
3 First-Order Logic

→First-order logic

• is expressive:
can be used to formalize mathematical concepts,
can be used to encode Turing machines,
but cannot axiomatize natural numbers or uncountable sets,

• has important decidable fragments,

• has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)
⇒ terms, atomic formulas

• logical connectives (domain-independent)
⇒ Boolean combinations, quantifiers

Signatures

A signature Σ = (Ω,Π) fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written arity(P) = m.

Function symbols are also called operator symbols.
If n = 0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use

b, c, d for constant symbols,

f , g, h for non-constant function symbols,

P , Q, R, S for predicate symbols.

Convention: We will usually write f/n ∈ Ω instead of f ∈ Ω, arity(f) = n (analogously
for predicate symbols).

46

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.

Terms

Terms over Σ and X (Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)
| f(s1, ..., sn) , f/n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any variable
is called a ground term. By TΣ we denote the set of Σ-ground terms.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A,B ::= P (s1, . . . , sm) , P/m ∈ Π (non-equational atom)
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of first-order
logic with equality . Admitting equality does not really increase the expressiveness of
first-order logic (see next chapter). But deductive systems where equality is treated
specifically are much more efficient.

Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C,D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

47

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F,G,H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

∀x1, . . . , xn F and ∃x1, . . . , xn F abbreviate ∀x1 . . .∀xn F and ∃x1 . . .∃xn F .

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+ t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t+ v for ≤ (∗(s, u),+(t, v))
−s for −(s)
s! for !(s)
|s| for | |(s)
0 for 0()

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {</2}

Examples of formulas over this signature are:

∀x, y ((x < y ∨ x ≈ y) ↔ ∃z (x+ z ≈ y))
∃x∀y (x+ y ≈ y)
∀x, y (x ∗ s(y) ≈ x ∗ y + x)
∀x, y (s(x) ≈ s(y) → x ≈ y)
∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

48

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

pos(x) = {ε},
pos(f(s1, . . . , sn)) = {ε} ∪

⋃n
i=1{ ip | p ∈ pos(si) },

pos(P (t1, . . . , tn)) = {ε} ∪
⋃n

i=1{ ip | p ∈ pos(ti) },

pos(∀xF) = {ε} ∪ { 1p | p ∈ pos(F) },
pos(∃xF) = {ε} ∪ { 1p | p ∈ pos(F) }.

The prefix order ≤, the subformula (subterm) operator, the formula (term) replacement
operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by var(t) (and analogously for
atoms, literals, clauses, and formulas).

Bound and Free Variables

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An occurrence of a variable
x is called bound, if it is inside the scope of a quantifier Qx. Any other occurrence of a
variable is called free.

Formulas without free variables are called closed formulas (or sentential forms).

Formulas without variables are called ground.

Example:

∀y

scope of ∀y
︷ ︸︸ ︷

((∀x

scope of ∀x
︷ ︸︸ ︷

P (x)) → R(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.

49

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.

Substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = { x ∈ X | σ(x) 6= x },

is finite. The set of variables introduced by σ, that is, the set of variables occurring in
one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as {x1 7→ s1, . . . , xn 7→ sn}, with xi pairwise distinct,
and then denote the mapping

{x1 7→ s1, . . . , xn 7→ sn}(y) =

{

si, if y = xi

y, otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

{

t, if y = x

σ(y), otherwise

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural
induction over the syntactic structure of t or F by the equations below.

In the presence of quantification it is surprisingly complex: We must not only ensure
that bound variables are not replaced by σ. We must also make sure that the (free)
variables in the codomain of σ are not captured upon placing them into the scope of
a quantifier Qy. Hence the bound variable must be renamed into a “fresh”, that is,
previously unused, variable z.

50

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P (s1, . . . , sn)σ = P (s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(F ◦G)σ = (Fσ ◦ Gσ) for each binary connective ◦

(QxF)σ = Qz (F σ[x 7→ z]) with z a fresh variable

If s = tσ for some subsitution σ, we call the term s an instance of the term t, and we
call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un
A → UA)f/n∈Ω, (PA ⊆ Um

A)P/m∈Π)

where UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Σ-algebras generalize the valuations from propositional logic.

51

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined exter-
nally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Σ-algebra A), is a function β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with respect to β

By structural induction we define

A(β) : TΣ(X) → UA

as follows:

A(β)(x) = β(x), x ∈ X
A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f/n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and a ∈ UA, denote the
assignment

β[x 7→ a](y) =

{

a if x = y

β(y) otherwise

Truth Value of a Formula in A with respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P (s1, . . . , sn)) = if (A(β)(s1), . . . ,A(β)(sn)) ∈ PA then 1 else 0

A(β)(s ≈ t) = if A(β)(s) = A(β)(t) then 1 else 0

A(β)(¬F) = 1−A(β)(F)

A(β)(F ∧G) = min(A(β)(F),A(β)(G))

A(β)(F ∨G) = max(A(β)(F),A(β)(G))

A(β)(F → G) = max(1−A(β)(F),A(β)(G))

