3 First-Order Logic

First-order logic

- is expressive: can be used to formalize mathematical concepts, can be used to encode Turing machines, but cannot axiomatize natural numbers or uncountable sets,
- has important decidable fragments,
- has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

- non-logical symbols (domain-specific)
\Rightarrow terms, atomic formulas
- logical connectives (domain-independent)
\Rightarrow Boolean combinations, quantifiers

Signatures

A signature $\Sigma=(\Omega, \Pi)$ fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \geq 0$, written $\operatorname{arity}(f)=n$,
- Π is a set of predicate symbols P with arity $m \geq 0$, written $\operatorname{arity}(P)=m$.

Function symbols are also called operator symbols.
If $n=0$ then f is also called a constant (symbol).
If $m=0$ then P is also called a propositional variable.
We will usually use
b, c, d for constant symbols,
f, g, h for non-constant function symbols,
P, Q, R, S for predicate symbols.
Convention: We will usually write $f / n \in \Omega$ instead of $f \in \Omega$, arity $(f)=n$ (analogously for predicate symbols).

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages); no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote variables.

Terms

Terms over Σ and X (Σ-terms) are formed according to these syntactic rules:

$$
\begin{array}{llll}
s, t, u, v & ::= & x & , x \in X \\
& \mid & f\left(s_{1}, \ldots, s_{n}\right) & , f / n \in \Omega
\end{array} \quad \text { (functional term) }
$$

By $\mathrm{T}_{\Sigma}(X)$ we denote the set of Σ-terms (over X). A term not containing any variable is called a ground term. By T_{Σ} we denote the set of Σ-ground terms.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of first-order logic (see next chapter). But deductive systems where equality is treated specifically are much more efficient.

Literals

$$
\begin{array}{rccc}
L & ::= & A & \text { (positive literal) } \\
& \mid & \neg A & \text { (negative literal) }
\end{array}
$$

Clauses

$$
\begin{array}{rlr}
C, D::= & \perp & \text { (empty clause) } \\
\mid & L_{1} \vee \ldots \vee L_{k}, k \geq 1 & \text { (non-empty clause) }
\end{array}
$$

General First-Order Formulas

$\mathrm{F}_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

$F, G, H \quad::=$	\perp	(falsum)
	T	(verum)
	A	(atomic formula)
	$\neg F$	(negation)
	$(F \wedge G)$	(conjunction)
	$(F \vee G)$	(disjunction)
	$(F \rightarrow G)$	(implication)
	$(F \leftrightarrow G)$	(equivalence)
	$\forall x F$	(universal quantification)
	$\exists x F$	(existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.
$\forall x_{1}, \ldots, x_{n} F$ and $\exists x_{1}, \ldots, x_{n} F$ abbreviate $\forall x_{1} \ldots \forall x_{n} F$ and $\exists x_{1} \ldots \exists x_{n} F$.
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.
Examples:

Example: Peano Arithmetic

$\Sigma_{\mathrm{PA}}=\left(\Omega_{\mathrm{PA}}, \Pi_{\mathrm{PA}}\right)$
$\Omega_{\mathrm{PA}}=\{0 / 0,+/ 2, * / 2, s / 1\}$
$\Pi_{\mathrm{PA}}=\{</ 2\}$
Examples of formulas over this signature are:

```
\(\forall x, y((x<y \vee x \approx y) \leftrightarrow \exists z(x+z \approx y))\)
\(\exists x \forall y(x+y \approx y)\)
\(\forall x, y(x * s(y) \approx x * y+x)\)
\(\forall x, y(s(x) \approx s(y) \rightarrow x \approx y)\)
\(\forall x \exists y(x<y \wedge \neg \exists z(x<z \wedge z<y))\)
```


Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:
The positions of a term s (formula F):

$$
\begin{aligned}
& \operatorname{pos}(x)=\{\varepsilon\}, \\
& \operatorname{pos}\left(f\left(s_{1}, \ldots, s_{n}\right)\right)=\{\varepsilon\} \cup \bigcup_{i=1}^{n}\left\{i p \mid p \in \operatorname{pos}\left(s_{i}\right)\right\}, \\
& \operatorname{pos}\left(P\left(t_{1}, \ldots, t_{n}\right)\right)=\{\varepsilon\} \cup \bigcup_{i=1}^{n}\left\{i p \mid p \in \operatorname{pos}\left(t_{i}\right)\right\}, \\
& \operatorname{pos}(\forall x F)=\{\varepsilon\} \cup\{1 p \mid p \in \operatorname{pos}(F)\}, \\
& \operatorname{pos}(\exists x F)=\{\varepsilon\} \cup\{1 p \mid p \in \operatorname{pos}(F)\} .
\end{aligned}
$$

The prefix order \leq, the subformula (subterm) operator, the formula (term) replacement operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by $\operatorname{var}(t)$ (and analogously for atoms, literals, clauses, and formulas).

