Automated Reasoning I, 2021 Midterm Exam, Sample Solution

Assignment 1

Part (a) Let (V, E) be given, let $C=\{0,1,2\}$ be the set of "colors". Let $\Pi=\left\{P_{v}^{c} \mid v \in V, c \in\right.$ $C\}$, where P_{v}^{c} is supposed to be true in a model if and only if $\phi(v)=c$. Then N is the following set of clauses over Π :

- $\bigvee_{c \in C} P_{v}^{c}$ for every $v \in V$ (that is, v is mapped to some $c \in C$ by ϕ).
- $\neg P_{v}^{c} \vee \neg P_{v}^{c^{\prime}}$ for every $v \in V$ and all $c, c^{\prime} \in C$ with $c<c^{\prime}$ (that is, v is not mapped to both c and c^{\prime}).
- $\neg P_{v}^{c} \vee \neg P_{v^{\prime}}^{c}$ for every edge $\left(v, v^{\prime}\right) \in E$ and every $c \in C$ (that is, v and v^{\prime} are not both mapped to c).

Part (b) There are several possible translations. We can for instance extend Π and N from Part (a) in the following way: Let $\Pi^{\prime}=$ $\Pi \cup\left\{Q_{v, v^{\prime}}^{c, c^{\prime}} \mid\left(v, v^{\prime}\right) \in E, c, c^{\prime} \in C, c<c^{\prime}\right\}$, where the propositional variable $Q_{v, v^{\prime}}^{c, c^{\prime}}$ is supposed to be true in a model only if $\phi(v)=c$ and $\phi\left(v^{\prime}\right)=c^{\prime}$ or $\phi(v)=c^{\prime}$ and $\phi\left(v^{\prime}\right)=c$. Then N^{\prime} adds the following clauses to N :

- $\bigvee_{\left(v, v^{\prime}\right) \in E} Q_{v, v^{\prime}}^{c, c^{\prime}}$ for all $c, c^{\prime} \in C$ with $c<c^{\prime}$ (that is, at least one edge connects two vertices with colors c and c^{\prime}).
- $\neg Q_{v, v^{\prime}}^{c, c^{\prime}} \vee P_{v}^{c} \vee P_{v^{\prime}}^{c}$ for every edge $\left(v, v^{\prime}\right) \in E$ and all $c, c^{\prime} \in C$ with $c<c^{\prime}$ (that is, one of v and v^{\prime} is mapped to c).
- $\neg Q_{v, v^{\prime}}^{c, c^{\prime}} \vee P_{v}^{c^{\prime}} \vee P_{v^{\prime}}^{c^{\prime}}$ for every edge $\left(v, v^{\prime}\right) \in E$ and all $c, c^{\prime} \in C$ with $c<c^{\prime}$ (that is, one of v and v^{\prime} is mapped to c^{\prime}).

Assignment 2

Part (a) Since clause (6) is a conflict clause and contains the complement of the deduced literal S, we resolve (6) with the clause used to propagate S, namely (5), and obtain $T \vee \neg U \vee \neg W$ (which is not a backjump clause). By resolving this clause with the clause used to propagate $\neg T$, namely (4), we obtain $P \vee \neg U \vee \neg W$ (10) (which
is a backjump clause). The best possible successor state for this backjump clause is $\neg P^{\mathrm{d}} W \neg U \| N \cup\{(10)\}$.

Grading scheme: 4 points for computing the 1UIP backjump clause; 3 points for determining the optimal successor state.

Part (b) Clause (9) is an asymmetric tautology w.r.t. $N \backslash\{(9)\}$; therefore is has the RAT property and may be deleted. To see that we add the negation of (9), that is, the three unit clauses $\neg S$ (11), U (12), and $\neg V$ (13) to N and try to derive a contradiction by unit propagation. (Note that we may not use (9) itself for unit propagation.) We obtain

$$
\begin{array}{ccccccc}
\neg S & U & \neg V & Q & \neg P & W & \| N \backslash\{(9)\} \cup \\
(11) & (12) & (13) & (2) & (8) & (1) & \{(11),(12),(13)\}
\end{array}
$$

At this point, (5) is a conflict clause, so we have shown that $N \backslash\{(9)\} \cup\{\neg(9)\} \models \perp$ and therefore $N \backslash\{(9)\} \models\{(9)\}$.

Assignment 3

Assume that $\mathcal{A} \not \vDash F$ and $\mathcal{A} \not \vDash C$ and that every propositional variable that occurs in F occurs also in C. We have to show that $\mathcal{B} \models F$ implies $\mathcal{B} \models C$ for every valuation \mathcal{B} : Suppose that $\mathcal{B} \models F$. Then there must exist a propositional variable P that occurs in F and for which $\mathcal{A}(P) \neq \mathcal{B}(P)$. By assumption, the propositional variable P occurs also in C. Now there are two possibilities: Either $\mathcal{A}(P)=1$, then $\mathcal{A} \not \vDash C$ implies that C contains the negative literal $\neg P$, and since $\mathcal{B}(P)=0$ we have $\mathcal{B}(C)=1$. Otherwise $\mathcal{A}(P)=0$, then $\mathcal{A} \not \vDash C$ implies that C contains the positive literal P, and since $\mathcal{B}(P)=1$ we have again $\mathcal{B}(C)=1$.

