3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.
Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.19) one only needs to resolve and factor maximal atoms
\Rightarrow if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
\Rightarrow ordering restrictions
2. In the proof, it does not really matter with which negative literal an inference is performed
\Rightarrow choose a negative literal don't-care-nondeterministically
\Rightarrow selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms. Therefore the proof remains correct, if we impose ordering restrictions on ground inferences.
(Ground) Ordered Resolution:

$$
\frac{D \vee A \quad C \vee \neg A}{D \vee C}
$$

if $A \succ L$ for all L in D and $\neg A \succeq L$ for all L in C.
(Ground) Ordered Factorization:

$$
\frac{C \vee A \vee A}{C \vee A}
$$

if $A \succeq L$ for all L in C.

Problem: How to extend this to non-ground inferences?
In the completeness proof, we talk about (strictly) maximal literals of ground clauses.
In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances.

An ordering \succ on atoms (or terms) is called stable under substitutions, if $A \succ B$ implies $A \sigma \succ B \sigma$.

Note:

- We can not require that $A \succ B$ if and only if $A \sigma \succ B \sigma$.
- We can not require that \succ is total on non-ground atoms.

Consequence: In the ordering restrictions for non-ground inferences, we have to replace \succ by \npreceq and \succeq by \nprec.

Ordered Resolution:

$$
\frac{D \vee B \quad C \vee \neg A}{(D \vee C) \sigma}
$$

if $\sigma=\operatorname{mgu}(A, B)$ and $B \sigma \npreceq L \sigma$ for all L in D and $\neg A \sigma \nprec L \sigma$ for all L in C.
Ordered Factorization:

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma}
$$

if $\sigma=\operatorname{mgu}(A, B)$ and $A \sigma \nprec L \sigma$ for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.
A selection function is a mapping

$$
\text { sel : } C \quad \mapsto \text { set of occurrences of negative literals in } C
$$

Example of selection with selected literals indicated as X :

$$
\begin{aligned}
& \neg A \vee \neg A \vee B \\
& \neg B_{0} \vee \neg B_{1} \vee A
\end{aligned}
$$

Intuition:

- If a clause has at least one selected literal, compute only inferences that involve a selected literal.
- If a clause has no selected literals, compute only inferences that involve a maximal literal.

Resolution Calculus $R e s_{\text {sel }}^{\succ}$

The resolution calculus $R e s_{\text {sel }}^{\succ}$ is parameterized by

- a selection function sel
- and a well-founded ordering \succ on atoms that is total on ground atoms and stable under substitutions.
(Ground) Ordered Resolution with Selection:

$$
\frac{D \vee A \quad C \vee \neg A}{D \vee C}
$$

if the following conditions are satisfied:
(i) $A \succ L$ for all L in D;
(ii) nothing is selected in $D \vee A$ by sel;
(iii) $\neg A$ is selected in $C \vee \neg A$, or nothing is selected in $C \vee \neg A$ and $\neg A \succeq L$ for all L in C.
(Ground) Ordered Factorization with Selection:

$$
\frac{C \vee A \vee A}{C \vee A}
$$

if the following conditions are satisfied:
(i) $A \succeq L$ for all L in C;
(ii) nothing is selected in $C \vee A \vee A$ by sel.

The extension from ground inferences to non-ground inferences is analogous to ordered resolution (replace \succ by \npreceq and \succeq by \nprec). Again we assume that \succ is stable under substitutions.

Ordered Resolution with Selection:

$$
\frac{D \vee B \quad C \vee \neg A}{(D \vee C) \sigma}
$$

if the following conditions are satisfied:
(i) $\sigma=\operatorname{mgu}(A, B)$;
(ii) $B \sigma \npreceq L \sigma$ for all L in D;
(iii) nothing is selected in $D \vee B$ by sel;
(iv) $\neg A$ is selected in $C \vee \neg A$, or nothing is selected in $C \vee \neg A$ and $\neg A \sigma \nprec L \sigma$ for all L in C.

Ordered Factorization with Selection:

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma}
$$

if the following conditions are satisfied:
(i) $\sigma=\operatorname{mgu}(A, B)$;
(ii) $A \sigma \nprec L \sigma$ for all L in C.
(iii) nothing is selected in $C \vee A \vee B$ by sel.