Bound and Free Variables

In $\mathrm{Q} x F, \mathrm{Q} \in\{\exists, \forall\}$, we call F the scope of the quantifier $\mathrm{Q} x$. An occurrence of a variable x is called bound, if it is inside the scope of a quantifier $\mathrm{Q} x$. Any other occurrence of a variable is called free.

Formulas without free variables are called closed formulas (or sentential forms).
Formulas without variables are called ground.
Example:

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

Substitutions are mappings

$$
\sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X)
$$

such that the domain of σ, that is, the set

$$
\operatorname{dom}(\sigma)=\{x \in X \mid \sigma(x) \neq x\},
$$

is finite. The set of variables introduced by σ, that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in \operatorname{dom}(\sigma)$, is denoted by $\operatorname{codom}(\sigma)$.

Substitutions are often written as $\left\{x_{1} \mapsto s_{1}, \ldots, x_{n} \mapsto s_{n}\right\}$, with x_{i} pairwise distinct, and then denote the mapping

$$
\left\{x_{1} \mapsto s_{1}, \ldots, x_{n} \mapsto s_{n}\right\}(y)= \begin{cases}s_{i}, & \text { if } y=x_{i} \\ y, & \text { otherwise }\end{cases}
$$

We also write $x \sigma$ for $\sigma(x)$.
The modification of a substitution σ at x is defined as follows:

$$
\sigma[x \mapsto t](y)= \begin{cases}t, & \text { if } y=x \\ \sigma(y), & \text { otherwise }\end{cases}
$$

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations below.

In the presence of quantification it is surprisingly complex: We must not only ensure that bound variables are not replaced by σ. We must also make sure that the (free) variables in the codomain of σ are not captured upon placing them into the scope of a quantifier Qy. Hence the bound variable must be renamed into a "fresh", that is, previously unused, variable z.

Application of a Substitution

"Homomorphic" extension of σ to terms and formulas:

$$
\begin{aligned}
f\left(s_{1}, \ldots, s_{n}\right) \sigma & =f\left(s_{1} \sigma, \ldots, s_{n} \sigma\right) \\
\perp \sigma & =\perp \\
\mathrm{T} \sigma & =\top \\
P\left(s_{1}, \ldots, s_{n}\right) \sigma & =P\left(s_{1} \sigma, \ldots, s_{n} \sigma\right) \\
(u \approx v) \sigma & =(u \sigma \approx v \sigma) \\
\neg F \sigma & =\neg(F \sigma) \\
(F \circ G) \sigma & =(F \sigma \circ G \sigma) \quad \text { for each binary connective } \circ \\
(\mathrm{Q} x F) \sigma & =\mathrm{Q} z(F \sigma[x \mapsto z]) \quad \text { with } z \text { a fresh variable }
\end{aligned}
$$

If $s=t \sigma$ for some subsitution σ, we call the term s an instance of the term t, and we call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas. The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values "true" and "false" denoted by 1 and 0 , respectively.

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

$$
\mathcal{A}=\left(U_{\mathcal{A}},\left(f_{\mathcal{A}}: U_{\mathcal{A}}^{n} \rightarrow U_{\mathcal{A}}\right)_{f / n \in \Omega},\left(P_{\mathcal{A}} \subseteq U_{\mathcal{A}}^{m}\right)_{P / m \in \Pi}\right)
$$

where $U_{\mathcal{A}} \neq \emptyset$ is a set, called the universe of \mathcal{A}.
By Σ-Alg we denote the class of all Σ-algebras.
Σ-algebras generalize the valuations from propositional logic.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Σ-algebra \mathcal{A}), is a function $\beta: X \rightarrow U_{\mathcal{A}}$.
Variable assignments are the semantic counterparts of substitutions.

Value of a Term in \mathcal{A} with respect to β

By structural induction we define

$$
\mathcal{A}(\beta): \mathrm{T}_{\Sigma}(X) \rightarrow U_{\mathcal{A}}
$$

as follows:

$$
\begin{aligned}
\mathcal{A}(\beta)(x) & =\beta(x), & & x \in X \\
\mathcal{A}(\beta)\left(f\left(s_{1}, \ldots, s_{n}\right)\right) & =f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(s_{1}\right), \ldots, \mathcal{A}(\beta)\left(s_{n}\right)\right), & & f / n \in \Omega
\end{aligned}
$$

