3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.
Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.19) one only needs to
resolve and factor maximal atoms
= if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
= ordering restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
= choose a negative literal don’t-care-nondeterministically
= selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms. Therefore
the proof remains correct, if we impose ordering restrictions on ground inferences.

(Ground) Ordered Resolution:

DV A cvVv-A
DvC

if A= L forall Lin D and -A > L for all L in C.
(Ground) Ordered Factorization:

CVAVA
CVA

if A= L forall Lin C.

Problem: How to extend this to non-ground inferences?
In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances.

85

An ordering > on atoms (or terms) is called stable under substitutions, if A > B implies
Ao = Bo.

Note:
e We can not require that A > B if and only if Ac >~ Bo.
e We can not require that > is total on non-ground atoms.

Consequence: In the ordering restrictions for non-ground inferences, we have to replace

> by £ and > by 4.
Ordered Resolution:

DV B cvVv-A
(DVC)o

if o = mgu(A, B) and Bo A Lo for all L in D and —Ac A Lo for all L in C.
Ordered Factorization:

CVAVB
(CV Ao

if 0 = mgu(A, B) and Ao £ Lo for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.

A selection function is a mapping

sel : C' — set of occurrences of negative literals in C'

Example of selection with selected literals indicated as :

—A|v-AVB

Intuition:

e If a clause has at least one selected literal, compute only inferences that involve a
selected literal.

e [f a clause has no selected literals, compute only inferences that involve a maximal
literal.

86

Resolution Calculus Res”

sel

-

The resolution calculus Resy,

is parameterized by
e a selection function sel

e and a well-founded ordering > on atoms that is total on ground atoms and stable
under substitutions.
(Ground) Ordered Resolution with Selection:

DV A cvVv-A
DvC

if the following conditions are satisfied:
(i) A> L for all L in D;
(ii) nothing is selected in D Vv A by sel;
(iii) —A is selected in C'V = A, or nothing is selected in C'V —=A and =A > L for all L
in C.

(Ground) Ordered Factorization with Selection:

CVAVA
CVvA

if the following conditions are satisfied:
(i) A> L for all L in C,
(ii) nothing is selected in C'V AV A by sel.

87

The extension from ground inferences to non-ground inferences is analogous to ordered
resolution (replace > by A and = by #£). Again we assume that > is stable under
substitutions.

Ordered Resolution with Selection:

DV B Cv-A
(DvVC)o

if the following conditions are satisfied:
(i) o = mgu(4, B);
(i) Bo £ Lo for all L in D;
(iii) nothing is selected in D V B by sel;
)

(iv) —A is selected in C'V = A, or nothing is selected in C'V = A and —Ac A Lo for all
Lin C.

Ordered Factorization with Selection:

CVAVB
(CV Ao

if the following conditions are satisfied:
(i) o = mgu(4, B),
(i) Ao £ Lo for all L in C.
(iii) nothing is selected in C'V AV B by sel.

88

-
sel

Lifting Lemma for Res

Lemma 3.39 Let C' and D be variable-disjoint clauses. If

D C
Lo e
Do, Ct,
- [ground inference in ResZ,]

and if sel(D#;) ~ sel(D), sel(C#y) ~ sel(C) (that is, “corresponding” literals are se-
lected), then there exists a substitution p such that

D C
C//

|

C/ — C//p

[inference in ResZ,]

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.40 Let N be a set of general clauses saturated under Resl, i.e., Resi,(N) C
N. Then there exists a selection function sel’ such that sel|y = sel’'|y and Gx(N) is also
saturated, I.e.,

Res™,(Gx(N)) C Gx(N).

sel’
Proof. We first define the selection function sel’ such that sel’(C) = sel(C) for all
clauses C' € Gx(N)N N. For C € Gx(N) \ N we choose a fixed but arbitrary clause
D € N with C' € Gx(D) and define sel’(C) to be those occurrences of literals that are

ground instances of the occurrences selected by sel in D. Then proceed as in the proof
of Cor. 3.30 using the lifting lemma above. O

89

Soundness and Refutational Completeness

Theorem 3.41 Let > be an atom ordering and sel a selection function such that
ResZ;(N) C N. Then

sel

NeElsleN

Proof. The “«<” part is trivial. For the “=" part consider first the propositional
level: Construct a candidate interpretation Iy as for unrestricted resolution, except that
clauses C'in N that have selected literals are never productive (even if they are false in
I and if their maximal atom occurs only once and is positive). The result for general
clauses follows using Corollary 3.40. O

What Do We Gain?

