3 First-Order Logic

First-order logic

® is expressive:
can be used to formalize mathematical concepts,
can be used to encode Turing machines,
but cannot axiomatize natural numbers or uncountable sets,

e has important decidable fragments,

e has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical connectives (domain-independent)
= Boolean combinations, quantifiers

Signatures

A signature ¥ = (€2, 1II) fixes an alphabet of non-logical symbols, where
e ) is a set of function symbols f with arity n > 0, written arity(f) = n,
e I is a set of predicate symbols P with arity m > 0, written arity(P) = m.

Function symbols are also called operator symbols.
If n =0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use
b, ¢, d for constant symbols,
f, g, h for non-constant function symbols,

P, Q, R, S for predicate symbols.

Convention: We will usually write f/n € Q) instead of f € Q, arity(f) = n (analogously
for predicate symbols).
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Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables
Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.

Terms

Terms over ¥ and X (X-terms) are formed according to these syntactic rules:

s,t,u,v = T ,xeX (variable)
| f(s1,-y80) , f/m€Q (functional term)

By Tx(X) we denote the set of X-terms (over X). A term not containing any variable
is called a ground term. By Ty we denote the set of ¥-ground terms.

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this syntax:
A, B = P(s1,...,8m) , P/mell (non-equational atom)
[ | (s=t) (equation)
Whenever we admit equations as atomic formulas we are in the realm of first-order
logic with equality. Admitting equality does not really increase the expressiveness of

first-order logic (see next chapter). But deductive systems where equality is treated
specifically are much more efficient.

Literals
L == A  (positive literal)
| A (negative literal)
Clauses
C,D == 1 (empty clause)

|  LyV...VLg k>1 (non-empty clause)
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General First-Order Formulas

Fyx(X) is the set of first-order formulas over 3 defined as follows:

F.GH == L (falsum)
| T (verum)
| A (atomic formula)
| -F (negation)
|  (FAG) (conjunction)
|  (FVG) (disjunction)
| (F—G) (implication)
| (F+ G) (equivalence)
| VaF (universal quantification)
|  dzF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.
Vai,...,x, FF and dxq,...,z, F abbreviate Vz;...Vx,F and dx,...dz, F.
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+txu for +(s,*(t,u))
sxu<t+ov for < (x(s,u),+(t,v))
(

—s for —(s)
s! for I(s)
s fr L)
0 for ()

Example: Peano Arithmetic

Ypa = (Qpa, Ilpa)
Qpa = {0/0, +/2, %/2, s/1}
HPA = {</2}

Examples of formulas over this signature are:

Ve,y((x <yVemy)+ Iz@+zry))
daVy (z+y = y)
Va,y(x*s(y) = x*xy+ x)

Vo, y (s(z) = s(y) = x =~ y)

Vedy (r <y A—-Jz(z < zAz<y))
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Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F'):

pos(z) = {e},
pos(f(s1,---,sn)) ={e} UUZ {ip | p € pos(si) },

(

pos(P(ty, ..., 1)) = {ey UU_{ip | p € pos(t) },
(
(

pos(Ve ') = {e} U{1p | p € pos(F) },
pos(Jz F) ={c}U{1lp|p € pos(F) }.

The prefix order <, the subformula (subterm) operator, the formula (term) replacement
operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by var(¢) (and analogously for
atoms, literals, clauses, and formulas).

Bound and Free Variables

In Qz F, Q € {3, V}, we call F the scope of the quantifier Qz. An occurrence of a variable
x is called bound, if it is inside the scope of a quantifier Qz. Any other occurrence of a
variable is called free.

Formulas without free variables are called closed formulas (or sentential forms).
Formulas without variables are called ground.

Example:

scope of Yy
7\
7 N
scope of Vz

Yy ((Vz P(z) ) — R(z,y)

The occurrence of y is bound, as is the first occurrence of z. The second occurrence of
x is a free occurrence.
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Substitutions
Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.
Substitutions are mappings
o: X — Ty(X)
such that the domain of o, that is, the set
dom(o) ={z e X |o(z) #z},
is finite. The set of variables introduced by o, that is, the set of variables occurring in
one of the terms o(z), with € dom(o), is denoted by codom(o).
Substitutions are often written as {z1 — s1,...,2, — S,}, with z; pairwise distinct,

and then denote the mapping

si, ify=um,
{1 s1,..., 20— su}y) = {

y, otherwise

We also write zo for o(x).

The modification of a substitution o at z is defined as follows:

t, ify==xa

olz = t)(y) = {

o(y), otherwise

Why Substitution is Complicated

We define the application of a substitution o to a term ¢ or formula F' by structural
induction over the syntactic structure of ¢t or F' by the equations below.

In the presence of quantification it is surprisingly complex: We must not only ensure
that bound variables are not replaced by o. We must also make sure that the (free)
variables in the codomain of ¢ are not captured upon placing them into the scope of
a quantifier Qy. Hence the bound variable must be renamed into a “fresh”, that is,
previously unused, variable z.
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Application of a Substitution

“Homomorphic” extension of ¢ to terms and formulas:

f(s1,...,80)0 = f(s10,...,8,0)
lo=1
To=T

P(s1,...,8,)0 = P(s10,...,8,0)
(uxv)o = (uo =~ vo)
—Fo =—(Fo)
(FoG)o=(Fo o Go) for each binary connective o
(Qz F)o = Qz (Folxr + z|) with z a fresh variable

If s = to for some subsitution o, we call the term s an instance of the term t, and we
call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Y-algebra (also called Y-interpretation or X-structure) is a triple

A= (Ua, (fa:Ul = Ud)pmea, (Pa S UY)p/men)
where Uy # () is a set, called the universe of A.

By X-Alg we denote the class of all Y-algebras.

Y-algebras generalize the valuations from propositional logic.
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Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined exter-
nally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Y-algebra A), is a function 5 : X — Uy.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with respect to

By structural induction we define
A(B) : Te(X) = Ua

as follows:

A(B)(x) = B(x), zeX
AB)(f (515 8n)) = Ja(AB)(s1), .., A(B)(sn)), [/n €

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let SBlx — a] : X — Uy, for x € X and a € Uy, denote the
assignment

Blz — a(y) = {

a ifr=y

B(y) otherwise

Truth Value of a Formula in A with respect to

A(B) : Fx(X) — {0,1} is defined inductively as follows:

AB)(L) = 0
AB)T) =1
A(B)(P(s1,...,8,)) = if (A(B)(s1),-.., A(B)(sn)) € P4 then 1 else 0
A(B)(s~t) = if A(B)(s) = A(S)(t) then 1 else 0
AB)(-F) = 1 - A(B)(F)
AB)FAG) = min(A(B)(F), AB)(G))
AB)FVG) = max(A(B)(F), A(B)(G))
AB)F — G) = max(1 - A(B)(F), A(B)(G))
AB)F < G) = if A(B)(F)=A(B)(G) then 1 else 0
AB) vz F) = min{A(Blz — a])(F)}
AB)EFz F) = max{A(B[z — d])(F)}



Example
The “Standard” interpretation for Peano arithmetic:

U = {0,1,2,..}

On = 0

sy ¢ n—n+1

+n : (ny,m)—>n+m

N : (n,m)—>nxm

<y = {(n,m)|n less than m }

Note that N is just one out of many possible Xpa-interpretations.
Values over N for sample terms and formulas:

Under the assignment 5 : x — 1,y — 3 we obtain

N(B)(s(z) + 5(0)) = 3
N(B)(x +y =~ s(y)) =1
N@B)(Ve,y(z+y~y+x) = 1
N(B)(Vz (2 <)) =0
N(B)(Vz3y (z < y)) =1

Ground Terms and Closed Formulas

If ¢ is a ground term, then A(3)(t) does not depend on f, that is, A(5)(t) = A(5')(¢)
for every 8 and f'.

Analogously, if F' is a closed formula, then A(3)(F) does not depend on 3, that is,
A(B)(F) = A(B')(F) for every 8 and 3.

An element a € Uy is called term-generated, if a = A(/3)(t) for some ground term t.
In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

Fis true in A under assignment f3:
ABEF o AB)F) =1
F is true in A (A is a model of F; F' is valid in A):

AEF & APBEF forallpe X — Uy
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F' is valid (or is a tautology):
EF & AEF foral Ac X-Alg

F is called satisfiable if there exist A and 8 such that A, 8 |= F. Otherwise F' is called
unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F'), written F' |= G, if for all A € ¥-Alg
and f € X — Uy, we have

ABEF = ABEG

F and G are called equivalent, written F' H G, if for all A € ¥-Alg and € X — Uy
we have

ABEF & APBEG
Proposition 3.1 F' = G if and only if (F — G) is valid

Proof. (=) Suppose that (F' — G) is not valid. Then there exist an algebra A and
an assignment 3 such that A(8)(F — G) = 0, which means that A(5)(F) = 1 and
A(B)(G) =0, or in other words A, 5 = F but not A, 8 | G. Consequently, F' = G does
not hold.

(<) Suppose that F' |= G does not hold. Then there exist an algebra .4 and an assign-
ment [ such that A, 5 = F but not A, 8 |= G. Therefore A(S)(F) =1 and A(5)(G) =0,
which implies A(B)(F — G) =0, so (F — G) is not valid. O

Proposition 3.2 F'H G if and only if (F < G) is valid.

Extension to sets of formulas N as in propositional logic, e. g.:

NEF & forall A€ X-Algand f € X — Uy:
if A,5 G forall Ge€ N, then 4,5 = F.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.3 Let F' and G be formulas, let N be a set of formulas. Then
(i) F is valid if and only if =F' is unsatisfiable.
(ii) F = G if and only if F A\ =G is unsatisfiable.

(iii) N | G if and only if N U{—~G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Substitution Lemma

Lemma 3.4 Let A be a Y-algebra, let § be an assignment, let ¢ be a substitution.
Then for any Y-term t

A(B)(to) = A(Boo)(t),

where S oo : X — Uy is the assignment 5o o(x) = A(S)(z0o).

Proof. We use induction over the structure of >-terms.
If t =z, then A(foo)(z) = LBoo(x)=A(B)(xo) by definition of 8o o.

Ift = f(t1,...,tn), then A(Boo)(f(t1,...,tn)) = fa(A(Boo)(t1),..., A(Boo)(t,)) =
fa(AB)(tio), ..., A(B)(tao)) = AB)(f(to, ..., tao)) = A(B)(f(t1, . .., tn)o) by induc-

tion. O

Proposition 3.5 Let A be a Y-algebra, let 5 be an assignment, let o be a substitution.
Then for every ¥-formula F

A(B)(Fo) = A(Boo)(F).
Corollary 3.6 A, = Fo & A, foocEF

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.
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Two Lemmas

Lemma 3.7 Let A be a Y-algebra. Let F' be a Y-formula with free variables x1, . .., x,.
Then

AEVry,...,x, F ifand only if A F.

Proof. (=) Suppose that A = Vay,...,x, F, that is, A(8)(Vxq,...,2, F) = 1 for all
assignments . By definition, that means

min  {A(Blx; — a1, ...,x, — a,])(F)} =1,

and therefore A(f[x1 — aq,...,z, = a,])(F) =1 for all aq,...,a, € Uyk.

Let v be an arbitrary assigmnment. We have to show that A(vy)(F) = 1. For every
i € {1,...,n} define a; = ~v(x;), then v = y[x; — ay,...,x, — a,], and therefore
A (F) = A(y[xr — a1, ...,z = ay])(F) = 1.

(<) Suppose that A = F, that is, A(7)(F) = 1 for all assignments ~.

Then in particular A(Blx; — aq,...,z, — a,])(F) = 1 for all ay,...,a, € Uy (take
v = Blr1 = aq,...,z, — ay)). Therefore

AB)Vzy, ...,z F)= min  {A(B[x1 = a1, ..., 2, — a,])(F)} = 1.

Note that it is not possible to replace A= ... by A, = ... in Lemma 3.7.

Lemma 3.8 Let A be a Y-algebra. Let F' be a Y-formula with free variables x+, . .., x,.
Let o be a substitution and let vy, ...,y,, be the free variables of F'o. Then

AEVry,...,x, F implies A=Yy, ...,ym Fo.

Proof. By the previous lemma, we have A |= Vzq,...,z, F if and only if A = F and
similarly A = Vyy, ..., ym Fo if and only if A = Fo. So it suffices to show that A = F'
implies A = Fo. Suppose that A = F, that is, A(S)(F) = 1 for all assignments [.
Then for every assignment v, we have by Prop. 3.5 A(v)(Fo) = A(yoo)(F) =1 (take
f =~o0), and therefore A = Fo. O
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3.4 Algorithmic Problems

Validity(F'): = F ?

Satisfiability(F'): F' satisfiable?

Entailment(F,G): does F' entail G7

Model(A,F): A= F?

Solve(A,F): find an assignment 8 such that A, | F.
Solve(F'): find a substitution ¢ such that = Fo.

Abduce(F): find G with “certain properties” such that G = F.

Theory of an Algebra

Let A € ¥-Alg. The (first-order) theory of A is defined as

Th(A) ={GeFs(X) | AEG}

Problem of axiomatizability:

Given an algebra A (or a class of algebras) can one axiomatize Th(A), that is, can one
write down a formula F' (or a recursively enumerable set I’ of formulas) such that

Th(A) = {G | F = G}?

Two Interesting Theories

Let Ypres = ({0/0,s/1,+/2}, {<}) and N} = (N, 0, s, +, <) its standard interpretation
on the natural numbers. Th(N, ) is called Presburger arithmetic (M. Presburger, 1929).
(There is no essential difference when one, instead of N, considers the integer numbers
Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
¢ > 0 such that Th(Z,) ¢ NTIME(2*™)).

However, N, = (N, 0, s, +, %, <), the standard interpretation of ¥ps = ({0/0,s/1,+/2,
«/2}, {<}), has as theory the so-called Peano arithmetic which is undecidable and not
even recursively enumerable.
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(Non-)Computability Results
1. For most signatures ¥, validity is undecidable for Y-formulas.
(One can easily encode Turing machines in most signatures.)

2. Godel’s completeness theorem:
For each signature ¥, the set of valid ¥-formulas is recursively enumerable.
(We will prove this by giving complete deduction systems.)

3. Godel’s incompleteness theorem:
For 3 = ¥py and N, = (N,0, s, +, %, <), the theory Th(N,) is not recursively
enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Some Decidable Fragments

Some decidable fragments:

e Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

e Variable-free formulas without equality: satisfiability is NP-complete. (why?)

e Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

e Finite model checking is decidable in exponential time and PSPACE-complete.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by
e reduction of logical concepts,
e efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.
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Prenex Normal Form (Traditional)

Prenex formulas have the form
Qll‘l ce. ann F7

where F' is quantifier-free and Q; € {V,3}; we call Qi1 ...Q,x, the quantifier prefix
and F' the matrix of the formula.

Computing prenex normal form by the reduction system = p:

H|(F < G)], =p H[(F —G)AN(G—F)],
H[-Qr F], =p H[Qz~-F],
H[((Qz F) o G)l, =p H[Qy(F{z—y} o G,
o€ {A,V}
H[((QzF) = G), =p HQyF{z—y}—= G,
H[(F o (QzG)), =p H[Qy(F o G{z =y},
o€ {AV,—}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual

toQ,ie,V=Jand I=V.

Skolemization

Intuition: replacement of dy by a concrete choice function computing y from all the
arguments y depends on.

Transformation =g
(to be applied outermost, not in subformulas):

Vay, ...,y F =g Vai,...,x, Fly— f(z1,...,2,)}

where f/n is a new function symbol (Skolem function).

Together: I'=}7 G =% H
—~— ~~—
prenex prenex, no 3

Theorem 3.9 Let F, GG, and H as defined above and closed. Then
(i) F' and G are equivalent.

(ii) H = G but the converse is not true in general.

(iii) G satisfiable (w.r.t. ¥-Alg) < H satisfiable (w.r.t. ¥'-Alg) where ¥’ = (2 U
SKF,TI) if ¥ = (Q,1I).
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The Complete Picture

F

=% Quyr... Quu. G (G quantifier-free)
=% Vo, ..., o, H (m <n, H quantifier-free)
k n;
=tnp VI, , T /\ \/Lw
=1 j=1
leave out < _

clauses C;
g

PR

N ={C,...,Cy} is called the clausal (normal) form (CNF) of F.
Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F' be closed. Then F' = F. (The converse is not true in general.)

Theorem 3.11 Let F' be closed. Then F' is satisfiable if and only if F' is satisfiable if
and only if N is satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

e the size of the CNF is exponential when done naively; the transformations we
introduced already for propositional logic avoid this exponential growth;

e we want to preserve the original formula structure;

e we want small arity of Skolem functions (see next section).
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3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using
the following steps:

eliminate trivial subformulas

e replace beneficial subformulas

e produce a negation normal form (NNF)
e apply miniscoping

e rename all variables

e Skolemize

e push quantifiers upward

apply distributivity
We start with a closed formula.
Elimination of Trivial Subformulas

Eliminate subformulas T and L essentially as in the propositional case modulo associa-
tivity /commutativity of A, V:

H(FAT), =ocve H[F],
H[(FV 1)), =ocne H[F],
H[(FHJ—)]I) =" OCNF H[_‘F]p
H[(F < T)l, =ocve H[F],
H[(FV T, =ocne H[T],
H{(FA L), =ocve H[L],
H[=T], =ocne H[L],
H[~1], =ocne H[T],
H[(F — 1), =ocve H[-F],
H[(F = T)], =ocne H[T],
H[(L = F)], =ocve H[T],
H[{(T = F)], =ocne H[F],
H[Qz T], =ocne H[T]p
H[Qz 1], =ocne H[L],
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Replacement of Beneficial Subformulas

The functions v and v that give us an overapproximation for the number of clauses
generated by a formula are extended to quantified formulas by

v(Ve F) =v(3x F) = v(F),
v(Ve F) =v(3x F) = v(F).

The other cases are defined as for propositional formulas.

Introduce top-down fresh predicates for beneficial subformulas:
H[F|, =ocne H[P(z1,...,1,)], ANdef(H, p, P, F)

if v(H[F],) > v(H[P(...)], Ndef(H,p, P, F)),

where {z1,...,z,} are the free variables in F', P/n is a predicate new to H|[F],, and
def(H,p, P, F') is defined by

Vay, ...,z (P(21,...,2,) — F), if pol(H,p) =1,

Vo, ...,z (F— P(xy,...,2,)), if pol(H,p) = —1,
Ve, ...,z (P(21,...,2,) < F), if pol(H,p) = 0.

As in the propositional case, one can test v(H[F],) > v(H[P], A def(H,p, P,F')) in
constant time without actually computing v.

Negation Normal Form (NNF)
Apply the reduction system =-yn:

H[FH G]p —NNF H[(F—)G)/\(G—)F)]p
if pol(H,p) =1 or pol(H,p) = 0.

H[F < G], = H[(FAG)V (-G A—-F),

if pol(H,p) = —1.

H[F — G], =~ H[-F VG,
H[-=F], =~ H[F],
H[=(FVG)l, = H[-FA-G,
H[-(FAQG)), =~ H[-F V-G,
] [

H[ Q.T}Fp —NNF H_
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Miniscoping

Apply the reduction system =g modulo associativity and commutativity of A, V. For
the rules below we assume that x occurs freely in F, F’, but x does not occur freely

in G:

HQz (FAG)], =us H[(QxF)AG],
HQu(FVG)], =us H[(QzF)VGl,
HNz (FANF")], =us H[Yz F) A (Vz F')],
H[E3z (FVF")], =us H[(BzF)V 3z F')|,
H[Qz G, =us H[G],

Variable Renaming

Rename all variables in H such that there are no two different positions p, ¢ with H|, =

Qz F and H|, = QzG.

Standard Skolemization

Apply the reduction system:
H[3z Fl, = sk H[F{z = f(y1,- - yn) Hp

where p has minimal length,
{y1,...,yn} are the free variables in Jx F,
and f/n is a new function symbol to H.

Final Steps

Apply the reduction system modulo commutativity of A, V to push V upward:

H[Vz F)ANGl, =ocne H[Vz (FAG)],
H[(Vx F)V G], =ocxe H[Vz (FVG),

Note that variable renaming ensures that x does not occur in G.

Apply the reduction system modulo commutativity of A, V to push disjunctions down-
ward:

H[(FAF)VG], =cxe HI(FVG)A(F'VG),
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3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that ) contains at
least one constant symbol.

An Herbrand interpretation (over X)) is a Y-algebra A such that

o U,y =Ty (= the set of ground terms over X)
o fa:i(st,...y8n) = f(s1,...,8n), f/neEQ

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m € II may be freely interpreted as relations
Py CTY.

Proposition 3.12 Every set of ground atoms I uniquely determines an Herbrand in-

terpretation A via

(S1,...,8,) € Py ifand only if P(sy,...,s,) €1

Thus we shall identify Herbrand interpretations (over ¥) with sets of ¥-ground atoms.

Existence of Herbrand Models

An Herbrand interpretation [ is called an Herbrand model of F, if I = F.

The importance of Herbrand models lies in the following theorem, which we will prove
later in this lecture:

Let N be a set of (universally quantified) Y-clauses. Then the following properties are
equivalent:

(1) N has a model.
(2) N has an Herbrand model (over X).
(3) Gx(N) has an Herbrand model (over ).

where Gx(N) = { Co ground clause | (VZC) € N, o0 : X — Ty} is the set of ground
instances of N.
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