Lifting Lemma for $R e s_{\text {sel }}^{\succ}$
Lemma 3.39 Let C and D be variable-disjoint clauses. If

and if $\operatorname{sel}\left(D \theta_{1}\right) \simeq \operatorname{sel}(D), \operatorname{sel}\left(C \theta_{2}\right) \simeq \operatorname{sel}(C)$ (that is,"corresponding" literals are selected), then there exists a substitution ρ such that

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.40 Let N be a set of general clauses saturated under Res sel , i. e., Res sel $(N) \subseteq$ N. Then there exists a selection function sel' such that $\left.\operatorname{sel}\right|_{N}=\left.\operatorname{sel}^{\prime}\right|_{N}$ and $G_{\Sigma}(N)$ is also saturated, i.e.,

$$
\operatorname{Res}_{\mathrm{sel}^{\prime}}^{\succ}\left(G_{\Sigma}(N)\right) \subseteq G_{\Sigma}(N) .
$$

Proof. We first define the selection function $\operatorname{sel}^{\prime}$ such that $\operatorname{sel}^{\prime}(C)=\operatorname{sel}(C)$ for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \backslash N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define $\operatorname{sel}^{\prime}(C)$ to be those occurrences of literals that are ground instances of the occurrences selected by sel in D. Then proceed as in the proof of Cor. 3.30 using the lifting lemma above.

Soundness and Refutational Completeness

Theorem 3.41 Let \succ be an atom ordering and sel a selection function such that $\operatorname{Res}_{\text {sel }}^{\succ}(N) \subseteq N$. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider first the propositional level: Construct a candidate interpretation I_{N} as for unrestricted resolution, except that clauses C in N that have selected literals are never productive (even if they are false in I_{C} and if their maximal atom occurs only once and is positive). The result for general clauses follows using Corollary 3.40.

What Do We Gain?

Search spaces become smaller:

1	$P \vee Q$		we assume $P \succ Q$
2	$P \vee \neg Q$		and sel as indicated by
3	$\neg P \vee Q$		X. The maximal lit-
4	$\neg P \vee \neg Q$		eral in a clause is de-
5	$Q \vee Q$	Res 1,3	picted in red.
6	Q	Fact 5	
7	$\neg P$	Res 6,4	
8	P	Res 6,2	
9	\perp	Res 8,7	

In this example, the ordering and selection function even ensure that the refutation proceeds strictly deterministically.

Rotation redundancy can be avoided:
From

$$
\frac{C_{1} \vee A C_{2} \vee \neg A \vee B}{\frac{C_{1} \vee C_{2} \vee B}{C_{1} \vee C_{2} \vee C_{3}}} C_{3} \vee \neg B
$$

we can obtain by rotation

$$
\frac{C_{1} \vee A \frac{C_{2} \vee \neg A \vee B \quad C_{3} \vee \neg B}{C_{2} \vee \neg A \vee C_{3}}}{C_{1} \vee C_{2} \vee C_{3}}
$$

another proof of the same clause. In large proofs many rotations are possible. However, if $A \succ B$, then the second proof does not fulfill the ordering restrictions.

Craig-Interpolation

Theorem 3.42 (Craig 1957) Let F and G be two propositional formulas such that $F \models G$. Then there exists a formula H (called the interpolant for $F \models G$), such that H contains only propositional variables occurring both in F and in G, and such that $F \models H$ and $H \models G$.

Proof. Let Π_{F}, Π_{G}, and $\Pi_{F G}$ be the sets of propositional variables that occur only in F, only in G, or both in F and G. Translate F and $\neg G$ into CNF; let N and M, respectively, denote the resulting clause set. Choose an atom ordering \succ for which the propositional variables in Π_{F} are larger than those in $\Pi_{F G} \cup \Pi_{G}$. Saturate N into N^{\prime} w.r.t. $R e s_{\text {sel }}^{\succ}$ with an empty selection function sel. Then saturate $N^{\prime} \cup M$ w.r.t. $R e s_{\text {sel }}^{\succ}$ to derive \perp. As N^{\prime} is already saturated, due to the ordering restrictions only inferences need to be considered where premises, if they are from N^{\prime}, only contain symbols from $\Pi_{F G}$. The conjunction of these premises is an interpolant H.

The theorem also holds for first-order formulas, but in the general case, a proof based on resolution technology is complicated because of Skolemization.

3.14 Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses unnecessary? (e.g., if they are tautologies)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

A Formal Notion of Redundancy ${ }^{4}$

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is called redundant w.r.t. N, if there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$, such that $C_{i} \prec C$ and $C_{1}, \ldots, C_{n} \models C$.