In the scope of a quantifier we need to evaluate terms with respect to modified assignments. To that end, let $\beta[x \mapsto a]: X \rightarrow U_{\mathcal{A}}$, for $x \in X$ and $a \in U_{\mathcal{A}}$, denote the assignment

$$
\beta[x \mapsto a](y)= \begin{cases}a & \text { if } x=y \\ \beta(y) & \text { otherwise }\end{cases}
$$

Truth Value of a Formula in \mathcal{A} with respect to β

$\mathcal{A}(\beta): \mathrm{F}_{\Sigma}(X) \rightarrow\{0,1\}$ is defined inductively as follows:

$$
\begin{aligned}
\mathcal{A}(\beta)(\perp) & =0 \\
\mathcal{A}(\beta)(\mathrm{T}) & =1 \\
\mathcal{A}(\beta)\left(P\left(s_{1}, \ldots, s_{n}\right)\right) & =\text { if }\left(\mathcal{A}(\beta)\left(s_{1}\right), \ldots, \mathcal{A}(\beta)\left(s_{n}\right)\right) \in P_{\mathcal{A}} \text { then } 1 \text { else } 0 \\
\mathcal{A}(\beta)(s \approx t) & =\text { if } \mathcal{A}(\beta)(s)=\mathcal{A}(\beta)(t) \text { then } 1 \text { else } 0 \\
\mathcal{A}(\beta)(\neg F) & =1-\mathcal{A}(\beta)(F) \\
\mathcal{A}(\beta)(F \wedge G) & =\min (\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G)) \\
\mathcal{A}(\beta)(F \vee G) & =\max (\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G)) \\
\mathcal{A}(\beta)(F \rightarrow G) & =\max (1-\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G)) \\
\mathcal{A}(\beta)(F \leftrightarrow G) & =\operatorname{if} \mathcal{A}(\beta)(F)=\mathcal{A}(\beta)(G) \text { then } 1 \text { else } 0 \\
\mathcal{A}(\beta)(\forall x F) & =\min _{a \in U_{\mathcal{A}}}\{\mathcal{A}(\beta[x \mapsto a])(F)\} \\
\mathcal{A}(\beta)(\exists x F) & =\max _{a \in U_{\mathcal{A}}}\{\mathcal{A}(\beta[x \mapsto a])(F)\}
\end{aligned}
$$

Example

The "Standard" interpretation for Peano arithmetic:

$$
\begin{aligned}
U_{\mathbb{N}} & =\{0,1,2, \ldots\} \\
0_{\mathbb{N}} & =0 \\
s_{\mathbb{N}} & : n \mapsto n+1 \\
+_{\mathbb{N}} & :(n, m) \mapsto n+m \\
*_{\mathbb{N}} & :(n, m) \mapsto n * m \\
<_{\mathbb{N}} & =\{(n, m) \mid n \text { less than } m\}
\end{aligned}
$$

Note that \mathbb{N} is just one out of many possible Σ_{PA}-interpretations.
Values over \mathbb{N} for sample terms and formulas:
Under the assignment $\beta: x \mapsto 1, y \mapsto 3$ we obtain

$$
\begin{array}{ll}
\mathbb{N}(\beta)(s(x)+s(0)) & =3 \\
\mathbb{N}(\beta)(x+y \approx s(y)) & =1 \\
\mathbb{N}(\beta)(\forall x, y(x+y \approx y+x)) & =1 \\
\mathbb{N}(\beta)(\forall z(z<y)) & =0 \\
\mathbb{N}(\beta)(\forall x \exists y(x<y)) & =1
\end{array}
$$

Ground Terms and Closed Formulas

If t is a ground term, then $\mathcal{A}(\beta)(t)$ does not depend on β, that is, $\mathcal{A}(\beta)(t)=\mathcal{A}\left(\beta^{\prime}\right)(t)$ for every β and β^{\prime}.

Analogously, if F is a closed formula, then $\mathcal{A}(\beta)(F)$ does not depend on β, that is, $\mathcal{A}(\beta)(F)=\mathcal{A}\left(\beta^{\prime}\right)(F)$ for every β and β^{\prime}.

An element $a \in U_{\mathcal{A}}$ is called term-generated, if $a=\mathcal{A}(\beta)(t)$ for some ground term t.
In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in \mathcal{A} under assignment β :

$$
\mathcal{A}, \beta \models F \quad: \Leftrightarrow \mathcal{A}(\beta)(F)=1
$$

F is true in $\mathcal{A}(\mathcal{A}$ is a model of $F ; F$ is valid in $\mathcal{A})$:

$$
\mathcal{A} \models F \quad: \Leftrightarrow \quad \mathcal{A}, \beta \models F \quad \text { for all } \beta \in X \rightarrow U_{\mathcal{A}}
$$

