
4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for
first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let ∼ /∈ Π be a
new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P (x1, . . . , xm)→ P (y1, . . . , ym))

for every f/n ∈ Ω and P/m ∈ Π. Let F̃ be the formula that one obtains from F if every
occurrence of ≈ is replaced by ∼. Then F is satisfiable if and only if Eq(Σ) ∪ {F̃} is
satisfiable.

Proof. Let Σ = (Ω,Π), let Σ1 = (Ω,Π ∪ {∼/2}).

For the “only if” part assume that F is satisfiable and let A be a Σ-model of F . Then we
define a Σ1-algebra B in such a way that B and A have the same universe, fB = fA for
every f ∈ Ω, PB = PA for every P ∈ Π, and ∼B is the identity relation on the universe.
It is easy to check that B is a model of both F̃ and of Eq(Σ).

For the “if” part assume that the Σ1-algebra B = (UB, (fB : Un
B → UB)f∈Ω, (PB ⊆

Um
B)P∈Π∪{∼}) is a model of Eq(Σ) ∪ {F̃}. Then the interpretation ∼B of ∼ in B is a

congruence relation on UB with respect to the functions fB and the predicates PB.

We will now construct a Σ-algebra A from B and the congruence relation ∼B. Let [a]
be the congruence class of an element a ∈ UB with respect to ∼B. The universe UA of
A is the set { [a] | a ∈ UB } of congruence classes of the universe of B. For a function
symbol f ∈ Ω, we define fA([a1], . . . , [an]) = [fB(a1, . . . , an)], and for a predicate symbol
P ∈ Π, we define ([a1], . . . , [an]) ∈ PA if and only if (a1, . . . , an) ∈ PB. Observe that
this is well-defined: If we take different representatives of the same congruence class,
we get the same result by congruence of ∼B. For any A-assignment γ choose some B-
assignment β such that B(β)(x) ∈ A(γ)(x) for every x, then for every Σ-term t we have
A(γ)(t) = [B(β)(t)], and analogously for every Σ-formula G, A(γ)(G) = B(β)(G̃). Both
properties can easily shown by structural induction. Therefore, A is a model of F . ✷

110

An analogous proposition holds for sets of closed first-order formulas with equality.

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve equational problems that are intu-
itively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.

Roadmap

How to proceed:

• This semester: Equations (unit clauses with equality).

Term rewrite systems.
Expressing semantic consequence syntactically.
Knuth-Bendix-Completion.
Entailment for equations.

• Next semester: Equational clauses.

Combining resolution and KB-completion. → Superposition.
Entailment for clauses with equality.

4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s→E t if and only if there exist (l ≈ r) ∈ E, p ∈ pos(s),
and σ : X → TΣ(X),
such that s|p = lσ and t = s[rσ]p.

111

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expres-
sion). Contracting a redex means replacing it with the corresponding instance of the rhs
(right-hand side) of the rule.

An equation l ≈ r is also called a rewrite rule, if l is not a variable and var(l) ⊇ var(r).

Notation: l → r.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation →E

or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of universally quantified equations. A model of E is also called an E-
algebra.

If E |= ∀~x(s ≈ t), i. e., ∀~x(s ≈ t) is valid in all E-algebras, we write this also as s ≈E t.

Goal:
Use the rewrite relation→E to express the semantic consequence relation syntactically:

s ≈E t if and only if s↔∗
E t.

Let E be a set of equations over TΣ(X). The following inference system allows to derive
consequences of E:

E ⊢ t ≈ t (Reflexivity)
for every t ∈ TΣ(X)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′1 . . . E ⊢ tn ≈ t′n
E ⊢ f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)
if (t ≈ t′) ∈ E and σ : X → TΣ(X)

112

Lemma 4.2 The following properties are equivalent:

(i) s↔∗
E t

(ii) E ⊢ s ≈ t is derivable.

Proof. (i)⇒(ii): s ↔E t implies E ⊢ s ≈ t by induction on the depth of the position
where the equation is applied; then s ↔∗

E t implies E ⊢ s ≈ t by induction on the
number of rewrite steps in s↔∗

E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for E ⊢ s ≈ t.
✷

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ⊢ t ≈ t′ } be the congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f(t1, . . . , tn)] for f/n ∈ Ω.

