Automated Reasoning I, 2015 Midterm Exam, Sample Solution

Assignment 1

Suppose that S and S^{\prime} are finite multisets over a set M, and that $S \succ_{\text {mul }} S^{\prime}$ holds for every strict partial ordering \succ over M. The empty relation \succ_{0}, for which $x \succ_{0} y$ is false for all elements x and y, is a strict partial ordering (it is trivially irreflexive and transitive). So the property holds in particular for \succ_{0}. By the definition of the multiset extension, $S\left(\succ_{0}\right)_{\text {mul }}$ S^{\prime} if and only if there are multisets X and Y such that $\emptyset \neq X \subseteq S$ and $S^{\prime}=(S-X) \cup Y$ and for every $y \in Y$ there is an $x \in X$ such that $x \succ_{0} y$. Since $x \succ_{0} y$ is false for all x and y, Y must be empty. So S^{\prime} equals $S-X$, this is a subset of S, and since X is non-empty, we obtain $S^{\prime} \subset S$.

Notes:

$-S$ and S^{\prime} are multisets, not sets. So $S^{\prime} \subseteq S$ means "for all $m \in M, S^{\prime}(m) \leq S(m)$ ". This is not the same as "for all $m \in M$, $m \in S^{\prime} \Rightarrow m \in S$ ", or in other words, "for all $m \in M, S^{\prime}(m)>0 \Rightarrow S(m)>0 "$.

- One has to show $S^{\prime} \neq S$ and $S^{\prime} \subseteq S$. Proving just the first part (which is trivial by Thm. 1.10) is not sufficient.
- The assignment does not ask to prove the reverse direction, that is, "if $S^{\prime} \subset S$ then $S \succ_{\text {mul }} S^{\prime \prime \prime}$ (which is again obvious).

Assignment 2

Part (a) Proof: Suppose that $H[F]_{p}$ and $H[G]_{p}$ are valid. Let \mathcal{A} be any valuation. By assumption, $\mathcal{A}\left(H[F]_{p}\right)=\mathcal{A}\left(H[G]_{p}\right)=1$. If $\mathcal{A}(F)=1$, then $\mathcal{A}(F \vee G)=\mathcal{A}(F)$, therefore, by Prop. 2.8, $\mathcal{A}\left(H[F \vee G]_{p}\right)=\mathcal{A}\left(H[F]_{p}\right)=1$. Otherwise $\mathcal{A}(F)=0$, then $\mathcal{A}(F \vee G)=\mathcal{A}(G)$, therefore. by Prop. 2.8, $\mathcal{A}\left(H[F \vee G]_{p}\right)=$ $\mathcal{A}\left(H[G]_{p}\right)=1$. So $\mathcal{A}\left(H[F \vee G]_{p}\right)=1$ for every valuation \mathcal{A}.

Notes:

- A case analysis based on whether the validity of $H[F]_{p}$ depends on F or not is not
useful, since the second case is just as complicated as the original problem.
- It is unavoidable to look at individual valuations \mathcal{A} in the proof. One cannot replace this by a case analysis based on whether F is valid, satisfiable, or unsatisfiable.

Part (b) Counterexample: Let $F=P$ and $G=\neg P$. Then $H[F \wedge G]_{1}=\neg(F \wedge G)=$ $\neg(P \wedge \neg P)$ is valid, but $H[F]_{1}=\neg F=\neg P$ and $H[G]_{1}=\neg G=\neg \neg P$ are not valid.

Part (c) Proof: Suppose that $H[F]_{p}$ is valid and that $\operatorname{pol}(H, p)=-1$. Let \mathcal{A} be any valuation. By assumption, $\mathcal{A}\left(H[F]_{p}\right)=1$. Obviously $\mathcal{A}(F \wedge G)=\min (\mathcal{A}(F), \mathcal{A}(G)) \leq \mathcal{A}(F)$, therefore, by Prop. 2.13, $\mathcal{A}\left(H[F \wedge G]_{p}\right) \geq$ $\mathcal{A}\left(H[F]_{p}\right)=1$. So $\mathcal{A}\left(H[F \wedge G]_{p}\right)=1$ for every valuation \mathcal{A}.

Assignment 3

Part (a) With the given strategy, the CDCL procedure yields

$$
P^{\mathrm{d}} Q^{\mathrm{d}} S \neg T \neg U R^{\mathrm{d}} V^{\mathrm{d}} \| N
$$

(8) (6) (7)

Since all literals are defined and all clauses in N are true, this is a final state, so by Thm. 2.18, we have computed a (total) model of N.

Note:

- After $\neg U$ has been added, all clauses are true, but some literals are still undefined, so this is a partial model. The assignment asked for a total model, though.