F is valid (or is a tautology):

$$
\models F \quad: \Leftrightarrow \mathcal{A} \models F \text { for all } \mathcal{A} \in \Sigma \text { - } \operatorname{Alg}
$$

F is called satisfiable if there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$. Otherwise F is called unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all $\mathcal{A} \in \Sigma$-Alg and $\beta \in X \rightarrow U_{\mathcal{A}}$, we have

$$
\mathcal{A}, \beta \models F \quad \Rightarrow \quad \mathcal{A}, \beta \models G
$$

F and G are called equivalent, written $F \models G$, if for all $\mathcal{A} \in \Sigma$-Alg and $\beta \in X \rightarrow U_{\mathcal{A}}$ we have

$$
\mathcal{A}, \beta \models F \quad \Leftrightarrow \quad \mathcal{A}, \beta \models G
$$

Proposition 3.1 $F \models G$ if and only if $(F \rightarrow G)$ is valid

Proof. (\Rightarrow) Suppose that $(F \rightarrow G)$ is not valid. Then there exist an algebra \mathcal{A} and an assignment β such that $\mathcal{A}(\beta)(F \rightarrow G)=0$, which means that $\mathcal{A}(\beta)(F)=1$ and $\mathcal{A}(\beta)(G)=0$, or in other words $\mathcal{A}, \beta \models F$ but not $\mathcal{A}, \beta \models G$. Consequently, $F \models G$ does not hold.
(\Leftarrow) Suppose that $F \models G$ does not hold. Then there exist an algebra \mathcal{A} and an assignment β such that $\mathcal{A}, \beta \models F$ but not $\mathcal{A}, \beta \models G$. Therefore $\mathcal{A}(\beta)(F)=1$ and $\mathcal{A}(\beta)(G)=0$, which implies $\mathcal{A}(\beta)(F \rightarrow G)=0$, so $(F \rightarrow G)$ is not valid.

Proposition 3.2 $F \models G$ if and only if $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N as in propositional logic, e. g.:
$N \models F \quad: \Leftrightarrow \quad$ for all $\mathcal{A} \in \Sigma$-Alg and $\beta \in X \rightarrow U_{\mathcal{A}}$: if $\mathcal{A}, \beta \models G$ for all $G \in N$, then $\mathcal{A}, \beta \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.3 Let F and G be formulas, let N be a set of formulas. Then
(i) F is valid if and only if $\neg F$ is unsatisfiable.
(ii) $F \models G$ if and only if $F \wedge \neg G$ is unsatisfiable.
(iii) $N \models G$ if and only if $N \cup\{\neg G\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Substitution Lemma

Lemma 3.4 Let \mathcal{A} be a Σ-algebra, let β be an assignment, let σ be a substitution. Then for any Σ-term t

$$
\mathcal{A}(\beta)(t \sigma)=\mathcal{A}(\beta \circ \sigma)(t),
$$

where $\beta \circ \sigma: X \rightarrow U_{\mathcal{A}}$ is the assignment $\beta \circ \sigma(x)=\mathcal{A}(\beta)(x \sigma)$.

Proof. We use induction over the structure of Σ-terms.
If $t=x$, then $\mathcal{A}(\beta \circ \sigma)(x)=\beta \circ \sigma(x)=\mathcal{A}(\beta)(x \sigma)$ by definition of $\beta \circ \sigma$.
If $t=f\left(t_{1}, \ldots, t_{n}\right)$, then $\mathcal{A}(\beta \circ \sigma)\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f_{\mathcal{A}}\left(\mathcal{A}(\beta \circ \sigma)\left(t_{1}\right), \ldots, \mathcal{A}(\beta \circ \sigma)\left(t_{n}\right)\right)=$ $f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1} \sigma\right), \ldots, \mathcal{A}(\beta)\left(t_{n} \sigma\right)\right)=\mathcal{A}(\beta)\left(f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right)\right)=\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, t_{n}\right) \sigma\right)$ by induction.

Proposition 3.5 Let \mathcal{A} be a Σ-algebra, let β be an assignment, let σ be a substitution. Then for every Σ-formula F

$$
\mathcal{A}(\beta)(F \sigma)=\mathcal{A}(\beta \circ \sigma)(F)
$$

Corollary 3.6 $\mathcal{A}, \beta \models F \sigma \Leftrightarrow \mathcal{A}, \beta \circ \sigma \models F$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Two Lemmas

Lemma 3.7 Let \mathcal{A} be a Σ-algebra. Let F be a Σ-formula with free variables x_{1}, \ldots, x_{n}. Then

$$
\mathcal{A} \models \forall x_{1}, \ldots, x_{n} F \text { if and only if } \mathcal{A} \models F \text {. }
$$