A(β)(F ↔ G) = if A(β)(F) = A(β)(G) then 1 else 0

A(β)(∀xF) = min
a∈UA

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈UA

{A(β[x 7→ a])(F)}

52

Example

The “Standard” interpretation for Peano arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n+ 1

+N : (n,m) 7→ n+m

∗N : (n,m) 7→ n ∗m

<N = { (n,m) | n less than m }

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for sample terms and formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x+ y ≈ s(y)) = 1
N(β)(∀x, y (x+ y ≈ y + x)) = 1
N(β)(∀z (z < y)) = 0
N(β)(∀x∃y (x < y)) = 1

Ground Terms and Closed Formulas

If t is a ground term, then A(β)(t) does not depend on β, that is, A(β)(t) = A(β ′)(t)
for every β and β ′.

Analogously, if F is a closed formula, then A(β)(F) does not depend on β, that is,
A(β)(F) = A(β ′)(F) for every β and β ′.

An element a ∈ UA is called term-generated, if a = A(β)(t) for some ground term t.

In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in A under assignment β:

A, β |= F :⇔ A(β)(F) = 1

F is true in A (A is a model of F ; F is valid in A):

A |= F :⇔ A, β |= F for all β ∈ X → UA

53

F is valid (or is a tautology):

|= F :⇔ A |= F for all A ∈ Σ-Alg

F is called satisfiable if there exist A and β such that A, β |= F . Otherwise F is called
unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all A ∈ Σ-Alg
and β ∈ X → UA, we have

A, β |= F ⇒ A, β |= G

F and G are called equivalent, written F |=| G, if for all A ∈ Σ-Alg and β ∈ X → UA

we have

A, β |= F ⇔ A, β |= G

Proposition 3.1 F |= G if and only if (F → G) is valid

Proof. (⇒) Suppose that (F → G) is not valid. Then there exist an algebra A and
an assignment β such that A(β)(F → G) = 0, which means that A(β)(F) = 1 and
A(β)(G) = 0, or in other words A, β |= F but not A, β |= G. Consequently, F |= G does
not hold.

(⇐) Suppose that F |= G does not hold. Then there exist an algebra A and an assign-
ment β such that A, β |= F but not A, β |= G. Therefore A(β)(F) = 1 and A(β)(G) = 0,
which implies A(β)(F → G) = 0, so (F → G) is not valid. ✷

Proposition 3.2 F |=| G if and only if (F ↔ G) is valid.

Extension to sets of formulas N as in propositional logic, e. g.:

N |= F :⇔ for all A ∈ Σ-Alg and β ∈ X → UA:
if A, β |= G for all G ∈ N , then A, β |= F .

54

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.3 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Substitution Lemma

Lemma 3.4 Let A be a Σ-algebra, let β be an assignment, let σ be a substitution.
Then for any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → UA is the assignment β ◦ σ(x) = A(β)(xσ).

Proof. We use induction over the structure of Σ-terms.

If t = x, then A(β ◦ σ)(x) = β ◦ σ(x) = A(β)(xσ) by definition of β ◦ σ.

If t = f(t1, . . . , tn), then A(β ◦ σ)(f(t1, . . . , tn)) = fA(A(β ◦ σ)(t1), . . . ,A(β ◦ σ)(tn)) =
fA(A(β)(t1σ), . . . ,A(β)(tnσ)) = A(β)(f(t1σ, . . . , tnσ)) = A(β)(f(t1, . . . , tn)σ) by induc-
tion. ✷

Proposition 3.5 Let A be a Σ-algebra, let β be an assignment, let σ be a substitution.
Then for every Σ-formula F

A(β)(Fσ) = A(β ◦ σ)(F) .

Corollary 3.6 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

55

Two Lemmas

Lemma 3.7 Let A be a Σ-algebra. Let F be a Σ-formula with free variables x1, . . . , xn.
Then

A |= ∀x1, . . . , xn F if and only if A |= F .

Proof. (⇒) Suppose that A |= ∀x1, . . . , xn F , that is, A(β)(∀x1, . . . , xn F) = 1 for all
assignments β. By definition, that means

min
a1,...,an∈UA

{A(β[x1 7→ a1, . . . , xn 7→ an])(F)} = 1,

and therefore A(β[x1 7→ a1, . . . , xn 7→ an])(F) = 1 for all a1, . . . , an ∈ UA.

Let γ be an arbitrary assigmnment. We have to show that A(γ)(F) = 1. For every
i ∈ {1, . . . , n} define ai = γ(xi), then γ = γ[x1 7→ a1, . . . , xn 7→ an], and therefore
A(γ)(F) = A(γ[x1 7→ a1, . . . , xn 7→ an])(F) = 1.

(⇐) Suppose that A |= F , that is, A(γ)(F) = 1 for all assignments γ.