Lemma 4.3 fT is well-defined: If [ti] = [t′i], then [f(t1, . . . , tn)] = [f(t′1, . . . , t
′
n)].

Proof. Follows directly from the Congruence rule for ⊢. ✷

Lemma 4.4 T = TΣ(X)/E is an E-algebra.

Proof. Let ∀x1 . . . xn(s ≈ t) be an equation in E; let β be an arbitrary assignment.

We have to show that T (β)(∀~x(s ≈ t)) = 1, or equivalently, that T (γ)(s) = T (γ)(t) for
all γ = β[xi 7→ [vi] | 1 ≤ i ≤ n] with [vi] ∈ UT .

Let σ = {x1 7→ v1, . . . , xn 7→ vn}, then we get by structural induction that uσ ∈ T (γ)(u)
for every u ∈ TΣ({x1, ..., xn}). In particular, sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ⊢ sσ ≈ tσ is derivable, hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t).
✷

113

Lemma 4.5 LetX be a countably infinite set of variables; let s, t ∈ TΣ(Y). If TΣ(X)/E |=
∀~x(s ≈ t), then E ⊢ s ≈ t is derivable.

Proof. Without loss of generality, we assume that all variables in ~x are contained in X .
(Otherwise, we rename the variables in the equation. Since X is countably infinite, this is
always possible.) Assume that T |= ∀~x(s ≈ t), i. e., T (β)(∀~x(s ≈ t)) = 1. Consequently,
T (γ)(s) = T (γ)(t) for all γ = β[xi 7→ [vi] | 1 ≤ i ≤ n] with [vi] ∈ UT .

Choose vi := xi, then by structural induction [u] = T (γ)(u) for every u ∈ TΣ({x1, ..., xn}),
so [s] = T (γ)(s) = T (γ)(t) = [t]. Therefore E ⊢ s ≈ t is derivable by definition of T .

✷

Theorem 4.6 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s, t ∈ TΣ(X):

(i) s↔∗
E t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

Proof. (i)⇔(ii): Lemma 4.2.

(ii)⇒(iii): By induction on the size of the derivation for E ⊢ s ≈ t.

(iii)⇒(iv): Obvious, since T = TΣ(X)/E is an E-algebra.

(iv)⇒(ii): Lemma 4.5. ✷

Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗
E is called the free E-algebra with generating set

X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E-algebra B can be extended to a homomor-
phism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔
∗
E is called the initial E-algebra.

≈E = { (s, t) | E |= s ≈ t } is called the equational theory of E.

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t } is called the inductive theory of E.

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}. Then x + y ≈I
E y + x, but

x+ y 6≈E y + x.

114

4.3 Confluence

Let (A,→) be an abstract reduction system.

b and c ∈ A are joinable, if there is a a such that b→∗ a←∗ c.
Notation: b ↓ c.

The relation → is called

Church-Rosser, if b↔∗ c implies b ↓ c.

confluent, if b←∗ a→∗ c implies b ↓ c.

locally confluent, if b← a→ c implies b ↓ c.

convergent, if it is confluent and terminating.

Theorem 4.7 The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof. (i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in the derivation b↔∗ c. ✷

Lemma 4.8 If → is confluent, then every element has at most one normal form.

Proof. Suppose that some element a ∈ A has normal forms b and c, then b←∗ a→∗ c.
If → is confluent, then b →∗ d ←∗ c for some d ∈ A. Since b and c are normal forms,
both derivations must be empty, hence b →0 d ←0 c, so b, c, and d must be identical.

✷

Corollary 4.9 If → is normalizing and confluent, then every element b has a unique
normal form.

Proposition 4.10 If→ is normalizing and confluent, then b↔∗ c if and only if b↓ = c↓.

Proof. Either using Thm. 4.7 or directly by induction on the length of the derivation
of b↔∗ c. ✷

115

Confluence and Local Confluence

Theorem 4.11 (“Newman’s Lemma”) If a terminating relation→ is locally conflu-
ent, then it is confluent.

Proof. Let → be a terminating and locally confluent relation. Then →+ is a well-
founded ordering. Define φ(a) ⇔

(

∀b, c : b←∗ a→∗ c⇒ b ↓ c
)

.