Proof. (\Rightarrow) Suppose that $\mathcal{A} \models \forall x_{1}, \ldots, x_{n} F$, that is, $\mathcal{A}(\beta)\left(\forall x_{1}, \ldots, x_{n} F\right)=1$ for all assignments β. By definition, that means

$$
\min _{a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}}\left\{\mathcal{A}\left(\beta\left[x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right]\right)(F)\right\}=1,
$$

and therefore $\mathcal{A}\left(\beta\left[x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right]\right)(F)=1$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.
Let γ be an arbitrary assigmnment. We have to show that $\mathcal{A}(\gamma)(F)=1$. For every $i \in\{1, \ldots, n\}$ define $a_{i}=\gamma\left(x_{i}\right)$, then $\gamma=\gamma\left[x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right]$, and therefore $\mathcal{A}(\gamma)(F)=\mathcal{A}\left(\gamma\left[x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right]\right)(F)=1$.
(\Leftarrow) Suppose that $\mathcal{A} \models F$, that is, $\mathcal{A}(\gamma)(F)=1$ for all assignments γ.
Then in particular $\mathcal{A}\left(\beta\left[x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right]\right)(F)=1$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$ (take $\left.\gamma=\beta\left[x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right]\right)$. Therefore

$$
\mathcal{A}(\beta)\left(\forall x_{1}, \ldots, x_{n} F\right)=\min _{a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}}\left\{\mathcal{A}\left(\beta\left[x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right]\right)(F)\right\}=1 .
$$

Note that it is not possible to replace $\mathcal{A} \models \ldots$ by $\mathcal{A}, \beta \models \ldots$ in Lemma 3.7.

Lemma 3.8 Let \mathcal{A} be a Σ-algebra. Let F be a Σ-formula with free variables x_{1}, \ldots, x_{n}. Let σ be a substitution and let y_{1}, \ldots, y_{m} be the free variables of $F \sigma$. Then

$$
\mathcal{A} \models \forall x_{1}, \ldots, x_{n} F \quad \text { implies } \mathcal{A} \models \forall y_{1}, \ldots, y_{m} F \sigma .
$$

Proof. By the previous lemma, we have $\mathcal{A} \models \forall x_{1}, \ldots, x_{n} F$ if and only if $\mathcal{A} \models F$ and similarly $\mathcal{A} \models \forall y_{1}, \ldots, y_{m} F \sigma$ if and only if $\mathcal{A} \models F \sigma$. So it suffices to show that $\mathcal{A} \models F$ implies $\mathcal{A} \models F \sigma$. Suppose that $\mathcal{A} \models F$, that is, $\mathcal{A}(\beta)(F)=1$ for all assignments β. Then for every assignment γ, we have by Prop. 3.5 $\mathcal{A}(\gamma)(F \sigma)=\mathcal{A}(\gamma \circ \sigma)(F)=1$ (take $\beta=\gamma \circ \sigma$), and therefore $\mathcal{A} \models F \sigma$.

3.4 Algorithmic Problems

$\operatorname{Validity}(F): \quad \models F$?
Satisfiability (F) : F satisfiable?
Entailment (F, G) : does F entail G ?
$\operatorname{Model}(\mathcal{A}, F): \quad \mathcal{A} \models F$?
Solve (\mathcal{A}, F) : find an assignment β such that $\mathcal{A}, \beta \models F$.
Solve (F) : find a substitution σ such that $\models F \sigma$.
Abduce (F) : find G with "certain properties" such that $G \models F$.

Theory of an Algebra

Let $\mathcal{A} \in \Sigma$-Alg. The (first-order) theory of \mathcal{A} is defined as

$$
\operatorname{Th}(\mathcal{A})=\left\{G \in \mathrm{~F}_{\Sigma}(X) \mid \mathcal{A} \models G\right\}
$$

Problem of axiomatizability:
Given an algebra \mathcal{A} (or a class of algebras) can one axiomatize $\operatorname{Th}(\mathcal{A})$, that is, can one write down a formula F (or a recursively enumerable set F of formulas) such that

$$
\operatorname{Th}(\mathcal{A})=\{G \mid F \models G\} ?
$$

Two Interesting Theories

Let $\Sigma_{\text {Pres }}=(\{0 / 0, s / 1,+/ 2\},\{<\})$ and $\mathbb{N}_{+}=(\mathbb{N}, 0, s,+,<)$ its standard interpretation on the natural numbers. $\operatorname{Th}\left(\mathbb{N}_{+}\right)$is called Presburger arithmetic (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{N}, considers the integer numbers \mathbb{Z} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $\left.\operatorname{Th}\left(\mathbb{Z}_{+}\right) \notin \operatorname{NTIME}\left(2^{2^{c n}}\right)\right)$.