Assignment 4

Part (a) Assume that the Σ-formula F is valid. Let \mathcal{A} and β be an arbitrary Σ-algebra and an assignment. We have to show that $\mathcal{A}(\beta)(\operatorname{rep}(F))=1$. Define a Σ-algebra \mathcal{B} such that $U_{\mathcal{B}}=U_{\mathcal{A}}, f_{\mathcal{B}}=f_{\mathcal{A}}$ for every $f \in \Omega$, $Q_{\mathcal{B}}=R_{\mathcal{A}}$, and $P_{\mathcal{B}}=P_{\mathcal{A}}$ for every $P \in \Pi \backslash\{Q\}$. Obviously, $\mathcal{B}(\gamma)(t)=\mathcal{A}(\gamma)(t)$ for every assignment γ and Σ-term t. We show that $\mathcal{B}(\gamma)(G)=$
$\mathcal{A}(\gamma)(\operatorname{rep}(G))$ for every Σ-formula G and every γ by induction over the formula structure:

If $G=Q\left(s_{1}, \ldots, s_{n}\right)$, then $\operatorname{rep}(G)=$ $R\left(s_{1}, \ldots, s_{n}\right)$. The tuple $\left(\mathcal{A}(\gamma)\left(s_{1}\right), \ldots\right.$, $\left.\mathcal{A}(\gamma)\left(s_{n}\right)\right)=\left(\mathcal{B}(\gamma)\left(s_{1}\right), \ldots, \mathcal{B}(\gamma)\left(s_{n}\right)\right)$ is contained in $Q_{\mathcal{B}}$ iff it is contained in $R_{\mathcal{A}}$ by definition of $Q_{\mathcal{B}}$, therefore we get $\mathcal{B}(\gamma)\left(Q\left(s_{1}, \ldots, s_{n}\right)\right)=\mathcal{A}(\gamma)\left(R\left(s_{1}, \ldots, s_{n}\right)\right)=$ $\mathcal{A}(\gamma)\left(\operatorname{rep}\left(Q\left(s_{1}, \ldots, s_{n}\right)\right)\right)$.

If $G=P\left(t_{1}, \ldots, t_{m}\right)$ for some $P \neq Q$, then $\operatorname{rep}(G)=P\left(s_{1}, \ldots, s_{n}\right)$. The tuple $\left(\mathcal{A}(\gamma)\left(s_{1}\right)\right.$, $\left.\ldots, \mathcal{A}(\gamma)\left(s_{n}\right)\right)=\left(\mathcal{B}(\gamma)\left(s_{1}\right), \ldots, \mathcal{B}(\gamma)\left(s_{n}\right)\right)$ is contained in $P_{\mathcal{B}}$ iff it is contained in $P_{\mathcal{A}}$, therefore we get $\mathcal{B}(\gamma)\left(P\left(s_{1}, \ldots, s_{n}\right)\right)=$ $\mathcal{A}(\gamma)\left(\operatorname{rep}\left(P\left(s_{1}, \ldots, s_{n}\right)\right)\right)$.
If $G=G^{\prime} \vee G^{\prime \prime}$, then $\operatorname{rep}(G)=$ $\operatorname{rep}\left(G^{\prime}\right) \quad \vee \quad \operatorname{rep}\left(G^{\prime \prime}\right)$. By induction, $\mathcal{B}(\gamma)\left(G^{\prime}\right)=\mathcal{A}(\gamma)\left(\operatorname{rep}\left(G^{\prime}\right)\right)$ and $\mathcal{B}(\gamma)\left(G^{\prime \prime}\right)=$ $\mathcal{A}(\gamma)\left(\operatorname{rep}\left(G^{\prime \prime}\right)\right), \quad$ therefore $\mathcal{B}(\gamma)(G)=$ $\mathcal{B}(\gamma)\left(G^{\prime} \vee G^{\prime \prime}\right)=\max \left\{\mathcal{B}(\gamma)\left(G^{\prime}\right), \mathcal{B}(\gamma)\left(G^{\prime \prime}\right)\right\}=$ $\max \left\{\mathcal{A}(\gamma)\left(\operatorname{rep}\left(G^{\prime}\right)\right), \mathcal{A}(\gamma)\left(\operatorname{rep}\left(G^{\prime \prime}\right)\right)\right\}=$ $\mathcal{A}(\gamma)\left(\operatorname{rep}\left(G^{\prime}\right) \vee \operatorname{rep}\left(G^{\prime \prime}\right)\right)=\mathcal{A}(\gamma)(\operatorname{rep}(G))$.