Search spaces become smaller:

1 PVvQ we assume P > (@
2 PV and sel as indicated by
3 -PVQ . The maximal lit-
4 -PVv[-Q eral in a clause is de-
5 QV Q Res 1. 3 picted in red.

6 @ Fact 5

7 =P Res 6, 4

8 P Res 6, 2

9 L Res 8, 7

In this example, the ordering and selection function even ensure that the refutation
proceeds strictly deterministically.

Rotation redundancy can be avoided:

From
CivVA Cyv—-AVB
civCy,Vv B Cs3V B
CivCyV (O

we can obtain by rotation

CyV-AV B (C5V—-B
Ci VA Cy VAV Cs
CyV Oy VO3

another proof of the same clause. In large proofs many rotations are possible. However,
if A > B, then the second proof does not fulfill the ordering restrictions.

90

Craig-Interpolation

Theorem 3.42 (Craig 1957) Let ' and G be two propositional formulas such that
F = G. Then there exists a formula H (called the interpolant for F' = G), such that
H contains only propositional variables occurring both in F' and in G, and such that
FEHand H E=G.

Proof. Let Ilg, Ilg, and Ilgpg be the sets of propositional variables that occur only
in F', only in G, or both in F' and G. Translate ' and —G into CNF; let N and M,
respectively, denote the resulting clause set. Choose an atom ordering > for which the
propositional variables in I1z are larger than those in Ilpg U Ilg. Saturate N into N’
w.r.t. ResZ, with an empty selection function sel. Then saturate N’ U M w.r.t. Res,
to derive L. As N’ is already saturated, due to the ordering restrictions only inferences
need to be considered where premises, if they are from N’, only contain symbols from
[Tgg. The conjunction of these premises is an interpolant H. O

The theorem also holds for first-order formulas, but in the general case, a proof based
on resolution technology is complicated because of Skolemization.

3.14 Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (e.g., if they are tautologies)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy*

Let N be a set of ground clauses and C' a ground clause (not necessarily in N). C' is
called redundant w.r.t. N, if there exist C1,...,C,, € N, n > 0, such that C; < C' and
Cy,...,C, EC.

Redundancy for general clauses: C' is called redundant w.r.t. N, if all ground instances
Co of C are redundant w.r.t. Gx(N).

Intuition: If a ground clause C' is redundant and all clauses smaller than C' hold in I,
then C holds in I (so C' is neither a minimal counterexample nor productive).

4The notations in this subsection differ significantly from the 2021/2022 lecture. Keep that in mind
when you use online lecture recordings or read exercises or exam questions from previous years.

91

Note: The same ordering > is used for ordering restrictions and for redundancy (and for
the completeness proof).

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are sufficient for us,
however.

Proposition 3.43 Some redundancy criteria:
e (' tautology (i.e., = C) = C redundant w.r.t. any set N.
e Co CD = D redundant w.r.t. N U{C}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Resl,) if

sel

ResZj(N \ Red(N)) € N U Red(N)

sel

Theorem 3.44 Let N be saturated up to redundancy. Then
NElL&s 1eN

Proof (Sketch).

(i) Ground case: Consider the construction of the candidate interpretation Iy for ResZ,

sel*

If a clause C' € N is redundant, then there exist Ci,...,C, € N, n > 0, such that
C;<Cand(Cy,...,C, =C.

