
Automated Reasoning I, 2019

Midterm Exam, Sample Solution

Assignment 1

Ineq. (1) holds if and only if b ≻ a and b ≻ c.
Ineq. (2) holds if and only if c ≻ b or d ≻ b,
but the first of the two possibilities is excluded
by (1). Finally ineq. (3) holds if and only
if a ≻ c and a ≻ e. There are two strict
orderings that satisfy these conditions, namely
d ≻ b ≻ a ≻ c ≻ e and d ≻ b ≻ a ≻ e ≻ c.

Grading scheme: 5 points for each ordering.

Assignment 2

The property holds. We show by induction that
for every j ∈ {0, . . . , n} there is a partial valu-
ation Aj that satisfies C1, . . . , Cj and in which
exactly j atoms are defined.

If j = 0 the statement is trivial: define A0

as the valuation that is undefined for every
propositional variable. If 0 < j ≤ n, we as-
sume by induction that the statement holds for
j − 1; so there exists a partial valuation Aj−1

that satisfies C1, . . . , Cj−1 and in which exactly
j − 1 atoms are defined. As Cj contains j liter-
als that are different and non-complementary,
Cj must contain j different atoms. Since only
j − 1 atoms are defined in Aj−1, there exists
at least one atom P in Cj that is undefined
in Aj−1. Now define Aj as the valuation that
maps P to 1 if P occurs positively in Cj, or to
0 if P occurs negatively in Cj , and that inter-
prets every other atom Q in the same way as
Aj−1. Since all atoms that are defined in Aj−1

are defined in the same way in Aj, Aj satisfies
C1, . . . , Cj−1; moreover A satisfies Cj since it
interprets P appropriately.

Assignment 3

Part (a) Since clause (6) is a conflict clause
and contains the deduced literal ¬S, we re-
solve (6) with the clause used to propagate
¬S, namely (5), and obtain ¬U ∨ ¬V ∨W

(which is not a backjump clause). By resolving
this clause with (4), we obtain ¬R ∨ ¬V ∨W

(which is not a backjump clause either).

By resolving this clause with (2), we obtain
¬R ∨W (7), which is a backjump clause. The
best possible successor state for this backjump
clause is P d ¬W ¬R ‖ N .

Grading scheme: 5 points for computing the
backjump clause according to the 1UIP strat-
egy; 3 points for determining the optimal suc-
cessor state.

Part (b) We obtain an alternative backjump
clause if we continue the resolution process,
that is, if we resolve (7) and (1). The resol-
vent is ¬P ∨ ¬R. Since this clause consists
only of complements of decision literals, it is
a backjump clause (as indicated in the para-
graph “Getting Better Backjump Clauses”).
The best possible successor state for this back-
jump clause is again P d ¬W ¬R ‖ N .

We obtain a third backjump clause by taking
the disjunction of the complements of all deci-
sion literals on the trail, that is, ¬P ∨¬Q∨¬R
(as indicated in the proof of Lemma 2.18). The
best possible successor state for this backjump
clause is P d ¬W ¬Qd ¬R ‖ N .

Grading scheme: 1 point for each backjump
clause; 1 point for each optimal successor state.

Assignment 4

Part (a) Let ≻ be a well-founded and to-
tal ordering on a set M , let φ : Mn → M

be a function that is strictly monotonic in
the j-th argument, where 1 ≤ j ≤ n. Let
a1, . . . , aj−1, aj+1, . . . , an be elements ofM . We
show φ(a1, . . . , aj , . . . , an) � aj for all aj ∈ M

by well-founded induction over aj and ≻.

Let b := φ(a1, . . . , aj , . . . , an). Assume that
b 6� aj . Since ≻ is total, we conclude
that aj ≻ b. So by the induction hypoth-
esis, we must have φ(a1, . . . , b, . . . , an) � b.
But this implies φ(a1, . . . , aj , . . . , an) = b �
φ(a1, . . . , b, . . . , an), contradicting the strict
monotonicity of φ in the j-th argument. So
φ(a1, . . . , aj , . . . , an) = b � aj as required.

Part (b) Let M = {b, c}, let ≻ = ∅, that is,
the ordering in which all elements are incompa-
rable. Now define φ(b) = c and φ(c) = b. Then
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φ is trivially strictly monotonic in the first ar-
gument (since the condition a1 ≻ a′1 is never
satisfied), but φ(b) � b does not hold.

Part (c) We use induction over the structure
of terms.