We prove φ(a) for all a ∈ A by well-founded induction over →+:

Case 1: b←0 a→∗ c: trivial.

Case 2: b←∗ a→0 c: trivial.

Case 3: b←∗ b′ ← a→ c′ →∗ c: use local confluence, then use the induction hypothesis.
✷

Rewrite Relations

Corollary 4.12 If E is convergent (i. e., terminating and confluent), then s ≈E t if and
only if s↔∗

E t if and only if s↓E = t↓E .

Corollary 4.13 If E is finite and convergent, then ≈E is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and termi-
nating.

116

4.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such that t1 →
∗
E s←∗

E t2 ?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable
position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further
investigation.

Question:
Are there rewrite rules l1 → r1 and l2 → r2 such that some subterm l1|p and l2 have
a common instance (l1|p)σ1 = l2σ2 ?

Observation:
If we assume w.l.o.g. that the two rewrite rules do not have common variables, then
only a single substitution is necessary: (l1|p)σ = l2σ.

Further observation:
The mgu of l1|p and l2 subsumes all unifiers σ of l1|p and l2.

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R whose variables have been renamed
such that var(l1) ∩ var(l2) = ∅. (Remember that var(li) ⊇ var(ri).)

Let p ∈ pos(l1) be a position such that l1|p is not a variable and σ is an mgu of l1|p and
l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

Theorem 4.14 (“Critical Pair Theorem”) A TRS R is locally confluent if and only
if all its critical pairs are joinable.

Proof. “only if”: obvious, since joinability of a critical pair is a special case of local
confluence.

“if”: Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i = 1, 2. Without loss of generality, we can assume that the two rules
are variable disjoint, hence s|pi = liθ and ti = s[riθ]pi.

We distinguish between two cases: Either p1 and p2 are in disjoint subtrees (p1 ‖ p2), or
one is a prefix of the other (w.l.o.g., p1 ≤ p2).

117

Case 1: p1 ‖ p2.

Then s = s[l1θ]p1[l2θ]p2, and therefore t1 = s[r1θ]p1[l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1[r2θ]p2. Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using
l1 → r1.

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first
rule. Suppose that x occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2, where q′ is a position of x in
r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions p1qq2, where q is a position of

x in l1 different from q1, and by applying l1 → r1 at p1 with the substitution θ′, where
θ′ = θ[x 7→ (xθ)[r2θ]q2].

Case 2.2: p2 = p1p, where p is a non-variable position of l1.

Then s|p2 = l2θ and s|p2 = (s|p1)|p = (l1θ)|p = (l1|p)θ, so θ is a unifier of l2 and l1|p.

Let σ be the mgu of l2 and l1|p, then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ]p1 →
∗
R s[vτ]p1 and t2 = s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 =

s[(l1στ)[r2στ]p]p1 = s[((l1σ)[r2σ]p)τ]p1 →
∗
R s[vτ]p1 .

This completes the proof of the Critical Pair Theorem. ✷

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered
– except if the overlap is at the root (i. e., p = ε).

Corollary 4.15 A terminating TRS R is confluent if and only if all its critical pairs are
joinable.

Proof. By Newman’s Lemma and the Critical Pair Theorem. ✷

Corollary 4.16 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is
at most one critical pair 〈u1, u2〉.

Reduce every ui to some normal form u′
i. If u

′
1 = u′

2 for every critical pair, then R is
confluent, otherwise there is some non-confluent situation u′

1 ←
∗
R u1 ←R s→R u2 →

∗
R u′

2.
✷

118

4.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 4.17 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting
problems for TMs to the termination problems for TRSs. ✷

Consequence:

Decidable criteria for termination are not complete.

Two Different Scenarios

Depending on the application, the TRS whose termination we want to show can be

(i) fixed and known in advance, or

(ii) evolving (e. g., generated by some saturation process).

Methods for case (ii) are also usable for case (i). Many methods for case (i) are not
usable for case (ii).

We will first consider case (ii); additional techniques for case (i) will be considered
later.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules l →
r ∈ R, rather than at infinitely many possible replacement steps s→R s′.

A binary relation ⊐ over TΣ(X) is called compatible with Σ-operations, if s ⊐ s′ implies
f(t1, . . . , s, . . . , tn) ⊐ f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ TΣ(X).