If $G=\neg G^{\prime}$, then $\operatorname{rep}(G)=\neg \operatorname{rep}\left(G^{\prime}\right)$. By induction, $\mathcal{B}(\gamma)\left(G^{\prime}\right)=\mathcal{A}(\gamma)\left(\operatorname{rep}\left(G^{\prime}\right)\right)$, therefore $\mathcal{B}(\gamma)(G)=\mathcal{B}(\gamma)\left(\neg G^{\prime}\right)=1-\mathcal{B}(\gamma)\left(G^{\prime}\right)=$ $1-\mathcal{A}(\gamma)\left(\operatorname{rep}\left(G^{\prime}\right)\right)=\mathcal{A}(\gamma)\left(\neg \operatorname{rep}\left(G^{\prime}\right)\right)=$ $\mathcal{A}(\gamma)(\operatorname{rep}(G))$.

The other cases are handled analogously.
Since F is supposed to be valid, we have therefore $\mathcal{A}(\beta)(\operatorname{rep}(F))=\mathcal{B}(\beta)(F)=1$.

Part (b) Let $F=Q(b) \wedge \neg R(b)$, then $\operatorname{rep}(F)=R(b) \wedge \neg R(b)$. Clearly, F is satisfiable, but $\operatorname{rep}(F)$ is unsatisfiable.

Assignment 5

The NNF transformation of

$$
\begin{aligned}
\exists w \forall x \exists z \neg \exists y \forall v & (\neg P(c, v, f(x), y) \\
& \wedge(Q(v, z) \rightarrow R(x, z, w)))
\end{aligned}
$$

yields

$$
\begin{aligned}
\exists w \forall x \exists z \forall y \exists v & (P(c, v, f(x), y) \\
& \vee(Q(v, z) \wedge \neg R(x, z, w)))
\end{aligned}
$$

Miniscoping proceeds bottom-up. First, we move $\exists v$ inside the disjunction and then inside the conjunction. Second, we move $\forall y$ inside the
disjunction. Third, we move $\exists z$ inside the disjunction:

$$
\begin{aligned}
& \exists w \forall x(\forall y \exists v P(c, v, f(x), y) \\
& \quad \vee \exists z(\exists v Q(v, z) \wedge \neg R(x, z, w)))
\end{aligned}
$$

At this point, none of the miniscoping rules is applicable anymore. Variable renaming yields

$$
\begin{aligned}
& \exists w \forall x(\forall y \exists v P(c, v, f(x), y) \\
& \left.\quad \vee \exists z\left(\exists v^{\prime} Q\left(v^{\prime}, z\right) \wedge \neg R(x, z, w)\right)\right)
\end{aligned}
$$

Skolemization starts with the outermost existential quantifier. First, w is replaced by a new constant b. We obtain

$$
\begin{aligned}
\forall x(\forall y \exists v & P(c, v, f(x), y) \\
\vee & \left.\exists z\left(\exists v^{\prime} Q\left(v^{\prime}, z\right) \wedge \neg R(x, z, b)\right)\right)
\end{aligned}
$$

Then v and z are replaced by new functions g (applied to the free variables x and y) and g^{\prime} (applied to the free variable x), and then v^{\prime} is replaced by a new function $g^{\prime \prime}$ (applied to the free variable x). We get

$$
\begin{aligned}
& \forall x(\forall y P(c, g(x, y), f(x), y) \\
& \left.\quad \vee\left(Q\left(g^{\prime \prime}(x), g^{\prime}(x)\right) \wedge \neg R\left(x, g^{\prime}(x), b\right)\right)\right)
\end{aligned}
$$

The universal quantifiers are pushed upward:

$$
\begin{aligned}
\forall x \forall y & (P(c, g(x, y), f(x), y) \\
& \left.\vee\left(Q\left(g^{\prime \prime}(x), g^{\prime}(x)\right) \wedge \neg R\left(x, g^{\prime}(x), b\right)\right)\right)
\end{aligned}
$$

Using the distributivity law, we get the CNF

$$
\begin{array}{r}
\forall x \forall y\left(\left(P(c, g(x, y), f(x), y) \vee Q\left(g^{\prime \prime}(x), g^{\prime}(x)\right)\right)\right. \\
\left.\quad \wedge\left(P(c, g(x, y), f(x), y) \vee \neg R\left(x, g^{\prime}(x), b\right)\right)\right)
\end{array}
$$

Grading scheme: 5 points for miniscoping; 5 points for Skolemization; 4 points for the rest.

Assignment 6

Ineq. (1) holds if and only if $P \succ Q$. Ineq. (2) holds if and only if $R \succ P$ or $Q \succ P$, but the second of the two possibilities is excluded by (1). Ineq. (3) holds if and only if $R \succ S$. There are three strict orderings that satisfy these conditions, namely $R \succ S \succ P \succ Q$, $R \succ P \succ S \succ Q$, and $R \succ P \succ Q \succ S$.

Grading scheme: -4 points for each missing or wrong ordering.