If t is a variable y, then x ∈ var(t) implies
x = y, soA(β)(y) = β(y) by definition of A(β).

If t is a term f(t1, . . . , tn), then x ∈ var(t)
implies x ∈ var(ti) for some i. So A(β)(t) =
fA(A(β)(t1), . . . ,A(β)(tn)) � A(β)(ti) by
strict monotonicity of fA and part (a), and
A(β)(ti) � β(x) by induction for ti.

Assignment 5

First we convert the entailment problem into
an unsatisfiability problem. We know thatN |=
F if and only if N ∪ {¬F} |= ⊥. So we consider
the set of formulas

{

P (b) → Q, P (b) → R,
P (c) → Q, ¬

((

Q ↔ R
)

∨
(

P (b) → P (c)
))}

.
Conversion to CNF yields for the first three
formulas

¬P (b) ∨Q (1)
¬P (b) ∨R (2)
¬P (c) ∨Q (3)

For the fourth formula, we first replace the
equivalence subformula by a disjunction of con-
junctions (because of negative polarity). We
obtain ¬

((

(Q ∧ R) ∨ (¬Q ∧ ¬R)
)

∨
(

P (b) →
P (c)

))

. By eliminating implications and push-
ing the negations downward, we get

((

(¬Q ∨
¬R)∧ (Q ∨R)

)

∧
(

P (b) ∧ ¬P (c)
))

, that is, the
clauses

¬Q ∨ ¬R (4)
Q ∨R (5)
P (b) (6)
¬P (c) (7)

We now apply the resolution calculus to (1)–
(7). From (6) and (1) we obtain Q (8), from
(6) and (2) we obtain R (9), from (8) and (4)
we obtain ¬R (10), and from (9) and (10) we
obtain ⊥. Since resolution is sound, the clause
set is unsatisfiable, so the entailment holds.

Grading scheme: 4 points for the overall ap-
proach; 4 points for the CNF; 4 points for res-
olution.

Assignment 6

Part (a) The clauses (2) and (3) are ground,
so the only ground instance of (2) is (2) itself,
and the only ground instance of (3) is (3) itself.
The ground instances of (1) are those clauses
that we obtain from ¬P (x) ∨ P (f(x)) by re-
placing x by a ground term. The set of ground
terms is {b, f(b), f2(b), . . . }, so the ground in-
stances of (1) are {¬P (f i(b)) ∨ P (f i+1(b)) |
i ∈ N }. Comparing the largest literals in these
clauses, it is obvious that the ground instances
of (1) are ordered as follows:

¬P (b) ∨ P (f(b)) (1.1)
≺ ¬P (f(b)) ∨ P (f2(b)) (1.2)
≺ ¬P (f2(b)) ∨ P (f3(b)) (1.3)
≺ ¬P (f3(b)) ∨ P (f4(b)) (1.4)
≺ . . .

We still have to figure out where to put
clauses (2) and (3) in the clause ordering:
Q(b) ∨ Q(f(b)) is smaller than ¬P (b) ∨
P (f(b)), and ¬Q(f(b)) ∨ P (f3(b)) comes be-
tween ¬P (f(b)) ∨ P (f2(b)) and ¬P (f2(b)) ∨
P (f3(b)). So the ordering is

Q(b) ∨ Q(f(b)) (3)
≺ ¬P (b) ∨ P (f(b)) (1.1)
≺ ¬P (f(b)) ∨ P (f2(b)) (1.2)
≺ ¬Q(f(b)) ∨ P (f3(b)) (2)
≺ ¬P (f2(b)) ∨ P (f3(b)) (1.3)
≺ ¬P (f3(b)) ∨ P (f4(b)) (1.4)
≺ ¬P (f4(b)) ∨ P (f5(b)) (1.5)
≺ ¬P (f5(b)) ∨ P (f6(b)) (1.6)
≺ . . .

Grading scheme: 3 points for the set of ground
instances; 4 points for the ordering.

Part (b) Clause (3) producesQ(f(b)), clauses
(1.1) and (1.2) are true in their own interpreta-
tions and produce nothing. Clause (2) produces
P (f3(b)), clause (1.3) is true in its own in-
terpretation and produces nothing. All further
clauses are productive and produce P (f4(b)),
P (f5(b)), P (f6(b)), . . . Since the construction
does not fail, the limit I≻

GΣ(N) = {Q(f(b))} ∪

{P (f i(b)) | i ≥ 3 } is a model of GΣ(N).

Grading scheme: no errors: 7 points; one error:
4 points; two or more errors: 0 points.

2