Lemma 4.18 The relation ⊐ is compatible with Σ-operations, if and only if s ⊐ s′

implies t[s]p ⊐ t[s′]p for all s, s′, t ∈ TΣ(X) and p ∈ pos(t).

119

Note: compatible with Σ-operations = compatible with contexts.

A binary relation ⊐ over TΣ(X) is called stable under substitutions, if s ⊐ s′ implies
sσ ⊐ s′σ for all s, s′ ∈ TΣ(X) and substitutions σ.

A binary relation ⊐ is called a rewrite relation, if it is compatible with Σ-operations and
stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X) that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem 4.19 A TRS R terminates if and only if there exists a reduction ordering ≻
such that l ≻ r for every rule l → r ∈ R.

Proof. “if”: s →R s′ if and only if s = t[lσ]p, s
′ = t[rσ]p. If l ≻ r, then lσ ≻ rσ and

therefore t[lσ]p ≻ t[rσ]p. This implies →R ⊆ ≻. Since ≻ is a well-founded ordering, →R

is terminating.

“only if”: Define ≻ =→+
R. If →R is terminating, then ≻ is a reduction ordering. ✷

The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering ≻A over TΣ(X) by s ≻A t if and only if A(β)(s) ≻ A(β)(t) for all
assignments β : X → UA.

Is ≻A a reduction ordering?

Lemma 4.20 ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA. Let
σ be a substitution. We have to show that A(γ)(sσ) ≻ A(γ)(s′σ) for all assignments
γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma, A(γ)(sσ) = A(β)(s) ≻
A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ. ✷

A function φ : Un
A → UA is called monotone (with respect to ≻), if a ≻ a′ implies

φ(b1, . . . , a, . . . , bn) ≻ φ(b1, . . . , a
′, . . . , bn) for all a, a

′, bi ∈ UA.

Lemma 4.21 If the interpretation fA of every function symbol f is monotone w. r. t. ≻,
then ≻A is compatible with Σ-operations.

120

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X → UA

be an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

≻ fA(A(β)(t1), . . . ,A(β)(s
′), . . . ,A(β)(tn))

= A(β)(f(t1, . . . , s
′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn). ✷

Theorem 4.22 If the interpretation fA of every function symbol f is monotone w. r. t.≻,
then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were an infinite
chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite chain A(β)(s1) ≻
A(β)(s2) ≻ . . . (with β chosen arbitrarily). Thus ≻A is well-founded. Irreflexivity and
transitivity are proved similarly. ✷

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is N or some subset of N.

To every function symbol f/n we associate a polynomial Pf (X1, . . . , Xn) ∈ N[X1, . . . , Xn]
with coefficients in N and indeterminates X1, . . . , Xn. Then we define fA(a1, . . . , an) =
Pf(a1, . . . , an) for ai ∈ UA.

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A would not be a Σ-algebra.)

Requirement 2:

fA must be monotone (w. r. t. ≻).

From now on:

UA = {n ∈ N | n ≥ 1 }.

If arity(f) = 0, then Pf is a constant ≥ 1.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), such that every Xi occurs
in some monomial m · Xj1

1 · · ·X
jk
k with exponent at least 1 and non-zero coefficient

m ∈ N.

⇒ Requirements 1 and 2 are satisfied.

121

The mapping from function symbols to polynomials can be extended to terms: A term t
containing the variables x1, . . . , xn yields a polynomial Pt with indeterminatesX1, . . . , Xn

(where Xi corresponds to β(xi)).

Example:

Ω = {b/0, f/1, g/3}
Pb = 3, Pf (X1) = X2

1 , Pg(X1, X2, X3) = X1 +X2X3.

Let t = g(f(b), f(x), y), then Pt(X, Y) = 9 +X2Y .

If P,Q are polynomials in N[X1, . . . , Xn], we write P > Q if P (a1, . . . , an) > Q(a1, . . . , an)
for all a1, . . . , an ∈ UA.

Clearly, s ≻A t if and only if Ps > Pt if and only if Ps − Pt > 0.

Question: Can we check Ps − Pt > 0 automatically?

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . , Xn] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.23 Hilbert’s 10th Problem is undecidable.

Proposition 4.24 Given a polynomial interpretation and two terms s, t, it is undecid-
able whether Ps > Pt.