Redundancy for general clauses: C is called redundant w.r.t. N, if all ground instances $C \sigma$ of C are redundant w.r.t. $G_{\Sigma}(N)$.
Intuition: If a ground clause C is redundant and all clauses smaller than C hold in I_{C}, then C holds in I_{C} (so C is neither a minimal counterexample nor productive).

[^0]Note: The same ordering \succ is used for ordering restrictions and for redundancy (and for the completeness proof).

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are sufficient for us, however.

Proposition 3.43 Some redundancy criteria:

- C tautology (i.e., $\models C) \Rightarrow C$ redundant w.r.t. any set N.
- $C \sigma \subset D \Rightarrow D$ redundant w.r.t. $N \cup\{C\}$.
(Under certain conditions one may also use non-strict subsumption, but this requires a slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Ressel ${ }_{\text {sel }}^{\succ}$) if

$$
\operatorname{Res}_{\operatorname{sel}}^{\succ}(N \backslash \operatorname{Red}(N)) \subseteq N \cup \operatorname{Red}(N)
$$

Theorem 3.44 Let N be saturated up to redundancy. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

Proof (Sketch).

(i) Ground case: Consider the construction of the candidate interpretation I_{N}^{\succ} for $\operatorname{Res}_{\text {sel }}^{\succ}$.

If a clause $C \in N$ is redundant, then there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$, such that $C_{i} \prec C$ and $C_{1}, \ldots, C_{n} \models C$.

If $I_{C} \models C_{i}$ by minimality, then $I_{C} \models C$.
In particular, C is not productive.
\Rightarrow Redundant clauses are not used as premises for "essential" inferences.
By saturation, the conclusion $D^{\prime} \vee C^{\prime}$ of a resolution inference is contained in N (as before) or in $\operatorname{Red}(N)$. In the first case, minimality of C ensures that $D^{\prime} \vee C^{\prime}$ is productive or $I_{D^{\prime} \vee C^{\prime}} \models D^{\prime} \vee C^{\prime}$; in the second case, it ensures that $I_{D^{\prime} \vee C^{\prime}} \models D^{\prime} \vee C^{\prime}$. So in both cases we get a contradiction (analogously for factorization). The rest of the proof works as before.
(ii) Lifting: no additional problems over the proof of Theorem 3.41.

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have to ensure that redundant clauses remain redundant in the rest of the derivation.

Theorem 3.45

(i) $N \subseteq M \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(M)$
(ii) $M \subseteq \operatorname{Red}(N) \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(N \backslash M)$

Proof. (i) Obvious.
(ii) For ground clause sets N, the well-foundedness of the multiset extension of the clause ordering implies that every clause in $\operatorname{Red}(N)$ is entailed by smaller clauses in N that are themselves not in $\operatorname{Red}(N)$.

For general clause sets N, the result follows from the fact that every clause in $G_{\Sigma}(N) \backslash$ $\operatorname{Red}\left(G_{\Sigma}(N)\right)$ is an instance of a clause in $N \backslash \operatorname{Red}(N)$.

Recall that $\operatorname{Red}(N)$ may include clauses that are not in N.

Computing Saturated Sets

Redundancy is preserved when, during a theorem proving derivation one adds new clauses or deletes redundant clauses. This motivates the following definitions:

A run of the resolution calculus is a sequence $N_{0} \vdash N_{1} \vdash N_{2} \vdash \ldots$, such that
(i) $N_{i} \models N_{i+1}$, and
(ii) all clauses in $N_{i} \backslash N_{i+1}$ are redundant w.r.t. N_{i+1}.

In other words, during a run we may add a new clause if it follows from the old ones, and we may delete a clause, if it is redundant w.r.t. the remaining ones.

For a run, we define $N_{\infty}=\bigcup_{i \geq 0} \bigcap_{j \geq i} N_{j}$. The set N_{∞} of all persistent clauses is called the limit of the run.

Lemma 3.46 Let $N_{0} \vdash N_{1} \vdash N_{2} \vdash \ldots$ be a run. Then $\operatorname{Red}\left(N_{i}\right) \subseteq \operatorname{Red}\left(\bigcup_{i \geq 0} N_{i}\right)$ and $\operatorname{Red}\left(N_{i}\right) \subseteq \operatorname{Red}\left(N_{\infty}\right)$ for every i.

Proof. Exercise.
Corollary 3.47 $N_{i} \subseteq N_{\infty} \cup \operatorname{Red}\left(N_{\infty}\right)$ for every i.
Proof. If $C \in N_{i} \backslash N_{\infty}$, then there is a $k \geq i$ such that $C \in N_{k} \backslash N_{k+1}$, so C must be redundant w.r.t. N_{k+1}. Consequently, C is redundant w.r.t. N_{∞}.

