# Automated Reasoning I, 2015 Midterm Exam, Sample Solution

# Assignment 1

Suppose that S and S' are finite multisets over a set M, and that  $S \succ_{mul} S'$  holds for every strict partial ordering  $\succ$  over M. The empty relation  $\succ_0$ , for which  $x \succ_0 y$  is false for all elements x and y, is a strict partial ordering (it is trivially irreflexive and transitive). So the property holds in particular for  $\succ_0$ . By the definition of the multiset extension,  $S (\succ_0)_{mul}$ S' if and only if there are multisets X and Ysuch that  $\emptyset \neq X \subseteq S$  and  $S' = (S - X) \cup Y$ and for every  $y \in Y$  there is an  $x \in X$  such that  $x \succ_0 y$ . Since  $x \succ_0 y$  is false for all x and y, Y must be empty. So S' equals S - X, this is a subset of S, and since X is non-empty, we obtain  $S' \subset S$ .

## Notes:

- S and S' are multisets, not sets. So  $S' \subseteq S$ means "for all  $m \in M$ ,  $S'(m) \leq S(m)$ ". This is not the same as "for all  $m \in M$ ,  $m \in S' \Rightarrow m \in S$ ", or in other words, "for all  $m \in M$ ,  $S'(m) > 0 \Rightarrow S(m) > 0$ ".
- One has to show  $S' \neq S$  and  $S' \subseteq S$ . Proving just the first part (which is trivial by Thm. 1.10) is not sufficient.
- The assignment does *not* ask to prove the reverse direction, that is, "if  $S' \subset S$  then  $S \succ_{\text{mul}} S'$ " (which is again obvious).

## Assignment 2

**Part (a)** Proof: Suppose that  $H[F]_p$  and  $H[G]_p$  are valid. Let  $\mathcal{A}$  be any valuation. By assumption,  $\mathcal{A}(H[F]_p) = \mathcal{A}(H[G]_p) = 1$ . If  $\mathcal{A}(F) = 1$ , then  $\mathcal{A}(F \lor G) = \mathcal{A}(F)$ , therefore, by Prop. 2.8,  $\mathcal{A}(H[F \lor G]_p) = \mathcal{A}(H[F]_p) = 1$ . Otherwise  $\mathcal{A}(F) = 0$ , then  $\mathcal{A}(F \lor G) = \mathcal{A}(G)$ , therefore. by Prop. 2.8,  $\mathcal{A}(H[F \lor G]_p) = \mathcal{A}(H[G]_p) = 1$ . So  $\mathcal{A}(H[F \lor G]_p) = 1$  for every valuation  $\mathcal{A}$ .

#### Notes:

- A case analysis based on whether the validity of  $H[F]_p$  depends on F or not is not useful, since the second case is just as complicated as the original problem.

- It is unavoidable to look at individual valuations  $\mathcal{A}$  in the proof. One cannot replace this by a case analysis based on whether Fis valid, satisfiable, or unsatisfiable.

**Part (b)** Counterexample: Let F = P and  $G = \neg P$ . Then  $H[F \land G]_1 = \neg(F \land G) = \neg(P \land \neg P)$  is valid, but  $H[F]_1 = \neg F = \neg P$  and  $H[G]_1 = \neg G = \neg \neg P$  are not valid.

**Part (c)** Proof: Suppose that  $H[F]_p$  is valid and that pol(H, p) = -1. Let  $\mathcal{A}$  be any valuation. By assumption,  $\mathcal{A}(H[F]_p) = 1$ . Obviously  $\mathcal{A}(F \wedge G) = \min(\mathcal{A}(F), \mathcal{A}(G)) \leq \mathcal{A}(F)$ , therefore, by Prop. 2.13,  $\mathcal{A}(H[F \wedge G]_p) \geq \mathcal{A}(H[F]_p) = 1$ . So  $\mathcal{A}(H[F \wedge G]_p) = 1$  for every valuation  $\mathcal{A}$ .

## Assignment 3

**Part (a)** With the given strategy, the CDCL procedure yields

$$P^{\mathrm{d}} Q^{\mathrm{d}} S \neg T \neg U R^{\mathrm{d}} V^{\mathrm{d}} \parallel N$$

$$(8) (6) (7)$$

Since all literals are defined and all clauses in N are true, this is a final state, so by Thm. 2.18, we have computed a (total) model of N.

#### Note:

- After  $\neg U$  has been added, all clauses are true, but some literals are still undefined, so this is a partial model. The assignment asked for a total model, though.