However, $\mathbb{N}_{*}=(\mathbb{N}, 0, s,+, *,<)$, the standard interpretation of $\Sigma_{\mathrm{PA}}=(\{0 / 0, s / 1,+/ 2$, $* / 2\},\{<\})$, has as theory the so-called Peano arithmetic which is undecidable and not even recursively enumerable.

(Non-)Computability Results

1. For most signatures Σ, validity is undecidable for Σ-formulas.
(One can easily encode Turing machines in most signatures.)
2. Gödel's completeness theorem:

For each signature Σ, the set of valid Σ-formulas is recursively enumerable.
(We will prove this by giving complete deduction systems.)
3. Gödel's incompleteness theorem:

For $\Sigma=\Sigma_{\mathrm{PA}}$ and $\mathbb{N}_{*}=(\mathbb{N}, 0, s,+, *,<)$, the theory $\operatorname{Th}\left(\mathbb{N}_{*}\right)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic

Some Decidable Fragments

Some decidable fragments:

- Monadic class: no function symbols, all predicates unary; validity is NEXPTIMEcomplete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in exponential time and PSPACE-complete.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

$$
\mathrm{Q}_{1} x_{1} \ldots \mathrm{Q}_{n} x_{n} F,
$$

where F is quantifier-free and $\mathrm{Q}_{i} \in\{\forall, \exists\}$; we call $\mathrm{Q}_{1} x_{1} \ldots \mathrm{Q}_{n} x_{n}$ the quantifier prefix and F the matrix of the formula.

Computing prenex normal form by the reduction system \Rightarrow_{P} :

$$
\begin{array}{rll}
H[(F \leftrightarrow G)]_{p} & \Rightarrow_{P} & H[(F \rightarrow G) \wedge(G \rightarrow F)]_{p} \\
H[\neg \mathrm{Q} x F]_{p} & \Rightarrow_{P} & H[\overline{\mathrm{Q}} \neg F]_{p} \\
H[((\mathrm{Q} x F) \circ G)]_{p} & \Rightarrow_{P} & H[\mathrm{Q} y(F\{x \mapsto y\} \circ G)]_{p}, \\
& & \circ \in\{\wedge, \vee\} \\
H[((\mathrm{Q} x F) \rightarrow G)]_{p} & \Rightarrow_{P} & H\left[\overline{\mathrm{Q} y(F\{x \mapsto y\} \rightarrow G)]_{p},}\right. \\
H[(F \circ(\mathrm{Q} x G))]_{p} & \Rightarrow_{P} & H[\mathrm{Q} y(F \circ G\{x \mapsto y\})]_{p},
\end{array}
$$

Here y is always assumed to be some fresh variable and $\overline{\mathbf{Q}}$ denotes the quantifier dual to Q, i. e., $\bar{\forall}=\exists$ and $\bar{\exists}=\forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_{S}
(to be applied outermost, not in subformulas):

$$
\forall x_{1}, \ldots, x_{n} \exists y F \quad \Rightarrow_{S} \quad \forall x_{1}, \ldots, x_{n} F\left\{y \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right\}
$$

where f / n is a new function symbol (Skolem function).
Together: $F \Rightarrow{ }_{P}^{*} \underbrace{G}_{\text {prenex }} \Rightarrow_{S}^{*} \underbrace{H}_{\text {prenex, no ョ }}$

Theorem 3.9 Let F, G, and H as defined above and closed. Then
(i) F and G are equivalent.
(ii) $H \models G$ but the converse is not true in general.
(iii) G satisfiable (w.r.t. Σ-Alg) $\Leftrightarrow H$ satisfiable (w.r.t. Σ^{\prime}-Alg) where $\Sigma^{\prime}=(\Omega \cup$ $S K F, \Pi)$ if $\Sigma=(\Omega, \Pi)$.

The Complete Picture

$$
\begin{array}{rlrr}
F & \Rightarrow_{P}^{*} & Q_{1} y_{1} \ldots \mathrm{Q}_{n} y_{n} G & \text { (} G \text { quantifier-free }) \\
& \Rightarrow{ }_{S}^{*} & \forall x_{1}, \ldots, x_{m} H \quad(m \leq n, H \text { quantifier-free }) \\
& \Rightarrow_{C N F}^{*} \underbrace{\forall x_{1}, \ldots, x_{m}}_{F^{\prime}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{i j}}_{\text {clauses out } C_{i}}
\end{array}
$$

$N=\left\{C_{1}, \ldots, C_{k}\right\}$ is called the clausal (normal) form (CNF) of F.
Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F be closed. Then $F^{\prime} \models F$. (The converse is not true in general.)