If Ic = C; by minimality, then /o = C.
In particular, C' is not productive.
= Redundant clauses are not used as premises for “essential” inferences.

By saturation, the conclusion D’V C” of a resolution inference is contained in N
(as before) or in Red(N). In the first case, minimality of C' ensures that D' v C’ is
productive or Ipver = D'V C'; in the second case, it ensures that Ipe = D'V C'.
So in both cases we get a contradiction (analogously for factorization). The rest of the
proof works as before.

(i) Lifting: no additional problems over the proof of Theorem 3.41. O

92

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have to ensure that
redundant clauses remain redundant in the rest of the derivation.
Theorem 3.45

(i) N C M = Red(N) C Red(M)

(ii)) M C Red(N) = Red(N) C Red(N \ M)

Proof. (i) Obvious.

(i) For ground clause sets N, the well-foundedness of the multiset extension of the clause
ordering implies that every clause in Red(N) is entailed by smaller clauses in N that are
themselves not in Red (V).

For general clause sets N, the result follows from the fact that every clause in Gx(N) \

Red(Gx(N)) is an instance of a clause in N \ Red (V). O

Recall that Red(N) may include clauses that are not in N.

Computing Saturated Sets
Redundancy is preserved when, during a theorem proving derivation one adds new
clauses or deletes redundant clauses. This motivates the following definitions:

A run of the resolution calculus is a sequence Ny = Ny = Ny ..., such that
(i) Ni = Nit1, and
(ii) all clauses in N; \ N;;; are redundant w.r.t. N;;q.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w.r.t. the remaining ones.

For a run, we define Noo = [U;5((;5; IV;-The set Ny of all persistent clauses is called
the limit of the run. -

Lemma 3.46 Let No = Ny = Ny = ... be a run. Then Red(N;) C Red(|J;, N:) and
Red(N;) C Red(Ny) for every i.

Proof. Exercise. U
Corollary 3.47 N; C N, U Red(N,) for every i.

Proof. If C' € N; \ N, then there is a k > ¢ such that C' € Ny \ Ny, so C' must be
redundant w.r.t. Nj,;. Consequently, C'is redundant w.r.t. N. O

93

Even if a set N is inconsistent, it could happen that L is never derived, because some
required inference is never computed.

The following definition rules out such runs:

A run is called fair, if the conclusion of every inference from clauses in Ny, \ Red(Ns)
is contained in some N; U Red(N;).

Lemma 3.48 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N is contained in some N; U Red(N;), and therefore contained in N U
Red(N4). Hence N, is saturated up to redundancy. O

Theorem 3.49 (Refutational Completeness: Dynamic View) Let No = Ny + Ny F
... be a fair run, let N, be its limit. Then Ny has a model if and only if 1 ¢ N.

Proof. («<): By fairness, N, is saturated up to redundancy. If 1 ¢ N, then it has an
Herbrand model. Since every clause in Ny is contained in N, or redundant w.r.t. N,
this model is also a model of Gy (Ny) and therefore a model of Nj.

(=): Obvious, since Ny = Ny.. -

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are entailed by
the current ones.

In practice, we restrict to two cases:

e We add conclusions of ResZ-inferences from non-redundant premises.
~» necessary to guarantee fairness

e We add clauses that are entailed by the current ones if this makes other clauses
redundant:

Nu{C} v NuU{C,D} - NU{D}
if NU{C} = D and C € Red(N U{D}).

Net effect: C' is simplified to D
~» useful to get easier/smaller clause sets

94

Notation for simplification rules:

Ccy ... C,
D, ... D,

means

NU{Ci,...,C,} - NU{Dy, ...

Examples of simplification techniques:

e Deletion of duplicated literals:

CVLVL
CVL

e Subsumption resolution:

DV L CV DoV Lo
DV L CV Do

95

3.15 Hyperresolution

There are many variants of resolution.
One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C', then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C' are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Resl,, the
calculus is parameterized by an atom ordering > and a selection function sel.

