
5 Termination Revisited

So far: Termination as a subordinate task for entailment checking.

TRS is generated by some saturation process; ordering must be chosen before the
saturation starts.

Now: Termination as a main task (e. g., for program analysis).

TRS is fixed and known in advance.

Literature:

Nao Hirokawa and Aart Middeldorp: Dependency Pairs Revisited, RTA 2004, pp. 249-
268 (in particular Sect. 1–4).

Thomas Arts and Jürgen Giesl: Termination of Term Rewriting Using Dependency Pairs,
Theoretical Computer Science, 236:133-178, 2000.

5.1 Dependency Pairs

Invented by T. Arts and J. Giesl in 1996, many refinements since then.

Given: finite TRS R over Σ = (Ω, ∅).

T0 := { t ∈ TΣ(X) | there is an infinite derivation t →R t1 →R t2 →R . . . }.

T∞ := { t ∈ T0 | ∀p > ε : t|p /∈ T0 } = minimal elements of T0 w. r. t. ⊲.

t ∈ T0 ⇒ there exists a t′ ∈ T∞ such that t D t′.

R is non-terminating if and only if T0 6= ∅ if and only if T∞ 6= ∅.

Assume that T∞ 6= ∅ and consider some non-terminating derivation starting from t ∈ T∞.
Since all subterms of t allow only finite derivations, at some point a rule l → r ∈ R must
be applied at the root of t (possibly preceded by rewrite steps below the root):

t = f(t1, . . . , tn)
>ε
−→∗

R f(s1, . . . , sn) = lσ
ε

−→R rσ.

In particular, root(t) = root(l), so we see that the root symbol of any term in T∞ must
be contained in D := { root(l) | l → r ∈ R }. D is called the set of defined symbols of R;
C := Ω \D is called the set of constructor symbols of R.

The term rσ is contained in T0, so there exists a v ∈ T∞ such that rσ D v.

If v occurred in rσ at or below a variable position of r, then xσ|p = v for some x ∈
var(r) ⊆ var(l), hence si D xσ and there would be an infinite derivation starting from
some ti. This contradicts t ∈ T∞, though.

135

Therefore, v = uσ for some non-variable subterm u of r. As v ∈ T∞, we see that
root(u) = root(v) ∈ D. Moreover, u cannot be a proper subterm of l, since otherwise
again there would be an infinite derivation starting from some ti.

Putting everything together, we obtain

t = f(t1, . . . , tn)
>ε
−→∗

R f(s1, . . . , sn) = lσ
ε

−→R rσ D uσ

where r D u, u is not a variable, root(u) ∈ D, l 6⊲ u.

Since uσ ∈ T∞, we can continue this process and obtain an infinite sequence.

If we define S := { l → u | l → r ∈ R, r D u, u /∈ X, root(u) ∈ D, l 6⊲ u }, we can
combine the rewrite step at the root and the subterm step and obtain

t
>ε
−→∗

R lσ
ε

−→S uσ.

To get rid of the superscripts ε and >ε, it turns out to be useful to introduce a new set
of function symbols f ♯ that are only used for the root symbols of this derivation:

Ω♯ := { f ♯/n | f/n ∈ Ω }.

For a term t = f(t1, . . . , tn) we define t♯ := f ♯(t1, . . . , tn); for a set of terms T we define
T ♯ := { t♯ | t ∈ T }.

The set of dependency pairs of a TRS R is then defined by

DP(R) := { l♯ → u♯ | l → r ∈ R, r D u, u /∈ X, root(u) ∈ D, l 6⊲ u }.

For t ∈ T∞, the sequence using the S-rule corresponds now to

t♯ →∗

R l♯σ →DP(R) u
♯σ

where t♯ ∈ T ♯
∞ and u♯σ ∈ T ♯

∞.

(Note that rules in R do not contain symbols from Ω♯, whereas all roots of terms in
DP(R) come from Ω♯, so rules from R can only be applied below the root and rules from
DP(R) can only be applied at the root.)

Since u♯σ is again in T ♯
∞, we can continue the process in the same way. We obtain: R is

non-terminating if and only if there is an infinite sequence

t1 →
∗

R t2 →DP(R) t3 →
∗

R t4 →DP(R) . . .

with ti ∈ T ♯
∞ for all i.