Part (b) We use the fact that $N \models P \vee Q$ if and only if $N \cup\{\neg(P \vee Q)\}$ is unsatisfiable. In order to use the CDCL prodedure, we transform $N \cup\{\neg(P \vee Q)\}$ into a set of clauses and obtain the new clauses $\neg P(9)$ and $\neg Q(10)$. With the given strategy, the CDCL procedure yields

$$
\begin{aligned}
& \neg P \neg Q R^{\mathrm{d}} S^{\mathrm{d}} \neg T \neg U \| N \cup\{(9),(10)\} \\
& (9)(10) \quad(6)(7)
\end{aligned}
$$

At this point, clause (5) is a conflict clause. By resolving (5) and (7), we obtain $Q \vee \neg S \vee T$ (which is not a backjump clause), and by
resolving $Q \vee \neg S \vee T$ and (6) we obtain $Q \vee \neg S$ (11), which is a backjump clause. The best possible successor state for this backjump clause is $\neg P \neg Q \neg S \| N \cup\{(9),(10)\}$. After learning clause (11), we continue and obtain
$\neg P \neg Q \neg S \quad V \neg U \quad R \| N \cup\{(9),(10),(11)\}$
(9) (10) (11) (3) (4) (1)

Now clause (2) is a conflict clause. Since there are no more decision literals, we can derive fail, so the clause set is unsatisfiable.

Assignment 4

Part (a) We have to show that \succ is irreflexive and transitive. Irreflexivity is obvious, since $F \succ F$ implies $F \models F$ and $F \not \vDash F$, which is clearly a contradiction. To prove transitivity assume that $F \succ G$ and $G \succ H$, so $F \models G$, $G \models H, G \not \vDash F$, and $H \not \vDash G$. As shown in Exercise $2.3, \models$ is transitive, therefore $F \models$ G and $G \models H$ imply $F \models H$. Now suppose that $H \models F$, then $F \models G$ implies $H \models G$, contradicting the assumption. Consequently. $H \nLeftarrow F$, and thus $F \succ H$.

Part (b) If Π is finite, then there are only $2^{|\Pi|} \Pi$-valuations, so the set of all valuations is also finite. Now observe that $F \succ G$ implies that every valuation that is a model of F is also a model of G, but that there is at least one model of G that is not a model of F. If there is a chain $F_{1} \succ F_{2} \succ F_{3} \succ \ldots$, then the number of models grows in each step, but this number is bounded by $2^{|\Pi|}$. So the chain cannot be infinite.

Notes:

- $F \succ G$ is equivalent to " $\forall \mathcal{A}$: $\mathcal{A}(F) \leq \mathcal{A}(G)$ and $\exists \mathcal{A}^{\prime}: \mathcal{A}^{\prime}(F)<\mathcal{A}^{\prime}(G)$." Ignoring the quantifications leads to non-sensical results.
- The elements of the chain are formulas over Π, not necessarily elements of Π.
- Even if Π is finite, there are infinitely many Π-formulas. The set of equivalence classes of formulas is finite, though; this can be proved either by looking at the sets of models (as above), or using the fact that every Π-formula is equivalent to some formula in CNF without duplicated literals or clauses.

Part (c) If $\Pi=\left\{P_{1}, P_{2}, P_{3}, \ldots\right\}$ is infinite, define $F_{i}=\bigvee_{1 \leq j \leq i} P_{j}$, then $F_{1} \succ F_{2} \succ F_{3} \succ$ \ldots is an infinite descending chain.

Note:

- There is no infinite descending chain whose elements are only propositional variables from Π, since for any two different propositional variables P and Q we always have $P \not \models Q$ and therefore $P \nsucc Q$.

Assignment 5

The Σ-algebra \mathcal{A} with $U_{\mathcal{A}}=\{2,3\}, b_{\mathcal{A}}=2$, $c_{\mathcal{A}}=2, d_{\mathcal{A}}=3, f_{\mathcal{A}}(u)=3$ for all $u \in U_{\mathcal{A}}$, and $P_{\mathcal{A}}=\{2\}$ is a model of the given formula; its universe has two elements.

Assignment 6

We first compute the negation normal form of F, namely

$$
\forall x \exists y((\neg P(b) \wedge \exists z \neg Q(y, z)) \vee R(x, y))
$$

Miniscoping yields

$$
(\neg P(b) \wedge \exists y \exists z \neg Q(y, z)) \vee \forall x \exists y R(x, y)
$$

and variable renaming yields

$$
(\neg P(b) \wedge \exists y \exists z \neg Q(y, z)) \vee \forall x \exists y^{\prime} R\left(x, y^{\prime}\right)
$$

By Skolemization we obtain

$$
(\neg P(b) \wedge \neg Q(c, d)) \vee \forall x R(x, f(x))
$$

with Skolem functions $c / 0, d / 0$, and $f / 1$. Finally, we push \forall upward and apply the distributivity law to get the conjunctive normal form

$$
\begin{aligned}
\forall x((\neg P(b) & \vee R(x, f(x))) \\
& \wedge(\neg Q(c, d) \vee R(x, f(x))))
\end{aligned}
$$

Notes:

- Skolemization starts with the outermost existential quantifiers.
- Every Skolem function symbol that is introduced must be new, that is, different from all symbols from Σ and all previously introduced Skolem function symbols.