DyvB ... D,VB, CV-AV...V-A,
(DyV...VD,VvC)o

with 0 = mgu(A; = By,..., A, = B,), if
(i) B;o strictly maximal in Do, 1 <i < n;
(ii) nothing is selected in Dj;

(iii) the indicated occurrences of the = A; are exactly the ones selected by sel, or nothing
is selected in the right premise and n = 1 and = A0 is maximal in Co.

Similarly to resolution, hyperresolution has to be complemented by a factorization in-
ference.

As we have seen, hyperresolution can be simulated by iterated binary resolution.

However this yields intermediate clauses which HR might not derive, and many of them
might not be extendable into a full HR inference.

96

3.16 Implementing Resolution: The Main Loop

Standard approach:
Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with the “given
clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of clauses.

The set of clauses is split into two subsets:

e WO = “Worked-oft” (or “active”) clauses: Have already been selected as “given
clause”.
e U = “Usable” (or “passive”) clauses: Have not yet been selected as “given clause”.

During each iteration of the main loop:

Select a new given clause C' from U,

U:=U\{C}.

Find partner clauses D; from WO,

New := Conclusions of inferences from { D; | i € I } UC where one premise is C
U:=UU New;

WO = WO u{C}

= At any time, all inferences between clauses in WO have been computed.

= The procedure is fair, if no clause remains in U forever.

Additionally:

Try to simplify C' using WO. (Skip the remainder of the iteration, if C' can be elimi-
nated.)

Try to simplify (or even eliminate) clauses from WO using C.

Design decision: should one also simplify U using C'?

yes ~ “Otter loop”:
Advantage: simplifications of U may be useful to derive the empty clause.

no ~ “Discount loop”:

Advantage: clauses in U are really passive; only clauses in WO have to be kept in index
data structure. (Hence: can use index data structure for which retrieval is faster, even
if update is slower and space consumption is higher.)

97

3.17 Summary: Resolution Theorem Proving

e Resolution is a machine-oriented calculus.

e Using unification, the enumeration of instances becomes a by-product of inference
computation.

e Parameters: atom ordering > and selection function sel. On the non-ground level,
ordering constraints can (only) be solved approximatively.

e Completeness proof by constructing candidate interpretations from productive
clauses C'V A, A > C.

e [ocal restrictions of inferences via = and sel
= fewer proof variants.

e Global restrictions of the search space via redundancy
= computing with “smaller” /“easier” clause sets.
(In practice: simplification and detection of redundant clauses uses 90% of the
prover runtime.)

e Termination on many decidable fragments.

e However: not good enough for dealing with orderings, equality and more specific
algebraic theories (lattices, abelian groups, rings, fields)
= further specialization of inference systems required.

98

3.18 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem Proving, Springer-Verlag, New
York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York, 1968, revised 1995.

Like resolution, semantic tableaux were developed in the sixties, independently by Zbig-
niew Lis and Raymond Smullyan on the basis of work by Gentzen in the 30s and of Beth
in the 50s.

Idea

Idea (for the propositional case):

A set {F'ANG}UN of formulas has a model if and only if {F'A G, F, G} UN has a
model.

A set {FF'VG} UN of formulas has a model if and only if {F'V G, F'} UN or
{F'V G, G} UN has a model.

(and similarly for other connectives).
To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are found = inconsistency de-
tected.

A Tableau for {P A —=(QV —R), =Q V —R}

1. PA=(QV-R)
2. ~QV-R This tableau is not
/ \ “maximal”,
3. ~Q 4. —-R however the first
5 P 10. P “path” is. This
6. =(QV-R) 11. —=(QV-R) path is not
7. —Q “closed”, hence the
8. R set {1,2} is
9. R satisfiable. (These

notions will all be
defined below.)

99

Properties

Properties of tableau calculi:
analytic: inferences correspond closely to the logical meaning of the symbols.
goal oriented: inferences operate directly on the goal to be proved.

global: some inferences affect the entire proof state (set of formulas), as we will see
later.