Moreover, if there exists such an infinite sequence, then there exists an infinite sequence
in which all DPs that are used are used infinitely often. (If some DP is used only finitely
often, we can cut off the initial part of the sequence up to the last occurrence of that
DP; the remainder is still an infinite sequence.)

136

Dependency Graphs

Such infinite sequences correspond to “cycles” in the “dependency graph”:

Dependency graph DG(R) of a TRS R:

directed graph

nodes: dependency pairs s → t ∈ DP(R)

edges: from s → t to u → v if there are σ, τ such that tσ →∗
R uτ .

Intuitively, we draw an edge between two dependency pairs, if these two dependency
pairs can be used after another in an infinite sequence (with some R-steps in between).
While this relation is undecidable in general, there are reasonable overapproximations:

The functions cap and ren are defined by:

cap(x) = x

cap(f(t1, . . . , tn)) =

{

y if f ∈ D

f(cap(t1), . . . , cap(tn)) if f ∈ C ∪D♯

ren(x) = y, y fresh
ren(f(t1, . . . , tn)) = f(ren(t1), . . . , ren(tn))

The overapproximated dependency graph contains an edge from s → t to u → v if
ren(cap(t)) and u are unifiable.

A cycle in the dependency graph is a non-empty subset K ⊆ DP(R) such that there is
a non-empty path in K from every DP in K to every DP in K (the two DPs may be
identical).

Let K ⊆ DP(R). An infinite rewrite sequence in R ∪K of the form

t1 →
∗

R t2 →K t3 →
∗

R t4 →K . . .

with ti ∈ T ♯
∞ is called K-minimal, if all rules in K are used infinitely often.

R is non-terminating if and only if there is a cycle K ⊆ DP(R) and a K-minimal infinite
rewrite sequence.

5.2 Subterm Criterion

Our task is to show that there are no K-minimal infinite rewrite sequences.

Suppose that every dependency pair symbol f ♯ in K has positive arity (i. e., no con-
stants). A simple projection π is a mapping π : Ω♯ → N such that π(f ♯) = i ∈
{1, . . . , arity(f ♯)}.

We define π(f ♯(t1, . . . , tn)) = tπ(f♯).

137

Theorem 5.1 (Hirokawa and Middeldorp) Let K be a cycle in DG(R). If there is

a simple projection π for K such that π(l) D π(r) for every l → r ∈ K and π(l) ⊲ π(r)
for some l → r ∈ K, then there are no K-minimal sequences.

Proof. Suppose that

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

is a K-minimal infinite rewrite sequence. Apply π to every ti and ui:

Case 1: ui →K ti+1. There is an l → r ∈ K such that ui = lσ, ti+1 = rσ. Then
π(ui) = π(l)σ and π(ti+1) = π(r)σ. By assumption, π(l) D π(r). If π(l) = π(r), then
π(ui) = π(ti+1). If π(l) ⊲ π(r), then π(ui) = π(l)σ ⊲ π(r)σ = π(ti+1). In particular,
π(ui) ⊲ π(ti+1) for infinitely many i (since every DP is used infinitely often).

Case 2: ti →
∗
R ui. Then π(ti) →

∗
R π(ui).

By applying π to every term in the K-minimal infinite rewrite sequence, we obtain an
infinite (→R ∪⊲)-sequence containing infinitely many ⊲-steps. Since ⊲ is well-founded,
there must also exist infinitely many →R-steps (otherwise the infinite sequence would
have an infinite tail consisting only of ⊲-steps, contradicting well-foundedness.)

Now note that ⊲ ◦ →R ⊆ →R ◦ ⊲. Therefore we can commute ⊲-steps and →R-steps
and move all →R-steps to the front. We obtain an infinite →R-sequence that starts with
π(t1). However t1 ⊲ π(t1) and t1 ∈ T ♯

∞, so there cannot be an infinite →R-sequence
starting from π(t1). ✷

Problem: The number of cycles in DG(R) can be exponential.

Better method: Analyze strongly connected components (SCCs).

SCC of a graph: maximal subgraph in which there is a non-empty path from every node
to every node. (The two nodes can be identical.)6

Important property: Every cycle is contained in some SCC.