**Part (b)** We use the fact that  $N \models P \lor Q$  if and only if  $N \cup \{\neg(P \lor Q)\}$  is unsatisfiable. In order to use the CDCL prodedure, we transform  $N \cup \{\neg(P \lor Q)\}$  into a set of clauses and obtain the new clauses  $\neg P$  (9) and  $\neg Q$  (10). With the given strategy, the CDCL procedure yields

$$\neg P \neg Q \ R^{d} \ S^{d} \neg T \neg U \parallel N \cup \{(9), (10)\}$$
(9) (10) (6) (7)

At this point, clause (5) is a conflict clause. By resolving (5) and (7), we obtain  $Q \vee \neg S \vee T$ (which is not a backjump clause), and by resolving  $Q \vee \neg S \vee T$  and (6) we obtain  $Q \vee \neg S$  (11), which is a backjump clause. The best possible successor state for this backjump clause is  $\neg P \neg Q \neg S \parallel N \cup \{(9), (10)\}$ . After learning clause (11), we continue and obtain

$$\neg P \neg Q \neg S V \neg U R \parallel N \cup \{(9), (10), (11)\}\$$
(9) (10) (11) (3) (4) (1)

Now clause (2) is a conflict clause. Since there are no more decision literals, we can derive *fail*, so the clause set is unsatisfiable.

## Assignment 4

**Part (a)** We have to show that  $\succ$  is irreflexive and transitive. Irreflexivity is obvious, since  $F \succ F$  implies  $F \models F$  and  $F \not\models F$ , which is clearly a contradiction. To prove transitivity assume that  $F \succ G$  and  $G \succ H$ , so  $F \models G$ ,  $G \models H, G \not\models F$ , and  $H \not\models G$ . As shown in Exercise 2.3,  $\models$  is transitive, therefore  $F \models$ G and  $G \models H$  imply  $F \models H$ . Now suppose that  $H \models F$ , then  $F \models G$  implies  $H \models G$ , contradicting the assumption. Consequently.  $H \not\models F$ , and thus  $F \succ H$ .

**Part (b)** If  $\Pi$  is finite, then there are only  $2^{|\Pi|}$   $\Pi$ -valuations, so the set of all valuations is also finite. Now observe that  $F \succ G$  implies that every valuation that is a model of F is also a model of G, but that there is at least one model of G that is not a model of F. If there is a chain  $F_1 \succ F_2 \succ F_3 \succ \ldots$ , then the number of models grows in each step, but this number is bounded by  $2^{|\Pi|}$ . So the chain cannot be infinite.

### Notes:

- $F \succ G$  is equivalent to " $\forall \mathcal{A}: \mathcal{A}(F) \leq \mathcal{A}(G)$ and  $\exists \mathcal{A}': \mathcal{A}'(F) < \mathcal{A}'(G)$ ." Ignoring the quantifications leads to non-sensical results.
- The elements of the chain are formulas over Π, not necessarily elements of Π.
- Even if Π is finite, there are infinitely many Π-formulas. The set of equivalence classes of formulas is finite, though; this can be proved either by looking at the sets of models (as above), or using the fact that every Π-formula is equivalent to some formula in CNF without duplicated literals or clauses.

**Part (c)** If  $\Pi = \{P_1, P_2, P_3, ...\}$  is infinite, define  $F_i = \bigvee_{1 \le j \le i} P_j$ , then  $F_1 \succ F_2 \succ F_3 \succ$ ... is an infinite descending chain.

Note:

- There is no infinite descending chain whose elements are only propositional variables from  $\Pi$ , since for any two different propositional variables P and Q we always have  $P \not\models Q$  and therefore  $P \not\succ Q$ .

## Assignment 5

The  $\Sigma$ -algebra  $\mathcal{A}$  with  $U_{\mathcal{A}} = \{2, 3\}, b_{\mathcal{A}} = 2, c_{\mathcal{A}} = 2, d_{\mathcal{A}} = 3, f_{\mathcal{A}}(u) = 3$  for all  $u \in U_{\mathcal{A}}$ , and  $P_{\mathcal{A}} = \{2\}$  is a model of the given formula; its universe has two elements.

## Assignment 6

We first compute the negation normal form of F, namely

$$\forall x \exists y \left( \left( \neg P(b) \land \exists z \neg Q(y, z) \right) \lor R(x, y) \right)$$

Miniscoping yields

$$\left(\,\neg P(b) \land \exists y \, \exists z \, \neg Q(y,z) \,\right) \lor \forall x \, \exists y \, R(x,y)$$

and variable renaming yields

$$(\neg P(b) \land \exists y \exists z \neg Q(y,z)) \lor \forall x \exists y' R(x,y')$$

By Skolemization we obtain

$$\left(\neg P(b) \land \neg Q(c,d)\right) \lor \forall x R(x,f(x))$$

with Skolem functions c/0, d/0, and f/1. Finally, we push  $\forall$  upward and apply the distributivity law to get the conjunctive normal form

$$\forall x \left( \left( \neg P(b) \lor R(x, f(x)) \right) \land \left( \neg Q(c, d) \lor R(x, f(x)) \right) \right)$$

Notes:

- Skolemization starts with the *outermost* existential quantifiers.
- Every Skolem function symbol that is introduced must be *new*, that is, different from all symbols from  $\Sigma$  and all previously introduced Skolem function symbols.