Theorem 3.11 Let F be closed. Then F is satisfiable if and only if F^{\prime} is satisfiable if and only if N is satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note that we only can preserve satisfiability anyway due to Skolemization.

- the size of the CNF is exponential when done naively; the transformations we introduced already for propositional logic avoid this exponential growth;
- we want to preserve the original formula structure;
- we want small arity of Skolem functions (see next section).

3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- eliminate trivial subformulas
- replace beneficial subformulas
- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- Skolemize
- push quantifiers upward
- apply distributivity

We start with a closed formula.

Elimination of Trivial Subformulas

Eliminate subformulas \top and \perp essentially as in the propositional case modulo associativity/commutativity of \wedge, \vee :

$$
\begin{array}{rll}
H[(F \wedge \top)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[F]_{p} \\
H[(F \vee \perp)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[F]_{p} \\
H[(F \leftrightarrow \perp)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\neg F]_{p} \\
H[(F \leftrightarrow \top)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[F]_{p} \\
H[(F \vee \mathrm{~T})]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\top]_{p} \\
H[(F \wedge \perp)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\perp]_{p} \\
H[\neg \mathrm{]}]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\perp]_{p} \\
H[\neg \perp]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\mathrm{~T}]_{p} \\
H[(F \rightarrow \perp)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\neg F]_{p} \\
H[(F \rightarrow \mathrm{~T})]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\mathrm{~T}]_{p} \\
H[(\perp \rightarrow F)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\mathrm{~T}]_{p} \\
H[(\mathrm{~T} \rightarrow F)]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[F]_{p} \\
H[\mathrm{Q} x \mathrm{\top}]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\mathrm{~T}]_{p} \\
H[\mathrm{Q} x \perp]_{p} & \Rightarrow_{\mathrm{OCNF}} & H[\perp]_{p}
\end{array}
$$

Replacement of Beneficial Subformulas

The functions ν and $\bar{\nu}$ that give us an overapproximation for the number of clauses generated by a formula are extended to quantified formulas by

$$
\begin{aligned}
& \nu(\forall x F)=\nu(\exists x F)=\nu(F), \\
& \bar{\nu}(\forall x F)=\bar{\nu}(\exists x F)=\bar{\nu}(F) .
\end{aligned}
$$

The other cases are defined as for propositional formulas.
Introduce top-down fresh predicates for beneficial subformulas:

$$
H[F]_{p} \Rightarrow_{\mathrm{OCNF}} H\left[P\left(x_{1}, \ldots, x_{n}\right)\right]_{p} \wedge \operatorname{def}(H, p, P, F)
$$

if $\nu\left(H[F]_{p}\right)>\nu\left(H[P(\ldots)]_{p} \wedge \operatorname{def}(H, p, P, F)\right)$,
where $\left\{x_{1}, \ldots, x_{n}\right\}$ are the free variables in $F, P / n$ is a predicate new to $H[F]_{p}$, and $\operatorname{def}(H, p, P, F)$ is defined by

$$
\begin{aligned}
& \forall x_{1}, \ldots, x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow F\right), \text { if } \operatorname{pol}(H, p)=1, \\
& \forall x_{1}, \ldots, x_{n}\left(F \rightarrow P\left(x_{1}, \ldots, x_{n}\right)\right), \text { if } \operatorname{pol}(H, p)=-1, \\
& \forall x_{1}, \ldots, x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow F\right), \text { if } \operatorname{pol}(H, p)=0
\end{aligned}
$$

As in the propositional case, one can test $\nu\left(H[F]_{p}\right)>\nu\left(H[P]_{p} \wedge \operatorname{def}(H, p, P, F)\right)$ in constant time without actually computing ν.

Negation Normal Form (NNF)

Apply the reduction system $\Rightarrow_{\mathrm{NNF}}$:

$$
H[F \leftrightarrow G]_{p} \Rightarrow_{\mathrm{NNF}} H[(F \rightarrow G) \wedge(G \rightarrow F)]_{p}
$$

if $\operatorname{pol}(H, p)=1$ or $\operatorname{pol}(H, p)=0$.

$$
H[F \leftrightarrow G]_{p} \Rightarrow_{\mathrm{NNF}} H[(F \wedge G) \vee(\neg G \wedge \neg F)]_{p}
$$

if $\operatorname{pol}(H, p)=-1$.

