
Automated Reasoning I, 2019/20

Re-Exam, Sample Solution

Assignment 1

F = ∃z ∀x
(

(

∃y P (z, y)
)

↔
(

∃yQ(x, y)
)

)

Since the equivalence occurs in F with positive
polarity, we replace it by a conjunction of two
implications.

∃z ∀x
((

(

∃y P (z, y)
)

→
(

∃y Q(x, y)
)

)

∧
(

(

∃yQ(x, y)
)

→
(

∃y P (z, y)
)

))

Then we replace the implications by disjunc-
tions:

∃z ∀x
((

¬
(

∃y P (z, y)
)

∨
(

∃yQ(x, y)
)

)

∧
(

¬
(

∃yQ(x, y)
)

∨
(

∃y P (z, y)
)

))

After pushing the negations inward, we obtain
the negation normal form

∃z ∀x
((

(

∀y¬P (z, y)
)

∨
(

∃yQ(x, y)
)

)

∧
(

(

∀y ¬Q(x, y)
)

∨
(

∃y P (z, y)
)

))

We can now use miniscoping. The quantifier ∀x
can be pushed inward

∃z
((

(

∀y ¬P (z, y)
)

∨
(

∀x∃yQ(x, y)
)

)

∧
(

(

∀x∀y¬Q(x, y)
)

∨
(

∃y P (z, y)
)

))

but the quantifier ∃z cannot. Variable renam-
ing yields

∃z
((

(

∀y¬P (z, y)
)

∨
(

∀x∃y′Q(x, y′)
)

)

∧
(

(

∀x′ ∀y′′ ¬Q(x′, y′′)
)

∨
(

∃y′′′ P (z, y′′′)
)

))

After Skolemization (starting with the outer-
most existential quantifier), we obtain

(

(

∀y ¬P (c, y)
)

∨
(

∀xQ(x, f(x))
)

)

∧
(

(

∀x′ ∀y′′ ¬Q(x′, y′′)
)

∨ P (c, c′)
)

Finally we push the remaining quantifiers out-
ward:

∀y ∀x∀x′ ∀y′′
(

(

¬P (c, y) ∨Q(x, f(x))
)

∧
(

¬Q(x′, y′′) ∨ P (c, c′)
)

)

The resulting formula in CNF is equisatisfi-
able to F , but not equivalent, since the Skolem-
ization step does not yield an equivalent for-
mula.

Grading scheme: −2 points per error.

Assignment 2

Part (a)

P (f(x), f(x)) (1)

P (g(x), g(x)) (2)

P (h(x), h(x)) ∨ P (h(y), h(b)) (3)

¬P (f(x), y) ∨ ¬P (x, y) ∨ ¬P (y, g(x)) (4)

¬P (x, y) ∨ ¬P (b, c) (5)

The second literal of clause (4) is not maxi-
mal, since it is strictly smaller than the first
literal of (4) in the given ordering. All other
literals in the clauses (1)–(5) are maximal in
their clauses.

Grading scheme: −1 point per error.

Part (b) When the second literal in (5) is se-
lected, we get the following three Res≻

sel
infer-

ences:

Resolution (1) literal 1, (4) literal 1
(after renaming x in (4) to x′):
mgu {x′ 7→ x, y 7→ f(x)},
conclusion ¬P (x, f(x)) ∨ ¬P (f(x), g(x)).

Resolution (2) literal 1, (4) literal 3
(after renaming x in (4) to x′):
mgu {x′ 7→ x, y 7→ g(x)},
conclusion ¬P (f(x), g(x)) ∨ ¬P (x, g(x)).

Factorization (3) literals 1 and 2:
mgu {x 7→ b, y 7→ b},
conclusion P (h(b), h(b)).

Grading scheme: 3 + 4 + 3 points for three in-
ferences.

1

Assignment 3

The statement holds. Proof: Assume that there
is a variable x ∈ X such that [x] 6= {x}.
Since x ∈ [x], this means that [x] must con-
tain some term t different from x. Therefore
E ⊢ x ≈ t, and by Birkhoff’s Theorem, this
implies x ↔∗

E
t. Since t is different from x, we

have x ↔+

E
t, and therefore x ↔E t′ ↔∗

E
t

for some term t′. Consequently, x →E t′ or
t′ →E x. So some subterm of x must be equal
to either sσ or s′σ for some equation s ≈ s′ in
E. This is impossible, though, since neither s

nor s′ is a variable.
An alternative proof uses induction over the

derivation tree for E ⊢ t ≈ t′ to show that
no statemenn E ⊢ x ≈ t with t 6= x can be
derived.

Assignment 4

The relation ≻ is irreflexive, transitive, and
well-founded. It is not compatible with con-
texts, since

f(b) ≻ b,

but not

g(h(h(b)), f(b)) ≻ g(h(h(b)), b).

It is also not stable under substitutions, since

g(x, h(h(h(b)))) ≻ g(h(h(x)), h(h(b))),

but not

g(f(f(c)), h(h(h(b))))

≻ g(h(h(f(f(c)))), h(h(b))).

Assignment 5

Part (a) There are many possible Knuth-
Bendix orderings ≻ such that →R ⊆ ≻. One
possibility: w(h) = 5, w(f) = 3, w(g) = w(b) =
w(c) = w(x) = 1; in this case the precedence
does not matter.

Part (b) There are two critical pairs:

Critical pair between (1) and (1):

〈h(f(c, c), b), f(h(c, b), f(c, c))〉

Both terms are in normal form, therefore not
joinable.

Critical pair between (1) and (2):

〈h(b, b), g(f(b, c))〉

h(b, b) can be rewritten to g(f(b, c)) using (3),
therefore joinable.

Grading scheme: 5 points if a critical pair was
computed correctly; 2 points if it was detected
correctly but computed incorrectly.

Assignment 6

To give a recursive definition for Fn, we need
an auxiliary formula Gn over {P1, . . . , Pn} such
thatA(Gn) = 1 if and only ifAmaps all propo-
sitional variables P1, . . . , Pn to 0. Then we have

F0 |=| ⊥

G0 |=| ⊤

Fn |=| if Pn then Gn−1 else Fn−1

Gn |=| if Pn then ⊥ else Gn−1

for n ≥ 1. (The if-then-else construct can be
encoded using the usual boolean connectives
as shown in the lecture notes.)

The recursive definition can be translated di-
rectly into a reduced OBDD: The OBDD has
2n + 1 nodes: one node labelled with Pn (cor-
responding to the formula Fn), two nodes la-
belled with Pi for every i ∈ {1, . . . , n− 1} (cor-
responding to Fi and Gi), and two leaf nodes:

Pn

Pn−1 Pn−1

Pn−2 Pn−2

...
...

P2 P2

P1 P1

0 1

2