Idea: Search for a simple projection π such that π(l) D π(r) for all DPs l → r in the
SCC. Delete all DPs in the SCC for which π(l) ⊲ π(r) (by the previous theorem, there
cannot be any K-minimal infinite rewrite sequences using these DPs). Then re-compute
SCCs for the remaining graph and re-start.

No SCCs left ⇒ no cycles left ⇒ R is terminating.

Example: See Ex. 13 from Hirokawa and Middeldorp.

6There are several definitions of SCCs that differ in the treatment of edges from a node to itself.

138

5.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite sequences

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

using well-founded orderings.

We observe that the requirements for the orderings used here are less restrictive than
for reduction orderings:

K-rules are only used at the top, so we need stability under substitutions, but com-
patibility with contexts is unnecessary.

While →K-steps should be decreasing, for →R-steps it would be sufficient to show
that they are not increasing.

This motivates the following definitions:

Rewrite quasi-ordering %:

reflexive and transitive binary relation, stable under substitutions, compatible with
contexts.

Reduction pair (%,≻):

% is a rewrite quasi-ordering.

≻ is a well-founded ordering that is stable under substitutions.

% and ≻ are compatible: % ◦ ≻ ⊆ ≻ or ≻ ◦% ⊆ ≻.

(In practice, ≻ is almost always the strict part of the quasi-ordering %.)

Clearly, for any reduction ordering ≻, (�,≻) is a reduction pair. More general reduction
pairs can be obtained using argument filterings:

Argument filtering π:

π : Ω ∪ Ω♯ → N ∪ list of N

π(f) =

{

i ∈ {1, . . . , arity(f)}, or

[i1, . . . , ik], where 1 ≤ i1 < · · · < ik ≤ arity(f), 0 ≤ k ≤ arity(f)

Extension to terms:

π(x) = x

π(f(t1, . . . , tn)) = π(ti), if π(f) = i

π(f(t1, . . . , tn)) = f ′(π(ti1), . . . , π(tik)), if π(f) = [i1, . . . , ik],
where f ′/k is a new function symbol.

139

Let ≻ be a reduction ordering, let π be an argument filtering. Define s ≻π t if and only
if π(s) ≻ π(t) and s %π t if and only if π(s) � π(t).

Lemma 5.2 (%π,≻π) is a reduction pair.

Proof. Follows from the following two properties:

π(sσ) = π(s)σπ, where σπ is the substitution that maps x to π(σ(x)).

π(s[u]p) =

{

π(s), if p does not correspond to any position in π(s)

π(s)[π(u)]q, if p corresponds to q in π(s)
✷

For interpretation-based orderings (such as polynomial orderings) the idea of “cutting
out” certain subterms can be included directly in the definition of the ordering:

Reduction pairs by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Assume that all interpretations fA of function symbols are weakly monotone, i. e.,
ai � bi implies f(a1, . . . , , an) � f(b1, . . . , bn) for all ai, bi ∈ UA.

Define s %A t if and only if A(β)(s) � A(β)(t) for all assignments β : X → UA; define
s ≻A t if and only if A(β)(s) ≻ A(β)(t) for all assignments β : X → UA.

Then (%A,≻A) is a reduction pair.

For polynomial orderings, this definition permits interpretations of function symbols
where some variable does not occur at all (e. g., Pf (X1, X2) = 2X1 + 1 for a binary

function symbol). It is no longer required that every variable must occur with some
positive coefficient.

Theorem 5.3 (Arts and Giesl) Let K be a cycle in the dependency graph of the

TRS R. If there is a reduction pair (%,≻) such that

• l % r for all l → r ∈ R,

• l % r or l ≻ r for all l → r ∈ K,

• l ≻ r for at least one l → r ∈ K,

then there is no K-minimal infinite sequence.

140

Proof. Assume that

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

is a K-minimal infinite rewrite sequence.

As l % r for all l → r ∈ R, we obtain ti % ui by stability under substitutions, compati-
bility with contexts, reflexivity and transitivity.

As l % r or l ≻ r for all l → r ∈ K, we obtain ui (% ∪ ≻) ti+1 by stability under
substitutions.

So we get an infinite (% ∪ ≻)-sequence containing infinitely many ≻-steps (since every
DP in K, in particular the one for which l ≻ r holds, is used infinitely often).

