Automated Reasoning I, 2019/20 Re-Exam, Sample Solution

Assignment 1

$$
F=\exists z \forall x((\exists y P(z, y)) \leftrightarrow(\exists y Q(x, y)))
$$

Since the equivalence occurs in F with positive polarity, we replace it by a conjunction of two implications.

$$
\begin{aligned}
& \exists z \forall x(((\exists y P(z, y)) \rightarrow(\exists y Q(x, y))) \\
& \quad \wedge((\exists y Q(x, y)) \rightarrow(\exists y P(z, y))))
\end{aligned}
$$

Then we replace the implications by disjunctions:

$$
\begin{aligned}
& \exists z \forall x(\\
&(\neg(\exists y P(z, y)) \vee(\exists y Q(x, y))) \\
&\wedge(\neg(\exists y Q(x, y)) \vee(\exists y P(z, y))))
\end{aligned}
$$

After pushing the negations inward, we obtain the negation normal form

$$
\begin{aligned}
& \exists z \forall x(((\forall y \neg P(z, y)) \vee(\exists y Q(x, y))) \\
& \quad \wedge((\forall y \neg Q(x, y)) \vee(\exists y P(z, y))))
\end{aligned}
$$

We can now use miniscoping. The quantifier $\forall x$ can be pushed inward

$$
\begin{aligned}
& \exists z(((\forall y \neg P(z, y)) \vee(\forall x \exists y Q(x, y))) \\
& \quad \wedge((\forall x \forall y \neg Q(x, y)) \vee(\exists y P(z, y))))
\end{aligned}
$$

but the quantifier $\exists z$ cannot. Variable renaming yields

$$
\begin{aligned}
& \exists z\left(\left((\forall y \neg P(z, y)) \vee\left(\forall x \exists y^{\prime} Q\left(x, y^{\prime}\right)\right)\right)\right. \\
& \left.\quad \wedge\left(\left(\forall x^{\prime} \forall y^{\prime \prime} \neg Q\left(x^{\prime}, y^{\prime \prime}\right)\right) \vee\left(\exists y^{\prime \prime \prime} P\left(z, y^{\prime \prime \prime}\right)\right)\right)\right)
\end{aligned}
$$

After Skolemization (starting with the outermost existential quantifier), we obtain

$$
\begin{aligned}
((\forall y \neg P(c, y)) & \vee(\forall x Q(x, f(x)))) \\
& \wedge\left(\left(\forall x^{\prime} \forall y^{\prime \prime} \neg Q\left(x^{\prime}, y^{\prime \prime}\right)\right) \vee P\left(c, c^{\prime}\right)\right)
\end{aligned}
$$

Finally we push the remaining quantifiers outward:

$$
\begin{aligned}
\forall y \forall x \forall x^{\prime} \forall y^{\prime \prime}(& (\neg P(c, y) \vee Q(x, f(x))) \\
& \left.\wedge\left(\neg Q\left(x^{\prime}, y^{\prime \prime}\right) \vee P\left(c, c^{\prime}\right)\right)\right)
\end{aligned}
$$

The resulting formula in CNF is equisatisfiable to F, but not equivalent, since the Skolemization step does not yield an equivalent formula.

Grading scheme: -2 points per error.

Assignment 2

Part (a)

$$
\begin{gather*}
P(f(x), f(x)) \tag{1}\\
P(g(x), g(x)) \tag{2}\\
P(h(x), h(x)) \vee P(h(y), h(b)) \tag{3}\\
\neg P(f(x), y) \vee \neg P(x, y) \vee \neg P(y, g(x)) \tag{4}\\
\neg P(x, y) \vee \neg P(b, c) \tag{5}
\end{gather*}
$$

The second literal of clause (4) is not maximal, since it is strictly smaller than the first literal of (4) in the given ordering. All other literals in the clauses (1)-(5) are maximal in their clauses.

Grading scheme: - 1 point per error.

Part (b) When the second literal in (5) is selected, we get the following three $\operatorname{Res}_{\text {sel }}^{\succ}$ inferences:

Resolution (1) literal 1, (4) literal 1 (after renaming x in (4) to x^{\prime}): $\operatorname{mgu}\left\{x^{\prime} \mapsto x, y \mapsto f(x)\right\}$, conclusion $\neg P(x, f(x)) \vee \neg P(f(x), g(x))$.