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and expand the tableau at a
leaf. We append the conclusions of a rule (horizontally or vertically) at a leaf, whenever
the premise of the expansion rule matches a formula appearing anywhere on the path
from the root to that leaf.

Negation Elimination

F 1 il

a-Expansion
(for formulas that are essentially conjunctions: append subformulas «; and ay one
on top of the other)

(0%

aq
%)

[S-Expansion
(for formulas that are essentially disjunctions:
append (1 and (35 horizontally, i.e., branch into §; and ()

p
Bi | B

Classification of Formulas

conjunctive disjunctive
« 651 Qg B B B2
FAG F G|-(FANG)|-F -G
—|<F vV G) -F -G Fv@G F G
~(F—-G)| F -G| F-G |-F &

We assume that the binary connective <+ has been eliminated in advance.

100

Tableaux: Notions
A semantic tableau is a marked (by formulas), finite, unordered tree and inductively
defined as follows: Let {F1,..., F,} be a set of formulas.

(i) The tree consisting of a single path
F
Fy
is a tableau for {Fy,..., F,,}. (We do not draw edges if nodes have only one suc-
cessor.)

(i) If T'is a tableau for {F},. .., F,,} and if 7" results from 7" by applying an expansion
rule then 7" is also a tableau for {Fy,..., F,}.

Note: We may also consider the limit tableau of a tableau expansion; this can be an
infinite tree.

A path (from the root to a leaf) in a tableau is called closed, if it either contains L, or
else it contains both some formula F' and its negation —F'. Otherwise the path is called
open.

A tableau is called closed, if all paths are closed.
A tableau proof for F is a closed tableau for {—=F}.

A path 7 in a tableau is called maximal, if for each formula F' on 7 that is neither a
literal nor L nor T there exists a node in 7 at which the expansion rule for F' has been
applied.

In that case, if F' is a formula on 7, 7 also contains:
(i) oy and o, if F'is a a-formula,
(i) By or Bs, if F'is a B-formula, and

(iii) F’, if F' is a negation formula, and F” the conclusion of the corresponding elimina-
tion rule.

A tableau is called maximal, if each path is closed or maximal.

A tableau is called strict, if for each formula the corresponding expansion rule has been
applied at most once on each path containing that formula.

A tableau is called clausal, if each of its formulas is a clause.

101

A Sample Proof

One starts out from the negation of the formula to be proved.

1. =((P=(Q—=R) = (PVS)— ((Q— R)VS))
2 (P = (Q— R)) (1]
N ~((PVS) = ((Q > R)VS)) (L]
n PvS [31]
5 ~(Q — R)V) 32
6 Q=) 5]
. S [5o]

s, ﬁp[zﬂ/ 9. QR [
e N
10. P [44] 11. S [49]

There are three paths, each of them closed.

Properties of Propositional Tableaux

We assume that 7" is a tableau for {F,..., F,}.

Theorem 3.50 {F},..., F,} satisfiable < some path (i.e., the set of its formulas) in
T is satisfiable.

Proof. (<) Trivial, since every path contains in particular Fi, ..., F,.
(=) By induction over the structure of T O

Corollary 3.51 T closed = {F1,..., F,} unsatisfiable
Theorem 3.52 Every strict propositional tableau expansion is finite.

Proof. New formulas resulting from expansion are either L, T or subformulas of the
expanded formula (modulo de Morgan’s law), so the number of formulas that can occur
is finite. By strictness, on each path a formula can be expanded at most once. Therefore,
each path is finite, and a finitely branching tree with finite paths is finite by Lemma 1.9.

O

Conclusion: Strict and maximal tableaux can be effectively constructed.

102

Refutational Completeness

A set ‘H of propositional formulas is called a Hintikka set, if
(1) there is no P € Il with P € H and =P € H;

(2) L¢H,-T ¢&H;

(3) if ——F € H, then F € H;

(4) if « € H, then a; € H and oy € H;
(5) if 5 € H, then) € H or By € H.