Even if a set N is inconsistent, it could happen that \perp is never derived, because some required inference is never computed.

The following definition rules out such runs:
A run is called fair, if the conclusion of every inference from clauses in $N_{\infty} \backslash \operatorname{Red}\left(N_{\infty}\right)$ is contained in some $N_{i} \cup \operatorname{Red}\left(N_{i}\right)$.

Lemma 3.48 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant clauses in N_{∞} is contained in some $N_{i} \cup \operatorname{Red}\left(N_{i}\right)$, and therefore contained in $N_{\infty} \cup$ $\operatorname{Red}\left(N_{\infty}\right)$. Hence N_{∞} is saturated up to redundancy.

Theorem 3.49 (Refutational Completeness: Dynamic View) Let $N_{0} \vdash N_{1} \vdash N_{2} \vdash$... be a fair run, let N_{∞} be its limit. Then N_{0} has a model if and only if $\perp \notin N_{\infty}$.

Proof. (\Leftarrow) : By fairness, N_{∞} is saturated up to redundancy. If $\perp \notin N_{\infty}$, then it has an Herbrand model. Since every clause in N_{0} is contained in N_{∞} or redundant w.r.t. N_{∞}, this model is also a model of $G_{\Sigma}\left(N_{0}\right)$ and therefore a model of N_{0}.
(\Rightarrow) : Obvious, since $N_{0} \models N_{\infty}$.

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are entailed by the current ones.

In practice, we restrict to two cases:

- We add conclusions of $\operatorname{Res}_{\text {sel }}^{\succ}$-inferences from non-redundant premises.
\leadsto necessary to guarantee fairness
- We add clauses that are entailed by the current ones if this makes other clauses redundant:

$$
\begin{aligned}
& N \cup\{C\} \vdash N \cup\{C, D\} \vdash N \cup\{D\} \\
& \text { if } N \cup\{C\} \models D \text { and } C \in \operatorname{Red}(N \cup\{D\}) .
\end{aligned}
$$

Net effect: C is simplified to D
\leadsto useful to get easier/smaller clause sets

Notation for simplification rules:

$$
\frac{C_{1} \ldots C_{n}}{\overline{D_{1} \ldots D_{m}}}
$$

means

$$
N \cup\left\{C_{1}, \ldots, C_{n}\right\} \vdash N \cup\left\{D_{1}, \ldots, D_{m}\right\}
$$

Examples of simplification techniques:

- Deletion of duplicated literals:

$$
\frac{C \vee L \vee L}{C \vee L}
$$

- Subsumption resolution:

3.15 Hyperresolution

There are many variants of resolution.
One well-known example is hyperresolution (Robinson 1965):
Assume that several negative literals are selected in a clause C. If we perform an inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion. Then we must eliminate the remaining selected literals one by one by further resolution steps.

Hyperresolution replaces these successive steps by a single inference. As for $\operatorname{Res}_{\text {sel }}^{\succ}$, the calculus is parameterized by an atom ordering \succ and a selection function sel.

$$
\frac{D_{1} \vee B_{1} \quad \ldots \quad D_{n} \vee B_{n} \quad C \vee \neg A_{1} \vee \ldots \vee \neg A_{n}}{\left(D_{1} \vee \ldots \vee D_{n} \vee C\right) \sigma}
$$

with $\sigma=\operatorname{mgu}\left(A_{1} \doteq B_{1}, \ldots, A_{n} \doteq B_{n}\right)$, if
(i) $B_{i} \sigma$ strictly maximal in $D_{i} \sigma, 1 \leq i \leq n$;
(ii) nothing is selected in D_{i};
(iii) the indicated occurrences of the $\neg A_{i}$ are exactly the ones selected by sel, or nothing is selected in the right premise and $n=1$ and $\neg A_{1} \sigma$ is maximal in $C \sigma$.

Similarly to resolution, hyperresolution has to be complemented by a factorization inference.

As we have seen, hyperresolution can be simulated by iterated binary resolution.
However this yields intermediate clauses which HR might not derive, and many of them might not be extendable into a full HR inference.

3.16 Implementing Resolution: The Main Loop

Standard approach:
Select one clause ("Given clause").
Find many partner clauses that can be used in inferences together with the "given clause" using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of clauses.
The set of clauses is split into two subsets:

- $W O=$ "Worked-off" (or "active") clauses: Have already been selected as "given clause".
- $U=$ "Usable" (or "passive") clauses: Have not yet been selected as "given clause".

