y ∃v P (c, v, f(x), y)

∨ ∃z
(

∃v′ Q(v′, z) ∧ ¬R(x, z, b)
)

)

Then v and z are replaced by new functions g
(applied to the free variables x and y) and g′

(applied to the free variable x), and then v′ is
replaced by a new function g′′ (applied to the
free variable x). We get

∀x
(

∀y P (c, g(x, y), f(x), y)

∨
(

Q(g′′(x), g′(x)) ∧ ¬R(x, g′(x), b)
)

)

The universal quantifiers are pushed upward:

∀x∀y
(

P (c, g(x, y), f(x), y)

∨
(

Q(g′′(x), g′(x)) ∧ ¬R(x, g′(x), b)
)

)

Using the distributivity law, we get the CNF

∀x∀y
(

(

P (c, g(x, y), f(x), y) ∨Q(g′′(x), g′(x))
)

∧
(

P (c, g(x, y), f(x), y) ∨ ¬R(x, g′(x), b)
)

)

Grading scheme: 5 points for miniscoping;
5 points for Skolemization; 4 points for the rest.

Assignment 6

Ineq. (1) holds if and only if P ≻ Q. Ineq. (2)
holds if and only if R ≻ P or Q ≻ P , but
the second of the two possibilities is excluded
by (1). Ineq. (3) holds if and only if R ≻ S.
There are three strict orderings that satisfy
these conditions, namely R ≻ S ≻ P ≻ Q,
R ≻ P ≻ S ≻ Q, and R ≻ P ≻ Q ≻ S.

Grading scheme: −4 points for each missing or
wrong ordering.
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