By compatibility of % and ≻, we can transform this into an infinite ≻-sequence, contra-
dicting well-foundedness. ✷

The idea can be extended to SCCs in the same way as for the subterm criterion:

Search for a reduction pair (%,≻) such that l % r for all l → r ∈ R and l % r or l ≻ r for
all DPs l → r in the SCC. Delete all DPs in the SCC for which l ≻ r. Then re-compute
SCCs for the remaining graph and re-start.

Example: Consider the following TRS R from [Arts and Giesl]:

minus(x, 0) → x (1)

minus(s(x), s(y)) → minus(x, y) (2)

quot(0, s(y)) → 0 (3)

quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) (4)

(R is not contained in any simplification ordering, since the left-hand side of rule (4) is
embedded in the right-hand side after instantiating y by s(x).)

R has three dependency pairs:

minus♯(s(x), s(y)) → minus♯(x, y) (5)

quot ♯(s(x), s(y)) → quot ♯(minus(x, y), s(y)) (6)

quot ♯(s(x), s(y)) → minus♯(x, y) (7)

The dependency graph of R is

(5) (7) (6)

141

There are exactly two SCCs (and also two cycles). The cycle at (5) can be handled using
the subterm criterion with π(minus♯) = 1. For the cycle at (6) we can use an argument
filtering π that maps minus to 1 and leaves all other function symbols unchanged (that
is, π(g) = [1, . . . , arity(g)] for every g different fromminus .) After applying the argument
filtering, we compare left and right-hand sides using an LPO with precedence quot > s
(the precedence of other symbols is irrelevant). We obtain l ≻ r for (6) and l % r for
(1), (2), (3), (4), so the previous theorem can be applied.

Alternatively, we can handle the cycle at (5) with a polynomial interpretation with
Pminus♯(X1, X2) = X1, Ps(X1) = X1 + 1, Pminus(X1, X2) = X1, Pquot(X1, X2) = X1,
P0 = 1. We obtain l ≻ r for (5) and l % r for (1), (2), (3), (4), so the previous theorem
can be applied.

It remains to handle the cycle at (6). We choose a polynomial interpretation with
Pquot♯(X1, X2) = X1, Ps(X1) = X1 + 1, Pminus(X1, X2) = X1, Pquot(X1, X2) = X1,
P0 = 1. We obtain l ≻ r for (6) and l % r for (1), (2), (3), (4), so the previous theorem
can be applied again.

DP Processors

The methods described so far are particular cases of DP processors:

A DP processor

(G,R)

(G1, R1), . . . , (Gn, Rn)

takes a graph G and a TRS R as input and produces a set of pairs consisting of a graph
and a TRS.

It is sound and complete if there are K-minimal infinite sequences for G and R if and
only if there are K-minimal infinite sequences for at least one of the pairs (Gi, Ri).

Examples:

(G,R)

(SCC 1, R), . . . , (SCC n, R)

where SCC 1, . . . , SCC n are the strongly connected components of G.

(G,R)

(G \N,R)

if there is an SCC of G and a simple projection π such that π(l) D π(r) for all DPs
l → r in the SCC, and N is the set of DPs of the SCC for which π(l) ⊲ π(r).

(and analogously for reduction pairs)

142

Innermost Termination

The dependency method can also be used for proving termination of innermost rewriting:

s
i

−→R t if s →R t at position p and no rule of R can be applied at a position strictly
below p. (DP processors for innermost termination are more powerful than for ordinary
termination, and for program analysis, innermost termination is usually sufficient.)

143

6 Implementing Saturation Procedures

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually, not that they will be found
quickly.

Even though orderings and selection functions reduce the number of possible infer-
ences, the search space problem is enormous.

First-order provers “look for a needle in a haystack”: It may be necessary to make
some millions of inferences to find a proof that is only a few dozens of steps long.

Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can be used as partners in
an inference.

• We must simplify/eliminate as many formulas as possible.

• Wemust use efficient techniques to check whether a formula can be simplified/elim-
inated.

Note:

Often there are several competing implementation techniques.

Design decisions are not independent of each other.

Design decisions are not independent of the particular class of problems we want to
solve. (FOL without equality/FOL with equality/unit equations, size of the signature,
special algebraic properties like AC, etc.)

144

6.1 Term Representations

The obvious data structure for terms: Trees

f(g(x1), f(g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

An alternative: Flatterms

f(g(x1), f(g(x1), x2))

f g x1 f g x1 x2

need more memory;
but: better suited for preorder term traversal and easier memory management.