During each iteration of the main loop:
Select a new given clause C from U;
$U:=U \backslash\{C\}$.
Find partner clauses D_{i} from WO;
New $:=$ Conclusions of inferences from $\left\{D_{i} \mid i \in I\right\} \cup C$ where one premise is C;
$U:=U \cup$ New;
$W O:=W O \cup\{C\}$
\Rightarrow At any time, all inferences between clauses in $W O$ have been computed.
\Rightarrow The procedure is fair, if no clause remains in U forever.

Additionally:
Try to simplify C using WO. (Skip the remainder of the iteration, if C can be eliminated.)

Try to simplify (or even eliminate) clauses from $W O$ using C.

Design decision: should one also simplify U using C ?
yes \leadsto "Otter loop":
Advantage: simplifications of U may be useful to derive the empty clause.
no \leadsto "Discount loop":
Advantage: clauses in U are really passive; only clauses in $W O$ have to be kept in index data structure. (Hence: can use index data structure for which retrieval is faster, even if update is slower and space consumption is higher.)

3.17 Summary: Resolution Theorem Proving

- Resolution is a machine-oriented calculus.
- Using unification, the enumeration of instances becomes a by-product of inference computation.
- Parameters: atom ordering \succ and selection function sel. On the non-ground level, ordering constraints can (only) be solved approximatively.
- Completeness proof by constructing candidate interpretations from productive clauses $C \vee A, A \succ C$.
- Local restrictions of inferences via \succ and sel \Rightarrow fewer proof variants.
- Global restrictions of the search space via redundancy \Rightarrow computing with "smaller"/"easier" clause sets.
(In practice: simplification and detection of redundant clauses uses 90% of the prover runtime.)
- Termination on many decidable fragments.
- However: not good enough for dealing with orderings, equality and more specific algebraic theories (lattices, abelian groups, rings, fields)
\Rightarrow further specialization of inference systems required.

3.18 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem Proving, Springer-Verlag, New York, 1996, chapters 3, 6, 7.
R. M. Smullyan: First-Order Logic, Dover Publ., New York, 1968, revised 1995.

Like resolution, semantic tableaux were developed in the sixties, independently by Zbigniew Lis and Raymond Smullyan on the basis of work by Gentzen in the 30s and of Beth in the 50s.

Idea

Idea (for the propositional case):
A set $\{F \wedge G\} \cup N$ of formulas has a model if and only if $\{F \wedge G, F, G\} \cup N$ has a model.

A set $\{F \vee G\} \cup N$ of formulas has a model if and only if $\{F \vee G, F\} \cup N$ or $\{F \vee G, G\} \cup N$ has a model.
(and similarly for other connectives).
To avoid duplication, represent sets as paths of a tree.
Continue splitting until two complementary formulas are found \Rightarrow inconsistency detected.

A Tableau for $\{P \wedge \neg(Q \vee \neg R), \neg Q \vee \neg R\}$

This tableau is not "maximal", however the first "path" is. This path is not "closed", hence the set $\{1,2\}$ is satisfiable. (These notions will all be defined below.)

Properties

Properties of tableau calculi:
analytic: inferences correspond closely to the logical meaning of the symbols.
goal oriented: inferences operate directly on the goal to be proved.
global: some inferences affect the entire proof state (set of formulas), as we will see later.

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and expand the tableau at a leaf. We append the conclusions of a rule (horizontally or vertically) at a leaf, whenever the premise of the expansion rule matches a formula appearing anywhere on the path from the root to that leaf.

Negation Elimination

$$
\frac{\neg \neg F}{F} \quad \frac{\neg T}{\perp} \quad \frac{\neg \perp}{T}
$$

α-Expansion
(for formulas that are essentially conjunctions: append subformulas α_{1} and α_{2} one on top of the other)

$$
\begin{aligned}
& \frac{\alpha}{\alpha_{1}} \\
& \alpha_{2}
\end{aligned}
$$

β-Expansion
(for formulas that are essentially disjunctions:
append β_{1} and β_{2} horizontally, i. e., branch into β_{1} and β_{2})

$$
\frac{\beta}{\beta_{1} \mid \beta_{2}}
$$

Classification of Formulas

conjunctive			disjunctive		
α	α_{1}	α_{2}	β	β_{1}	β_{2}
$F \wedge G$	F	G	$\neg(F \wedge G)$	\neg	$\neg G$
$\neg(F \vee G)$	$\neg F$	$\neg G$	$F \vee G$	F	G
$\neg(F \rightarrow G)$	F	$\neg G$	$F \rightarrow G$	$\neg F$	G

We assume that the binary connective \leftrightarrow has been eliminated in advance.