Proof. By reduction of Hilbert’s 10th Problem. ✷

One easy case:

If we restrict to linear polynomials, deciding whether Ps − Pt > 0 is trivial:
∑

kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if

ki ≥ 0 for all i ∈ {1, . . . , n},

and
∑

ki + k > 0

Another possible solution:

Test whether Ps(a1, . . . , an) > Pt(a1, . . . , an) for all a1, . . . , an ∈ { x ∈ R | x ≥ 1 }.

This is decidable (but hard). Since UA ⊆ { x ∈ R | x ≥ 1 }, it implies Ps > Pt.

Alternatively:

Use fast overapproximations.

122

Simplification Orderings

The proper subterm ordering ⊲ is defined by s ⊲ t if and only if s|p = t for some position
p 6= ε of s.

A rewrite ordering ≻ over TΣ(X) is called simplification ordering, if it has the subterm
property: s ⊲ t implies s ≻ t for all s, t ∈ TΣ(X).

Example:

Let Remb be the rewrite system Remb = { f(x1, . . . , xn)→ xi | f/n ∈ Ω, 1 ≤ i ≤ n }.

Define ⊲emb =→+
Remb

and Demb =→∗
Remb

(“homeomorphic embedding relation”).

⊲emb is a simplification ordering.

Lemma 4.25 If ≻ is a simplification ordering, then s ⊲emb t implies s ≻ t and s Demb t
implies s � t.

Proof. Since ≻ is transitive and � is transitive and reflexive, it suffices to show that
s →Remb

t implies s ≻ t. By definition, s →Remb
t if and only if s = s[lσ] and t = s[rσ]

for some rule l → r ∈ Remb. Obviously, l ⊲ r for all rules in Remb, hence l ≻ r. Since ≻
is a rewrite relation, s = s[lσ] ≻ s[rσ] = t. ✷

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction
ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification orderings and the
definition of embedding have to be modified.

Theorem 4.26 (“Kruskal’s Theorem”) Let Σ be a finite signature, let X be a finite
set of variables. Then for every infinite sequence t1, t2, t3, . . . there are indices j > i such
that tj Demb ti. (Demb is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113–115. ✷

123

Theorem 4.27 (Dershowitz) If Σ is a finite signature, then every simplification or-
dering ≻ on TΣ(X) is well-founded (and therefore a reduction ordering).

Proof. Suppose that t1 ≻ t2 ≻ t3 ≻ . . . is an infinite descending chain.

First assume that there is an x ∈ var(ti+1) \ var(ti). Let σ = {x 7→ ti}, then ti+1σ D

xσ = ti and therefore ti = tiσ ≻ ti+1σ � ti, contradicting irreflexivity.

Consequently, var(ti) ⊇ var(ti+1) and ti ∈ TΣ(V) for all i, where V is the finite set var(t1).
By Kruskal’s Theorem, there are i < j with ti Eemb tj . Hence ti � tj , contradicting
ti ≻ tj . ✷

There are reduction orderings that are not simplification orderings and terminating TRSs
that are not contained in any simplification ordering.

Example:

Let R = {f(f(x))→ f(g(f(x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that →R were contained in a simplification ordering ≻. Then f(f(x)) →R

f(g(f(x))) implies f(f(x)) ≻ f(g(f(x))), and f(g(f(x))) Demb f(f(x)) implies f(g(f(x))) �
f(f(x)), hence f(f(x)) ≻ f(f(x)).

Path Orderings

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω.

The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t if

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

where (≻lpo)lex is the m-fold lexicographic combination of ≻lpo

(note that f = g implies m = n).

Lemma 4.28 s ≻lpo t implies var(s) ⊇ var(t).

Proof. By induction on |s|+ |t| and case analysis. ✷

124

Theorem 4.29 ≻lpo is a simplification ordering on TΣ(X).

Proof. Show transitivity, subterm property, stability under substitutions, compatibility
with Σ-operations, and irreflexivity, usually by induction on the sum of the term sizes
and case analysis. Details: Baader and Nipkow, page 119/120. ✷

Theorem 4.30 If the precedence ≻ is total, then the lexicographic path ordering ≻lpo

is total on ground terms, i. e., for all s, t ∈ TΣ(∅): s ≻lpo t ∨ t ≻lpo s ∨ s = t.

Proof. By induction on |s|+ |t| and case analysis. ✷

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”) on
Ω. The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
if

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

There are several possibilities to compare subterms in (2)(c):

• compare list of subterms lexicographically left-to-right (“lexicographic path order-
ing (lpo)”, Kamin and Lévy)

• compare list of subterms lexicographically right-to-left (or according to some per-
mutation π)

• compare multiset of subterms using the multiset extension (“multiset path ordering
(mpo)”, Dershowitz)

• to each function symbol f/n ∈ Ω with n ≥ 1 associate a status ∈ {mul} ∪ { lexπ |
π : {1, . . . , n} → {1, . . . , n} } and compare according to that status (“recursive
path ordering (rpo) with status”)

125

The Knuth-Bendix Ordering

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω, let w : Ω ∪ X → R

+
0 be a weight function, such that the following admissibility

conditions are satisfied:

w(x) = w0 ∈ R
+ for all variables x ∈ X ; w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f/1 ∈ Ω, then f ≻ g for all g/n ∈ Ω with f 6= g.

The weight function w can be extended to terms recursively:

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively

w(t) =
∑

x∈var(t)

w(x) ·#(x, t) +
∑

f∈Ω

w(f) ·#(f, t).

where #(a, t) is the number of occurrences of a in t.

The Knuth-Bendix ordering ≻kbo on TΣ(X) induced by ≻ and w is defined by: s ≻kbo t
if

(1) #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) t = x, s = fn(x) for some n ≥ 1, or

(b) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(c) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

Theorem 4.31 The Knuth-Bendix ordering induced by ≻ and w is a simplification
ordering on TΣ(X).

Proof. Baader and Nipkow, pages 125–129. ✷

Remark

If Π 6= ∅, then all the term orderings described in this section can also be used to compare
non-equational atoms by treating predicate symbols like function symbols.

126

4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)

Knuth-Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻ (i. e., l ≻ r
for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair 〈s, t〉 can be made joinable by adding s→ t or t→ s to R.

(Actually, we first add s ≈ t to E and later try to turn it into a rule that is contained
in ≻; this gives us some additional degree of freedom.)

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of
equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step E,R ⊢ E ′, R′, the equational theories of E ∪R and E ′ ∪R′ agree: ≈E∪R =
≈E′∪R′ .

Notations:

The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

127

Orient:

E ∪ {s
.

≈ t}, R

E, R ∪ {s→ t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e., neither s ≻ t nor t ≻ s.

Trivial equations cannot be oriented – but we don’t need them anyway:

Delete:

E ∪ {s ≈ s}, R

E, R

Critical pairs between rules in R are turned into additional equations:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R) then s←R u→R t and hence R |= s ≈ t.

The following inference rules are not absolutely necessary, but very useful (e. g., to get
rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.

≈ t}, R

E ∪ {u ≈ t}, R
if s→R u.

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

E, R ∪ {s→ t}

E, R ∪ {s→ u}
if t→R u.

Simplification of the left-hand side may influence orientability and orientation. Therefore,
it yields an equation:

L-Simplify-Rule:

E, R ∪ {s→ t}

E ∪ {u ≈ t}, R

if s→R u using a rule l → r ∈ R
such that s ⊐ l (see below).

128

For technical reasons, the lhs of s → t may only be simplified using a rule l → r, if
l → r cannot be simplified using s → t, that is, if s ⊐ l, where the encompassment
quasi-ordering ⊐

∼ is defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.32 ⊐ is a well-founded strict partial ordering.

Lemma 4.33 If E,R ⊢ E ′, R′, then ≈E∪R = ≈E′∪R′ .

Lemma 4.34 If E,R ⊢ E ′, R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

Note: Like in ordered resolution, simplification should be preferred to deduction:

• Simplify/delete whenever possible.

• Otherwise, orient an equation, if possible.

• Last resort: compute critical pairs.

Knuth-Bendix Completion: Correctness Proof5

What can happen if we run the completion procedure on a set E of equations?

(1) We reach a state where no more inference rules are applicable and E is not empty.
⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the rules in the
current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . with R0 = ∅ is called a run
of the completion procedure with input E0 and ≻.

For a run, E∪ =
⋃

i≥0Ei and R∪ =
⋃

i≥0Ri.

The sets of persistent equations or rules of the run are E∞ =
⋃

i≥0

⋂

j≥iEj and R∞ =
⋃

i≥0

⋂

j≥iRj .

Note: If the run is finite and ends with En, Rn, then E∞ = En and R∞ = Rn.

5The notations in this subsection differ significantly from the 2021/2022 lecture. Keep that in mind
when you use online lecture recordings or read exercises or exam questions from previous years.

129

A run is called fair, if CP (R∞) ⊆ E∪ (i. e., if every critical pair between persisting rules
is computed at some step of the derivation).

Goal:

Show: If a run is fair and E∞ is empty, then R∞ is convergent and equivalent to E0.

In particular: If a run is fair and E∞ is empty, then ≈E0
= ≈E∪∪R∪

=↔∗
E∪∪R∪

= ↓R∞
.

General assumptions from now on:

E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . is a fair run.

R0 and E∞ are empty.

A proof of s ≈ t in E∪ ∪ R∪ is a finite sequence (s0, . . . , sn) such that s = s0, t = sn,
and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∪
si, or

(2) si−1 →R∪
si, or

(3) si−1 ←R∪
si.

The pairs (si−1, si) are called proof steps.

A proof is called a rewrite proof in R∞, if there is a k ∈ {0, . . . , n} such that si−1 →R∞
si

for 1 ≤ i ≤ k and si−1 ←R∞
si for k + 1 ≤ i ≤ n

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite
proof in R∞ there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R∞.

We associate a cost c(si−1, si) with every proof step as follows:

(1) If si−1 ↔E∪
si, then c(si−1, si) = ({si−1, si},−,−), where the first component is a

multiset of terms and − denotes an arbitrary (irrelevant) term.

(2) If si−1 →R∪
si using l → r, then c(si−1, si) = ({si−1}, l, si).

(3) If si−1 ←R∪
si using l → r, then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographic combination of the multiset exten-
sion of the reduction ordering ≻, the encompassment ordering ⊐, and the reduction
ordering ≻.

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering ≻C compares the costs of proofs using the multiset extension of the
proof step ordering.

130

Lemma 4.35 ≻C is a well-founded ordering.

Lemma 4.36 Let P be a proof in E∪ ∪ R∪. If P is not a rewrite proof in R∞, then
there exists an equivalent proof P ′ in E∪ ∪R∪ such that P ≻C P ′.

Proof. If P is not a rewrite proof in R∞, then it contains

(a) a proof step that is in E∪, or
(b) a proof step that is in R∪ \R∞, or
(c) a subproof si−1 ←R∞

si →R∞
si+1 (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller
subproof:

Case (a): A proof step using an equation s
.

≈ t is in E∪. This equation must be deleted
during the run.

If s
.

≈ t is deleted using Orient:
. . . si−1 ↔E∪

si . . . =⇒ . . . si−1 →R∪
si . . .

If s
.

≈ t is deleted using Delete:
. . . si−1 ↔E∪

si−1 . . . =⇒ . . . si−1 . . .

If s
.

≈ t is deleted using Simplify-Eq:
. . . si−1 ↔E∪

si . . . =⇒ . . . si−1 →R∪
s′ ↔E∪

si . . .

Case (b): A proof step using a rule s → t is in R∪ \ R∞. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:
. . . si−1 →R∪

si . . . =⇒ . . . si−1 →R∪
s′ ←R∪

si . . .

If s→ t is deleted using L-Simplify-Rule:
. . . si−1 →R∪

si . . . =⇒ . . . si−1 →R∪
s′ ↔E∪

si . . .

Case (c): A subproof has the form si−1 ←R∞
si →R∞

si+1.

If there is no overlap or a non-critical overlap:
. . . si−1 ←R∞

si →R∞
si+1 . . . =⇒ . . . si−1 →

∗
R∞

s′ ←∗
R∞

si+1 . . .

If there is a critical pair that has been added using Deduce:
. . . si−1 ←R∞

si →R∞
si+1 . . . =⇒ . . . si−1 ↔E∪

si+1 . . .