6.2 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

145

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the requirements are different
(insertion and deletion are much less important).

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

Perfect filtering:

The indexing technique returns exactly those terms satisfying the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all terms satisfying the
query.

Retrieval operations must be followed by an additional check, but the index can often
be implemented more efficiently.

Frequently: All occurrences of variables are treated as different variables.

146

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f(g(∗, b), ∗): f.1.g.1.∗
f.1.g.2.b
f.2.∗

Each leaf of the trie contains the set of (pointers to) all terms that contain the respec-
tive path.

Example: Path index for {f(g(d, ∗), c), g(b, h(c)), f(g(∗, c), c), f(b, g(c, b)), f(b, g(∗, b)),
f(∗, c), f(∗, g(c, b))}

f

1 2

g c

{1, 3, 6}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4, 5}

g

1 2

c

{4, 7}

b

{4, 5, 7}

∗

{5}

∗

{6, 7}

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances, also usable for finding generalizations.

Disadvantages:

Retrieval requires combining intermediate results for all paths.

147

Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f(g(∗, b), ∗): f.g.∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is represented by the path.

Example: Discrimination tree for {f(g(d, ∗), c), g(b, h(c)), f(g(∗, c), c), f(b, g(c, b)),
f(b, g(∗, b)), f(∗, c), f(∗, g(c, b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

∗

b

{5}

∗

c

{6}

g

c

b

{7}

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for all paths.

Good for finding generalizations, not so good for finding instances.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up the search for instances
or unifiable terms.

148

Feature Vector Indexing

Goal:

C ′ is subsumed by C if C ′ = Cσ ∨D.

Find all clauses C ′ for a given C or vice versa.

If C ′ is subsumed by C, then

• C ′ contains at least as many literals as C.

• C ′ contains at least as many positive literals as C.

• C ′ contains at least as many negative literals as C.

• C ′ contains at least as many function symbols as C.

• C ′ contains at least as many occurrences of f as C.

• C ′ contains at least as many occurrences of f in negative literals as C.

• the deepest occurrence of f in C ′ is at least as deep as in C.

• . . .

Idea:

Select a list of these “features”.

Compute the “feature vector” (a list of natural numbers) for each clause and store it
in a trie.

When searching for a subsuming clause: Traverse the trie, check all clauses for which
all features are smaller or equal. (Stop if a subsuming clause is found.)

When searching for subsumed clauses: Traverse the trie, check all clauses for which
all features are larger or equal.

Advantages:

Works on the clause level, rather than on the term level.

Specialized for subsumption testing.

Disadvantages:

Needs to be complemented by other index structure for other operations.

149

Literature

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term Indexing, Ch. 26 in Robinson
and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

Stephan Schulz: Simple and Efficient Clause Subsumption with Feature Vector Indexing,
in Bonacina and Stickel (eds.), Automated Reasoning and Mathematics, LNCS 7788,
Springer, 2013.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting, Ch. 27 in Robin-
son and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

150

7 Outlook

7.1 Satisfiability Modulo Theories (SMT)

CDCL checks satisfiability of propositional formulas.

CDCL can also be used for ground first-order formulas without equality:

Ground first-order atoms are treated like propositional variables.

Truth values of P (a), Q(a), Q(f(a)) are independent.

For ground formulas with equality, independence is lost:

If b ≈ c is true, then f(b) ≈ f(c) must also be true.

Similarly for other theories, e. g. linear arithmetic: b > 5 implies b > 3.

We can still use CDCL, but we must combine it with a decision procedure for the theory
part T :

M |=T C: M and the theory axioms T entail C.

New CDCL rules:

T -Propagate:

M ‖ N ⇒CDCL(T) M L ‖ N

if M |=T L where L is undefined in M and L or L occurs in N .

T -Learn:

M ‖ N ⇒CDCL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒CDCL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C
and there is some “backjump clause” C ′ ∨ L′ such that
N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′,
L′ is undefined in M , and
L′ or L′ occurs in N or in M Ld M ′.

151

7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:

read/2 becomes read : array × nat → data.

write/3 becomes write : array × nat× data → array.

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, natA.