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered tree and inductively defined as follows: Let $\left\{F_{1}, \ldots, F_{n}\right\}$ be a set of formulas.
(i) The tree consisting of a single path

$$
\begin{gathered}
F_{1} \\
\vdots \\
F_{n}
\end{gathered}
$$

is a tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$. (We do not draw edges if nodes have only one successor.)
(ii) If T is a tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$ and if T^{\prime} results from T by applying an expansion rule then T^{\prime} is also a tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$.

Note: We may also consider the limit tableau of a tableau expansion; this can be an infinite tree.

A path (from the root to a leaf) in a tableau is called closed, if it either contains \perp, or else it contains both some formula F and its negation $\neg F$. Otherwise the path is called open.

A tableau is called closed, if all paths are closed.
A tableau proof for F is a closed tableau for $\{\neg F\}$.
A path π in a tableau is called maximal, if for each formula F on π that is neither a literal nor \perp nor \top there exists a node in π at which the expansion rule for F has been applied.

In that case, if F is a formula on π, π also contains:
(i) α_{1} and α_{2}, if F is a α-formula,
(ii) β_{1} or β_{2}, if F is a β-formula, and
(iii) F^{\prime}, if F is a negation formula, and F^{\prime} the conclusion of the corresponding elimination rule.

A tableau is called maximal, if each path is closed or maximal.
A tableau is called strict, if for each formula the corresponding expansion rule has been applied at most once on each path containing that formula.

A tableau is called clausal, if each of its formulas is a clause.

A Sample Proof

One starts out from the negation of the formula to be proved.

There are three paths, each of them closed.

Properties of Propositional Tableaux

We assume that T is a tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$.

Theorem $3.50\left\{F_{1}, \ldots, F_{n}\right\}$ satisfiable \Leftrightarrow some path (i.e., the set of its formulas) in T is satisfiable.

Proof. (\Leftarrow) Trivial, since every path contains in particular F_{1}, \ldots, F_{n}. (\Rightarrow) By induction over the structure of T.

Corollary 3.51 T closed $\Rightarrow\left\{F_{1}, \ldots, F_{n}\right\}$ unsatisfiable

Theorem 3.52 Every strict propositional tableau expansion is finite.

Proof. New formulas resulting from expansion are either \perp, \top or subformulas of the expanded formula (modulo de Morgan's law), so the number of formulas that can occur is finite. By strictness, on each path a formula can be expanded at most once. Therefore, each path is finite, and a finitely branching tree with finite paths is finite by Lemma 1.9.

Conclusion: Strict and maximal tableaux can be effectively constructed.

Refutational Completeness

A set \mathcal{H} of propositional formulas is called a Hintikka set, if
(1) there is no $P \in \Pi$ with $P \in \mathcal{H}$ and $\neg P \in \mathcal{H}$;
(2) $\perp \notin \mathcal{H}, \neg \top \notin \mathcal{H}$;
(3) if $\neg \neg F \in \mathcal{H}$, then $F \in \mathcal{H}$;
(4) if $\alpha \in \mathcal{H}$, then $\alpha_{1} \in \mathcal{H}$ and $\alpha_{2} \in \mathcal{H}$;
(5) if $\beta \in \mathcal{H}$, then $\beta_{1} \in \mathcal{H}$ or $\beta_{2} \in \mathcal{H}$.

Lemma 3.53 (Hintikka's Lemma) Every Hintikka set is satisfiable.

Proof. Let \mathcal{H} be a Hintikka set. Define a valuation \mathcal{A} by $\mathcal{A}(P)=1$ if $P \in \mathcal{H}$ and $\mathcal{A}(P)=0$ otherwise. Then show that $\mathcal{A}(F)=1$ for all $F \in \mathcal{H}$ by induction over the size of formulas.

Theorem 3.54 Let π be a maximal open path in a tableau. Then the set of formulas on π is satisfiable.

Proof. We show that set of formulas on π is a Hintikka set: Conditions (3), (4), (5) follow from the fact that π is maximal; conditions (1) and (2) follow from the fact that π is open and from maximality for the second negation elimination rule.