Resolution (2) literal 1, (4) literal 3
(after renaming x in (4) to x^{\prime}):
mgu $\left\{x^{\prime} \mapsto x, y \mapsto g(x)\right\}$,
conclusion $\neg P(f(x), g(x)) \vee \neg P(x, g(x))$.
Factorization (3) literals 1 and 2:
mgu $\{x \mapsto b, y \mapsto b\}$,
conclusion $P(h(b), h(b))$.
Grading scheme: $3+4+3$ points for three inferences.

Assignment 3

The statement holds. Proof: Assume that there is a variable $x \in X$ such that $[x] \neq\{x\}$. Since $x \in[x]$, this means that $[x]$ must contain some term t different from x. Therefore $E \vdash x \approx t$, and by Birkhoff's Theorem, this implies $x \leftrightarrow_{E}^{*} t$. Since t is different from x, we have $x \leftrightarrow_{E}^{+} t$, and therefore $x \leftrightarrow_{E} t^{\prime} \leftrightarrow_{E}^{*} t$ for some term t^{\prime}. Consequently, $x \rightarrow_{E} t^{\prime}$ or $t^{\prime} \rightarrow_{E} x$. So some subterm of x must be equal to either $s \sigma$ or $s^{\prime} \sigma$ for some equation $s \approx s^{\prime}$ in E. This is impossible, though, since neither s nor s^{\prime} is a variable.
An alternative proof uses induction over the derivation tree for $E \vdash t \approx t^{\prime}$ to show that no statemenn $E \vdash x \approx t$ with $t \neq x$ can be derived.

Assignment 4

The relation \succ is irreflexive, transitive, and well-founded. It is not compatible with contexts, since

$$
f(b) \succ b,
$$

but not

$$
g(h(h(b)), f(b)) \succ g(h(h(b)), b) .
$$

It is also not stable under substitutions, since

$$
g(x, h(h(h(b)))) \succ g(h(h(x)), h(h(b))),
$$

but not

$$
\begin{aligned}
& g(f(f(c)), h(h(h(b)))) \\
& \succ g(h(h(f(f(c)))), h(h(b))) .
\end{aligned}
$$

Assignment 5

Part (a) There are many possible KnuthBendix orderings \succ such that $\rightarrow_{R} \subseteq \succ$. One possibility: $w(h)=5, w(f)=3, w(g)=w(b)=$ $w(c)=w(x)=1$; in this case the precedence does not matter.

Part (b) There are two critical pairs:
Critical pair between (1) and (1):

$$
\langle h(f(c, c), b), f(h(c, b), f(c, c))\rangle
$$

Both terms are in normal form, therefore not joinable.

Critical pair between (1) and (2):

$$
\langle h(b, b), g(f(b, c))\rangle
$$

$h(b, b)$ can be rewritten to $g(f(b, c))$ using (3), therefore joinable.
Grading scheme: 5 points if a critical pair was computed correctly; 2 points if it was detected correctly but computed incorrectly.

Assignment 6

To give a recursive definition for F_{n}, we need an auxiliary formula G_{n} over $\left\{P_{1}, \ldots, P_{n}\right\}$ such that $\mathcal{A}\left(G_{n}\right)=1$ if and only if \mathcal{A} maps all propositional variables P_{1}, \ldots, P_{n} to 0 . Then we have

$$
\begin{aligned}
& F_{0} \models \perp \\
& G_{0} \models \top \\
& F_{n} \models \text { if } P_{n} \text { then } G_{n-1} \text { else } F_{n-1} \\
& G_{n} \models \text { if } P_{n} \text { then } \perp \text { else } G_{n-1}
\end{aligned}
$$

for $n \geq 1$. (The if-then-else construct can be encoded using the usual boolean connectives as shown in the lecture notes.)

The recursive definition can be translated directly into a reduced OBDD: The OBDD has $2 n+1$ nodes: one node labelled with P_{n} (corresponding to the formula F_{n}), two nodes labelled with P_{i} for every $i \in\{1, \ldots, n-1\}$ (corresponding to F_{i} and G_{i}), and two leaf nodes:

