3 First-Order Logic

First-order logic

® is expressive:
can be used to formalize mathematical concepts,
can be used to encode Turing machines,
but cannot axiomatize natural numbers or uncountable sets,

e has important decidable fragments,

e has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical connectives (domain-independent)
= Boolean combinations, quantifiers

Signatures

A signature ¥ = (€2, 1II) fixes an alphabet of non-logical symbols, where
e) is a set of function symbols f with arity n > 0, written arity(f) = n,
e I is a set of predicate symbols P with arity m > 0, written arity(P) = m.

Function symbols are also called operator symbols.
If n =0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use
b, ¢, d for constant symbols,
f, g, h for non-constant function symbols,

P, Q, R, S for predicate symbols.

Convention: We will usually write f/n € Q) instead of f € Q, arity(f) = n (analogously
for predicate symbols).

46

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables
Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.

Terms

Terms over ¥ and X (X-terms) are formed according to these syntactic rules:

s,t,u,v = T ,xeX (variable)
| f(s1,-y80) , f/m€Q (functional term)

By Tx(X) we denote the set of X-terms (over X). A term not containing any variable
is called a ground term. By Ty we denote the set of ¥-ground terms.

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this syntax:
A, B = P(s1,...,8m) , P/mell (non-equational atom)
[| (s=t) (equation)
Whenever we admit equations as atomic formulas we are in the realm of first-order
logic with equality. Admitting equality does not really increase the expressiveness of

first-order logic (see next chapter). But deductive systems where equality is treated
specifically are much more efficient.

Literals
L == A (positive literal)
| A (negative literal)
Clauses
C,D == 1 (empty clause)

| LyV...VLg k>1 (non-empty clause)

47

General First-Order Formulas

Fyx(X) is the set of first-order formulas over 3 defined as follows:

F.GH == L (falsum)
| T (verum)
| A (atomic formula)
| -F (negation)
| (FAG) (conjunction)
| (FVG) (disjunction)
| (F—G) (implication)
| (F+ G) (equivalence)
| VaF (universal quantification)
| dzF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.
Vai,...,x, FF and dxq,...,z, F abbreviate Vz;...Vx,F and dx,...dz, F.
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+txu for +(s,*(t,u))
sxu<t+ov for < (x(s,u),+(t,v))
(

—s for —(s)
s! for I(s)
s fr L)
0 for ()

Example: Peano Arithmetic

Ypa = (Qpa, Ilpa)
Qpa = {0/0, +/2, %/2, s/1}
HPA = {</2}

Examples of formulas over this signature are:

Ve,y((x <yVemy)+ Iz@+zry))
daVy (z+y = y)
Va,y(x*s(y) = x*xy+ x)

Vo, y (s(z) = s(y) = x =~ y)

Vedy (r <y A—-Jz(z < zAz<y))

48

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F'):

pos(z) = {e},
pos(f(s1,---,sn)) ={e} UUZ {ip | p € pos(si) },

(

pos(P(ty, ..., 1)) = {ey UU_{ip | p € pos(t) },
(
(

pos(Ve ') = {e} U{1p | p € pos(F) },
pos(Jz F) ={c}U{1lp|p € pos(F) }.

The prefix order <, the subformula (subterm) operator, the formula (term) replacement
operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by var(¢) (and analogously for
atoms, literals, clauses, and formulas).

Bound and Free Variables

In Qz F, Q € {3, V}, we call F the scope of the quantifier Qz. An occurrence of a variable
x is called bound, if it is inside the scope of a quantifier Qz. Any other occurrence of a
variable is called free.

Formulas without free variables are called closed formulas (or sentential forms).
Formulas without variables are called ground.

Example:

scope of Yy
7\
7 N
scope of Vz

Yy ((Vz P(z)) — R(z,y)

The occurrence of y is bound, as is the first occurrence of z. The second occurrence of
x is a free occurrence.

49

Substitutions
Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.
Substitutions are mappings
o: X — Ty(X)
such that the domain of o, that is, the set
dom(o) ={z e X |o(z) #z},
is finite. The set of variables introduced by o, that is, the set of variables occurring in
one of the terms o(z), with € dom(o), is denoted by codom(o).
Substitutions are often written as {z1 — s1,...,2, — S,}, with z; pairwise distinct,

and then denote the mapping

si, ify=um,
{1 s1,..., 20— su}y) = {

y, otherwise

We also write zo for o(x).

The modification of a substitution o at z is defined as follows:

t, ify==xa

olz = t)(y) = {

o(y), otherwise

Why Substitution is Complicated

We define the application of a substitution o to a term ¢ or formula F' by structural
induction over the syntactic structure of ¢t or F' by the equations below.

In the presence of quantification it is surprisingly complex: We must not only ensure
that bound variables are not replaced by o. We must also make sure that the (free)
variables in the codomain of ¢ are not captured upon placing them into the scope of
a quantifier Qy. Hence the bound variable must be renamed into a “fresh”, that is,
previously unused, variable z.

50

Application of a Substitution

“Homomorphic” extension of ¢ to terms and formulas:

f(s1,...,80)0 = f(s10,...,8,0)
lo=1
To=T

P(s1,...,8,)0 = P(s10,...,8,0)
(uxv)o = (uo =~ vo)
—Fo =—(Fo)
(FoG)o=(Fo o Go) for each binary connective o
(Qz F)o = Qz (Folxr + z|) with z a fresh variable

If s = to for some subsitution o, we call the term s an instance of the term t, and we
call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Y-algebra (also called Y-interpretation or X-structure) is a triple

A= (Ua, (fa:Ul = Ud)pmea, (Pa S UY)p/men)
where Uy # () is a set, called the universe of A.

By X-Alg we denote the class of all Y-algebras.

Y-algebras generalize the valuations from propositional logic.

51

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined exter-
nally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Y-algebra A), is a function 5 : X — Uy.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with respect to

By structural induction we define
A(B) : Te(X) = Ua

as follows:

A(B)(x) = B(x), zeX
AB)(f (515 8n)) = Ja(AB)(s1), .., A(B)(sn)), [/n €

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let SBlx — a] : X — Uy, for x € X and a € Uy, denote the
assignment

Blz — a(y) = {

a ifr=y

B(y) otherwise

Truth Value of a Formula in A with respect to

A(B) : Fx(X) — {0,1} is defined inductively as follows:

AB)(L) = 0
AB)T) =1
A(B)(P(s1,...,8,)) = if (A(B)(s1),-.., A(B)(sn)) € P4 then 1 else 0
A(B)(s~t) = if A(B)(s) = A(S)(t) then 1 else 0
AB)(-F) = 1 - A(B)(F)
AB)FAG) = min(A(B)(F), AB)(G))
AB)FVG) = max(A(B)(F), A(B)(G))
AB)F — G) = max(1 - A(B)(F), A(B)(G))
AB)F < G) = if A(B)(F)=A(B)(G) then 1 else 0
AB) vz F) = min{A(Blz — a])(F)}
AB)EFz F) = max{A(B[z — d])(F)}

Example
The “Standard” interpretation for Peano arithmetic:

U = {0,1,2,..}

On = 0

sy ¢ n—n+1

+n : (ny,m)—>n+m

N : (n,m)—>nxm

<y = {(n,m)|n less than m }

Note that N is just one out of many possible Xpa-interpretations.
Values over N for sample terms and formulas:

Under the assignment 5 : x — 1,y — 3 we obtain

N(B)(s(z) + 5(0)) = 3
N(B)(x +y =~ s(y)) =1
N@B)(Ve,y(z+y~y+x) = 1
N(B)(Vz (2 <)) =0
N(B)(Vz3y (z < y)) =1

Ground Terms and Closed Formulas

If ¢ is a ground term, then A(3)(t) does not depend on f, that is, A(5)(t) = A(5')(¢)
for every 8 and f'.

Analogously, if F' is a closed formula, then A(3)(F) does not depend on 3, that is,
A(B)(F) = A(B')(F) for every 8 and 3.

An element a € Uy is called term-generated, if a = A(/3)(t) for some ground term t.
In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

Fis true in A under assignment f3:
ABEF o AB)F) =1
F is true in A (A is a model of F; F' is valid in A):

AEF & APBEF forallpe X — Uy

53

F' is valid (or is a tautology):
EF & AEF foral Ac X-Alg

F is called satisfiable if there exist A and 8 such that A, 8 |= F. Otherwise F' is called
unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F'), written F' |= G, if for all A € ¥-Alg
and f € X — Uy, we have

ABEF = ABEG

F and G are called equivalent, written F' H G, if for all A € ¥-Alg and € X — Uy
we have

ABEF & APBEG
Proposition 3.1 F' = G if and only if (F — G) is valid

Proof. (=) Suppose that (F' — G) is not valid. Then there exist an algebra A and
an assignment 3 such that A(8)(F — G) = 0, which means that A(5)(F) = 1 and
A(B)(G) =0, or in other words A, 5 = F but not A, 8 | G. Consequently, F' = G does
not hold.

(<) Suppose that F' |= G does not hold. Then there exist an algebra .4 and an assign-
ment [such that A, 5 = F but not A, 8 |= G. Therefore A(S)(F) =1 and A(5)(G) =0,
which implies A(B)(F — G) =0, so (F — G) is not valid. O

Proposition 3.2 F'H G if and only if (F < G) is valid.

Extension to sets of formulas N as in propositional logic, e. g.:

NEF & forall A€ X-Algand f € X — Uy:
if A,5 G forall Ge€ N, then 4,5 = F.

54

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.3 Let F' and G be formulas, let N be a set of formulas. Then
(i) F is valid if and only if =F' is unsatisfiable.
(ii) F = G if and only if F A\ =G is unsatisfiable.

(iii) N | G if and only if N U{—~G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Substitution Lemma

Lemma 3.4 Let A be a Y-algebra, let § be an assignment, let ¢ be a substitution.
Then for any Y-term t

A(B)(to) = A(Boo)(t),

where S oo : X — Uy is the assignment 5o o(x) = A(S)(z0o).

Proof. We use induction over the structure of >-terms.
If t =z, then A(foo)(z) = LBoo(x)=A(B)(xo) by definition of 8o o.

Ift = f(t1,...,tn), then A(Boo)(f(t1,...,tn)) = fa(A(Boo)(t1),..., A(Boo)(t,)) =
fa(AB)(tio), ..., A(B)(tao)) = AB)(f(to, ..., tao)) = A(B)(f(t1, . .., tn)o) by induc-

tion. O

Proposition 3.5 Let A be a Y-algebra, let 5 be an assignment, let o be a substitution.
Then for every ¥-formula F

A(B)(Fo) = A(Boo)(F).
Corollary 3.6 A, = Fo & A, foocEF

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

55

Two Lemmas

Lemma 3.7 Let A be a Y-algebra. Let F' be a Y-formula with free variables x1, . .., x,.
Then

AEVry,...,x, F ifand only if A F.

Proof. (=) Suppose that A = Vay,...,x, F, that is, A(8)(Vxq,...,2, F) = 1 for all
assignments . By definition, that means

min {A(Blx; — a1, ...,x, — a,])(F)} =1,

and therefore A(f[x1 — aq,...,z, = a,])(F) =1 for all aq,...,a, € Uyk.

Let v be an arbitrary assigmnment. We have to show that A(vy)(F) = 1. For every
i € {1,...,n} define a; = ~v(x;), then v = y[x; — ay,...,x, — a,], and therefore
A (F) = A(y[xr — a1, ...,z = ay])(F) = 1.

(<) Suppose that A = F, that is, A(7)(F) = 1 for all assignments ~.

Then in particular A(Blx; — aq,...,z, — a,])(F) = 1 for all ay,...,a, € Uy (take
v = Blr1 = aq,...,z, — ay)). Therefore

AB)Vzy, ...,z F)= min {A(B[x1 = a1, ..., 2, — a,])(F)} = 1.

Note that it is not possible to replace A= ... by A, = ... in Lemma 3.7.

Lemma 3.8 Let A be a Y-algebra. Let F' be a Y-formula with free variables x+, . .., x,.
Let o be a substitution and let vy, ...,y,, be the free variables of F'o. Then

AEVry,...,x, F implies A=Yy, ...,ym Fo.

Proof. By the previous lemma, we have A |= Vzq,...,z, F if and only if A = F and
similarly A = Vyy, ..., ym Fo if and only if A = Fo. So it suffices to show that A = F'
implies A = Fo. Suppose that A = F, that is, A(S)(F) = 1 for all assignments [.
Then for every assignment v, we have by Prop. 3.5 A(v)(Fo) = A(yoo)(F) =1 (take
f =~o0), and therefore A = Fo. O

56

3.4 Algorithmic Problems

Validity(F'): = F ?

Satisfiability(F'): F' satisfiable?

Entailment(F,G): does F' entail G7

Model(A,F): A= F?

Solve(A,F): find an assignment 8 such that A, | F.
Solve(F'): find a substitution ¢ such that = Fo.

Abduce(F): find G with “certain properties” such that G = F.

Theory of an Algebra

Let A € ¥-Alg. The (first-order) theory of A is defined as

Th(A) ={GeFs(X) | AEG}

Problem of axiomatizability:

Given an algebra A (or a class of algebras) can one axiomatize Th(A), that is, can one
write down a formula F' (or a recursively enumerable set I’ of formulas) such that

Th(A) = {G | F = G}?

Two Interesting Theories

Let Ypres = ({0/0,s/1,+/2}, {<}) and N} = (N, 0, s, +, <) its standard interpretation
on the natural numbers. Th(N,) is called Presburger arithmetic (M. Presburger, 1929).
(There is no essential difference when one, instead of N, considers the integer numbers
Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
¢ > 0 such that Th(Z,) ¢ NTIME(2*™)).

However, N, = (N, 0, s, +, %, <), the standard interpretation of ¥ps = ({0/0,s/1,+/2,
«/2}, {<}), has as theory the so-called Peano arithmetic which is undecidable and not
even recursively enumerable.

o7

(Non-)Computability Results
1. For most signatures ¥, validity is undecidable for Y-formulas.
(One can easily encode Turing machines in most signatures.)

2. Godel’s completeness theorem:
For each signature ¥, the set of valid ¥-formulas is recursively enumerable.
(We will prove this by giving complete deduction systems.)

3. Godel’s incompleteness theorem:
For 3 = ¥py and N, = (N,0, s, +, %, <), the theory Th(N,) is not recursively
enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Some Decidable Fragments

Some decidable fragments:

e Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

e Variable-free formulas without equality: satisfiability is NP-complete. (why?)

e Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

e Finite model checking is decidable in exponential time and PSPACE-complete.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by
e reduction of logical concepts,
e efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

o8

Prenex Normal Form (Traditional)

Prenex formulas have the form
Qll‘l ce. ann F7

where F' is quantifier-free and Q; € {V,3}; we call Qi1 ...Q,x, the quantifier prefix
and F' the matrix of the formula.

Computing prenex normal form by the reduction system = p:

H|(F < G)], =p H[(F —G)AN(G—F)],
H[-Qr F], =p H[Qz~-F],
H[((Qz F) o G)l, =p H[Qy(F{z—y} o G,
o€ {A,V}
H[((QzF) = G), =p HQyF{z—y}—= G,
H[(F o (QzG)), =p H[Qy(F o G{z =y},
o€ {AV,—}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual

toQ,ie,V=Jand I=V.

Skolemization

Intuition: replacement of dy by a concrete choice function computing y from all the
arguments y depends on.

Transformation =g
(to be applied outermost, not in subformulas):

Vay, ...,y F =g Vai,...,x, Fly— f(z1,...,2,)}

where f/n is a new function symbol (Skolem function).

Together: I'=}7 G =% H
—~— ~~—
prenex prenex, no 3

Theorem 3.9 Let F, GG, and H as defined above and closed. Then
(i) F' and G are equivalent.

(ii) H = G but the converse is not true in general.

(iii) G satisfiable (w.r.t. ¥-Alg) < H satisfiable (w.r.t. ¥'-Alg) where ¥’ = (2 U
SKF,TI) if ¥ = (Q,1I).

59

The Complete Picture

F

=% Quyr... Quu. G (G quantifier-free)
=% Vo, ..., o, H (m <n, H quantifier-free)
k n;
=tnp VI, , T /\ \/Lw
=1 j=1
leave out < _

clauses C;
g

PR

N ={C,...,Cy} is called the clausal (normal) form (CNF) of F.
Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F' be closed. Then F' = F. (The converse is not true in general.)

Theorem 3.11 Let F' be closed. Then F' is satisfiable if and only if F' is satisfiable if
and only if N is satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

e the size of the CNF is exponential when done naively; the transformations we
introduced already for propositional logic avoid this exponential growth;

e we want to preserve the original formula structure;

e we want small arity of Skolem functions (see next section).

60

3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using
the following steps:

eliminate trivial subformulas

e replace beneficial subformulas

e produce a negation normal form (NNF)
e apply miniscoping

e rename all variables

e Skolemize

e push quantifiers upward

apply distributivity
We start with a closed formula.
Elimination of Trivial Subformulas

Eliminate subformulas T and L essentially as in the propositional case modulo associa-
tivity /commutativity of A, V:

H(FAT), =ocve H[F],
H[(FV 1)), =ocne H[F],
H[(FHJ—)]I) =" OCNF H[_‘F]p
H[(F < T)l, =ocve H[F],
H[(FV T, =ocne H[T],
H{(FA L), =ocve H[L],
H[=T], =ocne H[L],
H[~1], =ocne H[T],
H[(F — 1), =ocve H[-F],
H[(F = T)], =ocne H[T],
H[(L = F)], =ocve H[T],
H[{(T = F)], =ocne H[F],
H[Qz T], =ocne H[T]p
H[Qz 1], =ocne H[L],

61

Replacement of Beneficial Subformulas

The functions v and v that give us an overapproximation for the number of clauses
generated by a formula are extended to quantified formulas by

v(Ve F) =v(3x F) = v(F),
v(Ve F) =v(3x F) = v(F).

The other cases are defined as for propositional formulas.

Introduce top-down fresh predicates for beneficial subformulas:
H[F|, =ocne H[P(z1,...,1,)], ANdef(H, p, P, F)

if v(H[F],) > v(H[P(...)], Ndef(H,p, P, F)),

where {z1,...,z,} are the free variables in F', P/n is a predicate new to H|[F],, and
def(H,p, P, F') is defined by

Vay, ...,z (P(21,...,2,) — F), if pol(H,p) =1,

Vo, ...,z (F— P(xy,...,2,)), if pol(H,p) = —1,
Ve, ...,z (P(21,...,2,) < F), if pol(H,p) = 0.

As in the propositional case, one can test v(H[F],) > v(H[P], A def(H,p, P,F')) in
constant time without actually computing v.

Negation Normal Form (NNF)
Apply the reduction system =-yn:

H[FH G]p —NNF H[(F—)G)/\(G—)F)]p
if pol(H,p) =1 or pol(H,p) = 0.

H[F < G], = H[(FAG)V (-G A—-F),

if pol(H,p) = —1.

H[F — G], =~ H[-F VG,
H[-=F], =~ H[F],
H[=(FVG)l, = H[-FA-G,
H[-(FAQG)), =~ H[-F V-G,
] [

H[Q.T}Fp —NNF H_

62

Miniscoping

Apply the reduction system =g modulo associativity and commutativity of A, V. For
the rules below we assume that x occurs freely in F, F’, but x does not occur freely

in G:

HQz (FAG)], =us H[(QxF)AG],
HQu(FVG)], =us H[(QzF)VGl,
HNz (FANF")], =us H[Yz F) A (Vz F')],
H[E3z (FVF")], =us H[(BzF)V 3z F')|,
H[Qz G, =us H[G],

Variable Renaming

Rename all variables in H such that there are no two different positions p, ¢ with H|, =

Qz F and H|, = QzG.

Standard Skolemization

Apply the reduction system:
H[3z Fl, = sk H[F{z = f(y1,- - yn) Hp

where p has minimal length,
{y1,...,yn} are the free variables in Jx F,
and f/n is a new function symbol to H.

Final Steps

Apply the reduction system modulo commutativity of A, V to push V upward:

H[Vz F)ANGl, =ocne H[Vz (FAG)],
H[(Vx F)V G], =ocxe H[Vz (FVG),

Note that variable renaming ensures that x does not occur in G.

Apply the reduction system modulo commutativity of A, V to push disjunctions down-
ward:

H[(FAF)VG], =cxe HI(FVG)A(F'VG),

63

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that) contains at
least one constant symbol.

An Herbrand interpretation (over X)) is a Y-algebra A such that

o U,y =Ty (= the set of ground terms over X)
o fa:i(st,...y8n) = f(s1,...,8n), f/neEQ

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m € II may be freely interpreted as relations
Py CTY.

Proposition 3.12 Every set of ground atoms I uniquely determines an Herbrand in-

terpretation A via

(S1,...,8,) € Py ifand only if P(sy,...,s,) €1

Thus we shall identify Herbrand interpretations (over ¥) with sets of ¥-ground atoms.

Existence of Herbrand Models

An Herbrand interpretation [is called an Herbrand model of F, if I = F.

The importance of Herbrand models lies in the following theorem, which we will prove
later in this lecture:

Let N be a set of (universally quantified) Y-clauses. Then the following properties are
equivalent:

(1) N has a model.
(2) N has an Herbrand model (over X).
(3) Gx(N) has an Herbrand model (over).

where Gx(N) = { Co ground clause | (VZC) € N, o0 : X — Ty} is the set of ground
instances of N.

64