Interpretations of function and predicate symbols correspond to their declarations:

readA : arrayA × natA → dataA

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

More difficult:

Subsorts

Overloading

7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint (positive) disjunctions:

N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

if var(C1) ∩ var(C2) = ∅.

Split clauses are smaller and more likely to be usable for simplification.

Splitting tree is explored using intelligent backtracking.

Improvement:

Use a CDCL solver to manage the selection of split clauses.

⇒ AVATAR.

152

7.4 Integrating Theories into Resolution

Certain kinds of axioms are

important in practice,

but difficult for theorem provers.

Most important case: equality

but also: orderings, (associativity and) commutativity, . . .

Idea: Combine ordered resolution and critical pair computation.

Superposition (ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Superposition (non-ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and u is not a variable.

Advantages:

No variable overlaps (as in KB-completion).

Stronger ordering restrictions:
Only overlaps of (strictly) maximal sides of (strictly) maximal literals are required.

Stronger redundancy criteria.

Similarly for orderings:

Ordered chaining:

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

Integrating other theories:

Black box:

Use external decision procedure.

Easy, but works only under certain restrictions.

153

White box:

Integrate using specialized inference rules and theory unification.

Hard work.

Often: integrating more theory axioms is better.

7.5 Higher-Order Logics

What’s new if we switch to higher-order logics?

Applied variables: x b.

Partially applied functions: times z.

Lambda-expressions with αβη-conversion: (λx. f (x b) c) (λy. d) = f d c.

Embedded booleans: (λx. if x then b else c) (p ∨ q)

Problems:

Orderings cannot have all desired compatibility properties.
⇒ additional inferences.

Most general unifiers need not exist anymore.
⇒ interleave enumeration of unifiers and computation of inferences.

CNF transformation by preprocessing is no longer sufficient.
⇒ need calculus with embedded clausification.

154

Contents

1 Preliminaries 2
1.1 Mathematical Prerequisites . 2
1.2 Abstract Reduction Systems . 3
1.3 Orderings . 4
1.4 Multisets . 9
1.5 Complexity Theory Prerequisites . 11

2 Propositional Logic 13
2.1 Syntax . 13
2.2 Semantics . 15
2.3 Models, Validity, and Satisfiability . 16
2.4 Normal Forms . 20
2.5 Improving the CNF Transformation . 23
2.6 The DPLL Procedure . 28
2.7 From DPLL to CDCL . 30
2.8 Implementing CDCL . 37
2.9 Preprocessing and Inprocessing . 38
2.10 OBDDs . 40
2.11 FRAIGs . 45
2.12 Other Calculi . 45

3 First-Order Logic 46
3.1 Syntax . 46
3.2 Semantics . 51
3.3 Models, Validity, and Satisfiability . 53
3.4 Algorithmic Problems . 57
3.5 Normal Forms and Skolemization . 58
3.6 Getting Skolem Functions with Small Arity 61
3.7 Herbrand Interpretations . 64
3.8 Inference Systems and Proofs . 65
3.9 Ground (or propositional) Resolution . 67
3.10 Refutational Completeness of Resolution 69
3.11 General Resolution . 75
3.12 Theoretical Consequences . 84
3.13 Ordered Resolution with Selection . 85
3.14 Redundancy . 91
3.15 Hyperresolution . 96
3.16 Implementing Resolution: The Main Loop 97
3.17 Summary: Resolution Theorem Proving 98
3.18 Semantic Tableaux . 99
3.19 Semantic Tableaux for First-Order Logic 105
3.20 Other Deductive Systems . 108

155

4 First-Order Logic with Equality 110
4.1 Handling Equality Naively . 110
4.2 Rewrite Systems . 111
4.3 Confluence . 115
4.4 Critical Pairs . 117
4.5 Termination . 119
4.6 Knuth-Bendix Completion . 127
4.7 Unfailing Completion . 132

5 Termination Revisited 135
5.1 Dependency Pairs . 135
5.2 Subterm Criterion . 137
5.3 Reduction Pairs and Argument Filterings 139

6 Implementing Saturation Procedures 144
6.1 Term Representations . 145
6.2 Index Data Structures . 145

7 Outlook 151
7.1 Satisfiability Modulo Theories (SMT) . 151
7.2 Sorted Logics . 152
7.3 Splitting . 152
7.4 Integrating Theories into Resolution . 153
7.5 Higher-Order Logics . 154

156