Note: The theorem holds also for infinite trees that are obtained as the limit of a tableau expansion.

Theorem 3.55 $\left\{F_{1}, \ldots, F_{n}\right\}$ satisfiable \Leftrightarrow there exists no closed strict tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$.

Proof. (\Rightarrow) Clear by Cor. 3.51.
(\Leftarrow) Let T be a strict maximal tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$ and let π be an open path in T. By the previous theorem, the set of formulas on π is satisfiable, and hence by Theorem 3.50 the set $\left\{F_{1}, \ldots, F_{n}\right\}$, is satisfiable.

Consequences

The validity of a propositional formula F can be established by constructing a strict maximal tableau for $\{\neg F\}$:

- T closed $\Leftrightarrow F$ valid.
- It suffices to test complementarity of paths w.r.t. atomic formulas (cf. reasoning in the proof of Theorem 3.54).
- Which of the potentially many strict maximal tableaux one computes does not matter. In other words, tableau expansion rules can be applied don't-care nondeterministically ("proof confluence").
- The expansion strategy, however, can have a dramatic impact on the tableau size.

A Variant of the β-Rule

Since $F \vee G \models F \vee(G \wedge \neg F)$, the β expansion rule

$$
\frac{\beta}{\beta_{1} \mid \beta_{2}}
$$

can be replaced by the following variant:

\[

\]

The variant β-rule can lead to much shorter proofs, but it is not always beneficial.

In general, it is most helpful if $\neg \beta_{1}$ can be at most (iteratively) α-expanded.

3.19 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified formulas:

- using ground instantiation,
- using free variables.

Tableaux with Ground Instantiation

Classification of quantified formulas:

universal		existential	
γ	$\gamma(t)$	δ	$\delta(t)$
$\forall x F$	$F\{x \mapsto t\}$	$\exists x F$	$F\{x \mapsto t\}$
$\neg \exists x F$	$\neg F\{x \mapsto t\}$	$\neg \forall x F$	$\neg F\{x \mapsto t\}$

Idea:
Replace universally quantified formulas by appropriate ground instances.
γ-expansion

$$
\frac{\gamma}{\gamma(t)} \quad \text { where } t \text { is some ground term }
$$

δ-expansion

$$
\frac{\delta}{\delta(c)} \quad \text { where } c \text { is a new Skolem constant }
$$

Skolemization becomes part of the calculus and needs not necessarily be applied in a preprocessing step. Of course, one could do Skolemization beforehand, and then the δ-rule would not be needed.

Note:
Skolem constants are sufficient:
In a δ-formula $\exists x F, \exists$ is the outermost quantifier and x is the only free variable in F.
Problems:
Having to guess ground terms is impractical.
Even worse, we may have to guess several ground instances, as strictness for γ is incomplete. For instance, constructing a closed tableau for

$$
\{\forall x(P(x) \rightarrow P(f(x))), P(b), \neg P(f(f(b)))\}
$$

is impossible without applying γ-expansion twice on one path.

Free-Variable Tableaux

An alternative approach:
Delay the instantiation of universally quantified variables.
Replace universally quantified variables by new free variables.
Intuitively, the free variables are universally quantified outside of the entire tableau.
γ-expansion

$$
\frac{\gamma}{\gamma(x)} \quad \text { where } x \text { is a new free variable }
$$

δ-expansion

$$
\frac{\delta}{\delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right)}
$$

where f is a new Skolem function, and the x_{i} are the free variables in δ
Application of expansion rules has to be supplemented by a substitution rule:
(iii) If T is a tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$ and if σ is a substitution, then $T \sigma$ is also a tableau for $\left\{F_{1}, \ldots, F_{n}\right\}$.

The substitution rule may, potentially, modify all the formulas of a tableau. This feature is what makes the tableau method a global proof method. (Resolution, by comparison, is a local method.)

One can show that it is sufficient to consider substitutions σ for which there is a path in T containing two literals $\neg A$ and B such that $\sigma=\operatorname{mgu}(A, B)$. Such tableaux are called AMGU-Tableaux.