$$
\begin{array}{rll}
H[F \rightarrow G]_{p} & \Rightarrow_{\mathrm{NNF}} \quad H[\neg F \vee G]_{p} \\
H[\neg \neg F]_{p} & \Rightarrow_{\mathrm{NNF}} & H[F]_{p} \\
H[\neg(F \vee G)]_{p} & \Rightarrow_{\mathrm{NNF}} & H[\neg F \wedge \neg G]_{p} \\
H[\neg(F \wedge G)]_{p} & \Rightarrow_{\mathrm{NNF}} \quad H[\neg F \vee \neg G]_{p} \\
H[\neg \mathrm{Q} x F]_{p} & \Rightarrow_{\mathrm{NNF}} \quad H[\overline{\mathrm{Q}} x \neg F]_{p}
\end{array}
$$

Miniscoping

Apply the reduction system $\Rightarrow_{\text {MS }}$ modulo associativity and commutativity of \wedge, \vee. For the rules below we assume that x occurs freely in F, F^{\prime}, but x does not occur freely in G :

$$
\begin{aligned}
H[\mathrm{Q} x(F \wedge G)]_{p} & \Rightarrow_{\mathrm{MS}} H[(\mathrm{Q} x F) \wedge G]_{p} \\
H[\mathrm{Q} x(F \vee G)]_{p} & \Rightarrow_{\mathrm{MS}} H[(\mathrm{Q} x F) \vee G]_{p} \\
H\left[\forall x\left(F \wedge F^{\prime}\right)\right]_{p} & \Rightarrow_{\mathrm{MS}} H\left[(\forall x F) \wedge\left(\forall x F^{\prime}\right)\right]_{p} \\
H\left[\exists x\left(F \vee F^{\prime}\right)\right]_{p} & \Rightarrow_{\mathrm{MS}} H\left[(\exists x F) \vee\left(\exists x F^{\prime}\right)\right]_{p} \\
H[\mathrm{Q} x G]_{p} & \Rightarrow_{\mathrm{MS}} H[G]_{p}
\end{aligned}
$$

Variable Renaming

Rename all variables in H such that there are no two different positions p, q with $\left.H\right|_{p}=$ $\mathrm{Q} x F$ and $\left.H\right|_{q}=\mathrm{Q}^{\prime} x G$.

Standard Skolemization

Apply the reduction system:

$$
H[\exists x F]_{p} \Rightarrow_{\mathrm{SK}} H\left[F\left\{x \mapsto f\left(y_{1}, \ldots, y_{n}\right)\right\}\right]_{p}
$$

where p has minimal length,
$\left\{y_{1}, \ldots, y_{n}\right\}$ are the free variables in $\exists x F$, and f / n is a new function symbol to H.

Final Steps

Apply the reduction system modulo commutativity of \wedge, \vee to push \forall upward:

$$
\begin{aligned}
& H[(\forall x F) \wedge G]_{p} \\
& H[(\forall x F) \vee G]_{p} \Rightarrow_{\mathrm{OCNF}} \quad H[\forall x(F \wedge G)]_{p} \\
& \mathrm{OCNF}
\end{aligned} H[\forall x(F \vee G)]_{p} .
$$

Note that variable renaming ensures that x does not occur in G.
Apply the reduction system modulo commutativity of \wedge, \vee to push disjunctions downward:

$$
H\left[\left(F \wedge F^{\prime}\right) \vee G\right]_{p} \Rightarrow_{\mathrm{CNF}} H\left[(F \vee G) \wedge\left(F^{\prime} \vee G\right)\right]_{p}
$$

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at least one constant symbol.

An Herbrand interpretation (over Σ) is a Σ-algebra \mathcal{A} such that

- $U_{\mathcal{A}}=\mathrm{T}_{\Sigma}(=$ the set of ground terms over $\Sigma)$
- $f_{\mathcal{A}}:\left(s_{1}, \ldots, s_{n}\right) \mapsto f\left(s_{1}, \ldots, s_{n}\right), f / n \in \Omega$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P / m \in \Pi$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq \mathrm{T}_{\Sigma}^{m}$.

Proposition 3.12 Every set of ground atoms I uniquely determines an Herbrand interpretation \mathcal{A} via

$$
\left(s_{1}, \ldots, s_{n}\right) \in P_{\mathcal{A}} \text { if and only if } P\left(s_{1}, \ldots, s_{n}\right) \in I
$$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Existence of Herbrand Models

An Herbrand interpretation I is called an Herbrand model of F, if $I \models F$.
The importance of Herbrand models lies in the following theorem, which we will prove later in this lecture:

Let N be a set of (universally quantified) Σ-clauses. Then the following properties are equivalent:
(1) N has a model.
(2) N has an Herbrand model (over Σ).
(3) $G_{\Sigma}(N)$ has an Herbrand model (over Σ).
where $G_{\Sigma}(N)=\left\{C \sigma\right.$ ground clause $\left.\mid(\forall \vec{x} C) \in N, \sigma: X \rightarrow \mathrm{~T}_{\Sigma}\right\}$ is the set of ground instances of N.