In all cases, checking that the replacement subproof is smaller than the replaced sub-
proof is routine. ✷

131

Theorem 4.37 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair run and let R0 and E∞ be
empty. Then

(1) every proof in E∪ ∪ R∪ is equivalent to a rewrite proof in R∞,

(2) R∞ is equivalent to E0, and

(3) R∞ is convergent.

Proof. (1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∪∪R∪
= ≈E0

. Since R∞ ⊆ R∪, we get ≈R∞
⊆ ≈E∪∪R∪

. On the other hand,
by (1), ≈E∪∪R∪

⊆ ≈R∞
.

(3) Since →R∞
⊆ ≻, R∞ is terminating. By (1), R∞ is confluent. ✷

4.7 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use orientable instances for rewriting.

Note: If ≻ is total on ground terms, then every ground instance of an equation is
trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

Let E be a set of equations, let ≻ be a reduction ordering.

We define the relation →E≻ by

s→E≻ t if there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E,
p ∈ pos(s), and σ : X → TΣ(X),
such that s|p = uσ and t = s[vσ]p and uσ ≻ vσ.

Note: →E≻ is terminating by construction.

From now on let ≻ be a reduction ordering that is total on ground terms.

E is called ground convergent w. r. t. ≻, if for all ground terms s and t with s↔∗
E t there

exists a ground term v such that s→∗
E≻ v ←∗

E≻ t. (Analogously for E ∪R.)

As for standard completion, we establish ground convergence by computing critical
pairs.

132

However, the ordering ≻ is not total on non-ground terms. Since sθ ≻ tθ implies s 6� t,
we approximate ≻ on ground terms by 6� on arbitrary terms.

Let ui

.

≈ vi (i = 1, 2) be equations in E whose variables have been renamed such that
var(u1

.

≈ v1) ∩ var(u2
.

≈ v2) = ∅. Let p ∈ pos(u1) be a position such that u1|p is not a
variable, σ is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2). Then 〈v1σ, (u1σ)[v2σ]p〉 is
called a semi-critical pair of E with respect to ≻.

The set of all semi-critical pairs of E is denoted by SP≻(E).

Semi-critical pairs of E ∪R are defined analogously. If→R ⊆ ≻, then CP(R) and SP≻(R)
agree.

Note: In contrast to critical pairs, it may be necessary to consider overlaps of an equation
with itself at the top. For instance, if E = {f(x) ≈ g(y)}, then 〈g(y), g(y′)〉 is a non-
trivial semi-critical pair.

The Deduce rule takes now the following form:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ SP≻(E ∪R).

Moreover, the fairness criterion for runs is replaced by

SP≻(E∞ ∪R∞) ⊆ E∪

(i. e., if every semi-critical pair between persisting rules or equations is computed at some
step of the derivation).

Analogously to Thm. 4.37 we obtain now the following theorem:

Theorem 4.38 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair run; let R0 = ∅. Then

(1) E∞ ∪ R∞ is equivalent to E0, and

(2) E∞ ∪ R∞ is ground convergent.

Moreover one can show that, whenever there exists a reduced convergent R such that
≈E0

= ↓R and →R ∈ ≻, then for every fair and simplifying run E∞ = ∅ and R∞ = R
up to variable renaming.

Here R is called reduced, if for every l → r ∈ R, both l and r are irreducible w. r. t. R \
{l → r}. A run is called simplifying, if R∞ is reduced, and for all equations u ≈ v ∈ E∞,
u and v are incomparable w. r. t. ≻ and irreducible w. r. t. R∞.

Unfailing completion is refutationally complete for equational theories:

133

Theorem 4.39 Let E be a set of equations, let ≻ be a reduction ordering that is total
on ground terms. For any two terms s and t, let ŝ and t̂ be the terms obtained from s
and t by replacing all variables by Skolem constants. Let eq/2, true/0 and false/0 be
new operator symbols, such that true and false are smaller than all other terms. Let
E0 = E ∪ {eq(ŝ, t̂) ≈ true , eq(x, x) ≈ false}. If E0, ∅ ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair
run of unfailing completion, then s ≈E t if and only if some Ei ∪Ri contains true ≈ false.

Outlook:

Combine ordered resolution and unfailing completion to get a calculus for equational
clauses:

compute inferences between (strictly) maximal literals as in ordered resolution,
compute overlaps between maximal sides of equations as in unfailing completion

⇒ Superposition calculus.

134