Lemma 3.53 (Hintikka’s Lemma) Every Hintikka set is satisfiable.

Proof. Let H be a Hintikka set. Define a valuation A by A(P) = 1 if P € H and
A(P) = 0 otherwise. Then show that A(F) =1 for all F' € H by induction over the size
of formulas. O

Theorem 3.54 Let m be a maximal open path in a tableau. Then the set of formulas
on 7 is satisfiable.

Proof. We show that set of formulas on 7 is a Hintikka set: Conditions (3), (4), (5)
follow from the fact that = is maximal; conditions (1) and (2) follow from the fact that
7 is open and from maximality for the second negation elimination rule. O

Note: The theorem holds also for infinite trees that are obtained as the limit of a tableau
expansion.

Theorem 3.55 {F},..., F,} satisfiable < there exists no closed strict tableau for
{Fy,...,F,}.

Proof. (=) Clear by Cor. 3.51.
(<) Let T be a strict maximal tableau for {Fi,..., F,} and let 7 be an open path

in T'. By the previous theorem, the set of formulas on 7 is satisfiable, and hence by
Theorem 3.50 the set {F},..., F,}, is satisfiable. O

103

Consequences

The validity of a propositional formula F' can be established by constructing a strict
maximal tableau for {—F}:

T closed & F valid.

e It suffices to test complementarity of paths w.r.t. atomic formulas (cf. reasoning
in the proof of Theorem 3.54).

e Which of the potentially many strict maximal tableaux one computes does not
matter. In other words, tableau expansion rules can be applied don’t-care non-
deterministically (“proof confluence”).

e The expansion strategy, however, can have a dramatic impact on the tableau size.

A Variant of the §-Rule

Since 'V G H FV (G A ~—F), the 8 expansion rule

_B
G| By

can be replaced by the following variant:

g
Bi | Do
_‘51

The variant S-rule can lead to much shorter proofs, but it is not always beneficial.

In general, it is most helpful if —=5; can be at most (iteratively) a-expanded.

104

3.19 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified formulas:
e using ground instantiation,
e using free variables.

Tableaux with Ground Instantiation

Classification of quantified formulas:

universal existential

5 0 5 5(0)
VeF | Flzw—t} | 32F | F{x—t}
—JdzF | 2F{x —t} | =VaF | - F{x — t}

Idea:

Replace universally quantified formulas by appropriate ground instances.

y-expansion

Y Where t is some ground term
(1)

d-expansion
)

—— where ¢ is a new Skolem constant

5(c)

Skolemization becomes part of the calculus and needs not necessarily be applied in a
preprocessing step. Of course, one could do Skolemization beforehand, and then the
d-rule would not be needed.

Note:

Skolem constants are sufficient:
In a d-formula Jx F', 3 is the outermost quantifier and x is the only free variable in F'.

Problems:
Having to guess ground terms is impractical.

Even worse, we may have to guess several ground instances, as strictness for ~ is
incomplete. For instance, constructing a closed tableau for

{Va (P(z) = P(f(x))), P(b), ~P(f(f(0)))}

is impossible without applying ~-expansion twice on one path.

105

Free-Variable Tableaux

An alternative approach:
Delay the instantiation of universally quantified variables.
Replace universally quantified variables by new free variables.

Intuitively, the free variables are universally quantified outside of the entire tableau.

y-expansion

0 where z is a new free variable
v(z)

d-expansion

)
0(f(xy,...,xp))

where f is a new Skolem function, and the z; are the free variables in ¢

Application of expansion rules has to be supplemented by a substitution rule:

(iii) If T is a tableau for {F},..., F,} and if o is a substitution, then T'o is also a
tableau for {Fy,..., F,}.

The substitution rule may, potentially, modify all the formulas of a tableau. This feature
is what makes the tableau method a global proof method. (Resolution, by comparison,
is a local method.)