Example

1. $\neg(\exists w \forall x P(x, w, f(x, w)) \rightarrow \exists w \forall x \exists y P(x, w, y))$
2. $\exists w \forall x P(x, w, f(x, w))$
$1_{1}[\alpha]$
$1_{2}[\alpha]$
$2(c)[\delta]$
$3\left(v_{1}\right)[\gamma]$
$5\left(b\left(v_{1}\right)\right)[\delta]$
$4\left(v_{2}\right)[\gamma]$
$6\left(v_{3}\right)[\gamma]$
3. and 8 . are complementary (modulo unification):

$$
\left\{v_{2} \doteq b\left(v_{1}\right), c \doteq v_{1}, f\left(v_{2}, c\right) \doteq v_{3}\right\}
$$

is solvable with an mgu $\sigma=\left\{v_{1} \mapsto c, v_{2} \mapsto b(c), v_{3} \mapsto f(b(c), c)\right\}$, and hence, $T \sigma$ is a closed (linear) tableau for the formula in 1 .

Problem:
Strictness for γ is still incomplete. For instance, constructing a closed tableau for

$$
\{\forall x(P(x) \rightarrow P(f(x))), P(b), \neg P(f(f(b)))\}
$$

is impossible without applying γ-expansion twice on one path.

Semantic Tableaux vs. Resolution

- Tableaux: global, goal-oriented, "backward".
- Resolution: local, "forward".
- Goal-orientation is a clear advantage if only a small subset of a large set of formulas is necessary for a proof. (Note that resolution provers saturate also those parts of the clause set that are irrelevant for proving the goal.)
- Resolution can be combined with more powerful redundancy elimination methods; because of its global nature this is more difficult for the tableau method.
- Resolution can be refined to work well with equality; for tableaux this seems to be impossible.
- On the other hand tableau calculi can be easily extended to other logics; in particular tableau provers are very successful in modal and description logics.

3.20 Other Deductive Systems

- Instantiation-based methods

Resolution-based instance generation Disconnection calculus
\qquad

- Natural deduction
- Sequent calculus/Gentzen calculus
- Hilbert calculus

Instantiation-Based Methods for FOL

Idea:
Overlaps of complementary literals produce instantiations (as in resolution);
However, contrary to resolution, clauses are not recombined.
Instead: treat remaining variables as constant and use efficient propositional proof methods, such as CDCL.

There are both saturation-based variants, such as partial instantiation (Hooker et al. 2002) or resolution-based instance generation (Inst-Gen) (Ganzinger and Korovin 2003), and tableau-style variants, such as the disconnection calculus (Billon 1996; Letz and Stenz 2001).

Successful in practice for problems that are "almost propositional" (i. e., no non-constant function symbols, no equality).

Natural Deduction

Idea:
Model the concept of proofs from assumptions as humans do it.
To prove $F \rightarrow G$, assume F and try to derive G.
Initial ideas: Jaśkowski (1934), Gentzen (1934); extended by Prawitz (1965).
Popular in interactive proof systems.

Sequent Calculus

Idea:
Assumptions internalized into the data structure of sequents

$$
F_{1}, \ldots, F_{m} \vdash G_{1}, \ldots, G_{k}
$$

meaning

$$
F_{1} \wedge \cdots \wedge F_{m} \rightarrow G_{1} \vee \cdots \vee G_{k}
$$

Inferences rules, e. g.:

$$
\begin{array}{lll}
\frac{\Gamma \vdash \Delta}{\Gamma, F \vdash \Delta}(W L) & \frac{\Gamma, F \vdash \Delta \quad \Sigma, G \vdash \Pi}{\Gamma, \Sigma, F \vee G \vdash \Delta, \Pi}(\vee L) \\
\frac{\Gamma \vdash \Delta}{\Gamma \vdash F, \Delta}(W R) & \frac{\Gamma \vdash F, \Delta \quad \Sigma \vdash G, \Pi}{\Gamma, \Sigma \vdash F \wedge G, \Delta, \Pi}(\wedge R)
\end{array}
$$

Initial idea: Gentzen 1934.
Perfect symmetry between the handling of assumptions and their consequences; interesting for proof theory.

Can be used both backwards and forwards.
Allows to simulate both natural deduction and semantic tableaux.

Hilbert Calculus

Idea:
Direct proof method (proves a theorem from axioms, rather than refuting its negation)
Axiom schemes, e.g.,

$$
\begin{aligned}
F & \rightarrow(G \rightarrow F) \\
(F \rightarrow(G \rightarrow H)) & \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H))
\end{aligned}
$$

plus Modus ponens:

$$
\frac{F \quad F \rightarrow G}{G}
$$

Unsuitable for finding or reading proofs, but sometimes used for specifying (e.g., modal) logics.

[^0]: ${ }^{4}$ The notations in this subsection differ significantly from the $2021 / 2022$ lecture. Keep that in mind when you use online lecture recordings or read exercises or exam questions from previous years.