One can show that it is sufficient to consider substitutions o for which there is a path in
T containing two literals = A and B such that ¢ = mgu(A, B). Such tableaux are called
AMGU-Tableaux.

106

Example

1. —(3wVz P(z,w, f(z,w)) = JwVzdy Pz, w,y))

2. JwVzx P(x,w, f(z,w)) 1 [o]
3. —JwVzdy Pz, w,y) 15 [a]
4. Yx P(z,c, f(z,c)) 2(c) [9]
5. =Vxdy P(x,v1,y) 3(v1) [v]
6. =3y P(b(v1), v1,9) 5(b(v1)) [9]
7. P(vs,c, f(va,0)) 4(v2) [7]
8. =P (b(vy),v1,v3) 6(vs) [7]

7. and 8. are complementary (modulo unification):
{v2 = b(v1), c=wv1, f(vz,¢) = v3}

is solvable with an mgu o = {v; — ¢, vo = b(c), v3 — f(b(c),c)}, and hence, T is a
closed (linear) tableau for the formula in 1.

Problem:

Strictness for v is still incomplete. For instance, constructing a closed tableau for

{Va (P(z) = P(f(x))), P(b), ~P(f(f(0)))}

is impossible without applying ~-expansion twice on one path.

Semantic Tableaux vs. Resolution

e Tableaux: global, goal-oriented, “backward”.
e Resolution: local, “forward”.

e Goal-orientation is a clear advantage if only a small subset of a large set of formulas
is necessary for a proof. (Note that resolution provers saturate also those parts of
the clause set that are irrelevant for proving the goal.)

e Resolution can be combined with more powerful redundancy elimination methods;
because of its global nature this is more difficult for the tableau method.

e Resolution can be refined to work well with equality; for tableaux this seems to be
impossible.

e On the other hand tableau calculi can be easily extended to other logics; in par-
ticular tableau provers are very successful in modal and description logics.

107

3.20 Other Deductive Systems

e Instantiation-based methods
Resolution-based instance generation
Disconnection calculus

e Natural deduction
e Sequent calculus/Gentzen calculus

e Hilbert calculus

Instantiation-Based Methods for FOL

Idea:
Overlaps of complementary literals produce instantiations (as in resolution);
However, contrary to resolution, clauses are not recombined.

Instead: treat remaining variables as constant and use efficient propositional proof
methods, such as CDCL.

There are both saturation-based variants, such as partial instantiation (Hooker et al.
2002) or resolution-based instance generation (Inst-Gen) (Ganzinger and Korovin 2003),
and tableau-style variants, such as the disconnection calculus (Billon 1996; Letz and
Stenz 2001).

Successful in practice for problems that are “almost propositional” (i. e., no non-constant
function symbols, no equality).

Natural Deduction

Idea:
Model the concept of proofs from assumptions as humans do it.
To prove F' — G, assume F' and try to derive G.
Initial ideas: Jaskowski (1934), Gentzen (1934); extended by Prawitz (1965).

Popular in interactive proof systems.

108

Sequent Calculus

Idea:

Assumptions internalized into the data structure of sequents
Fi,....F,F Gy, . Gy

meaning
BEAN---NF,—>G V- VG

Inferences rules, e. g.:

Ik A I'FFA YGFI
F,FI—A<WL) Y. FVGF AT (VL)
T A T'FFA YFGI
TFFA (WR) TS F FAG,AT (AR)

Initial idea: Gentzen 1934.

Perfect symmetry between the handling of assumptions and their consequences; inter-
esting for proof theory.

Can be used both backwards and forwards.

Allows to simulate both natural deduction and semantic tableaux.

Hilbert Calculus

Idea:
Direct proof method (proves a theorem from axioms, rather than refuting its negation)

Axiom schemes, e. g.,

F— (G—F)
(F—-(G—H)— (F—-G)—= (F—H))

plus Modus ponens:

F F—-d
G

Unsuitable for finding or reading proofs, but sometimes used for specifying (e. g., modal)
logics.

109