Then in particular A(β[x1 7→ a1, . . . , xn 7→ an])(F) = 1 for all a1, . . . , an ∈ UA (take
γ = β[x1 7→ a1, . . . , xn 7→ an]). Therefore

A(β)(∀x1, . . . , xn F) = min
a1,...,an∈UA

{A(β[x1 7→ a1, . . . , xn 7→ an])(F)} = 1.

✷

Note that it is not possible to replace A |= . . . by A, β |= . . . in Lemma 3.7.

Lemma 3.8 Let A be a Σ-algebra. Let F be a Σ-formula with free variables x1, . . . , xn.
Let σ be a substitution and let y1, . . . , ym be the free variables of Fσ. Then

A |= ∀x1, . . . , xn F implies A |= ∀y1, . . . , ym Fσ .

Proof. By the previous lemma, we have A |= ∀x1, . . . , xn F if and only if A |= F and
similarly A |= ∀y1, . . . , ym Fσ if and only if A |= Fσ. So it suffices to show that A |= F
implies A |= Fσ. Suppose that A |= F , that is, A(β)(F) = 1 for all assignments β.
Then for every assignment γ, we have by Prop. 3.5 A(γ)(Fσ) = A(γ ◦ σ)(F) = 1 (take
β = γ ◦ σ), and therefore A |= Fσ. ✷

56

3.4 Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F ?

Solve(A,F): find an assignment β such that A, β |= F .

Solve(F): find a substitution σ such that |= Fσ.

Abduce(F): find G with “certain properties” such that G |= F .

Theory of an Algebra

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G }

Problem of axiomatizability:

Given an algebra A (or a class of algebras) can one axiomatize Th(A), that is, can one
write down a formula F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G }?

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, {<}) and N+ = (N, 0, s,+, <) its standard interpretation
on the natural numbers. Th(N+) is called Presburger arithmetic (M. Presburger, 1929).
(There is no essential difference when one, instead of N, considers the integer numbers
Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
c ≥ 0 such that Th(Z+) 6∈ NTIME(22

cn

)).

However, N∗ = (N, 0, s,+, ∗, <), the standard interpretation of ΣPA = ({0/0, s/1,+/2,
∗/2}, {<}), has as theory the so-called Peano arithmetic which is undecidable and not
even recursively enumerable.

57

(Non-)Computability Results

1. For most signatures Σ, validity is undecidable for Σ-formulas.
(One can easily encode Turing machines in most signatures.)

2. Gödel’s completeness theorem:
For each signature Σ, the set of valid Σ-formulas is recursively enumerable.
(We will prove this by giving complete deduction systems.)

3. Gödel’s incompleteness theorem:
For Σ = ΣPA and N∗ = (N, 0, s,+, ∗, <), the theory Th(N∗) is not recursively
enumerable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

• Variable-free formulas without equality: satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

• Finite model checking is decidable in exponential time and PSPACE-complete.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

58

Prenex Normal Form (Traditional)

Prenex formulas have the form

Q1x1 . . .Qnxn F,

where F is quantifier-free and Qi ∈ {∀, ∃}; we call Q1x1 . . .Qnxn the quantifier prefix
and F the matrix of the formula.

Computing prenex normal form by the reduction system ⇒P :

H [(F ↔ G)]p ⇒P H [(F → G) ∧ (G → F)]p
H [¬QxF]p ⇒P H [Qx¬F]p

H [((QxF) ◦ G)]p ⇒P H [Qy (F{x 7→ y} ◦ G)]p,
◦ ∈ {∧,∨}

H [((QxF) → G)]p ⇒P H [Qy (F{x 7→ y} → G)]p,
H [(F ◦ (QxG))]p ⇒P H [Qy (F ◦ G{x 7→ y})]p,

◦ ∈ {∧,∨,→}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual
to Q, i. e., ∀ = ∃ and ∃ = ∀.

Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y from all the
arguments y depends on.

Transformation ⇒S

(to be applied outermost, not in subformulas):

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F{y 7→ f(x1, . . . , xn)}

where f/n is a new function symbol (Skolem function).

Together: F ⇒∗
P G

︸︷︷︸

prenex
⇒∗

S H
︸︷︷︸

prenex, no ∃

Theorem 3.9 Let F , G, and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (w. r. t. Σ-Alg) ⇔ H satisfiable (w. r. t. Σ′-Alg) where Σ′ = (Ω ∪
SKF ,Π) if Σ = (Ω,Π).

59

The Complete Picture

F ⇒∗
P Q1y1 . . .QnynG (G quantifier-free)

⇒∗
S ∀x1, . . . , xmH (m ≤ n, H quantifier-free)

⇒∗
CNF ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F .
Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 3.11 Let F be closed. Then F is satisfiable if and only if F ′ is satisfiable if
and only if N is satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

• the size of the CNF is exponential when done naively; the transformations we
introduced already for propositional logic avoid this exponential growth;

• we want to preserve the original formula structure;

• we want small arity of Skolem functions (see next section).

60

3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using
the following steps:

• eliminate trivial subformulas

• replace beneficial subformulas

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• Skolemize

• push quantifiers upward

• apply distributivity

We start with a closed formula.

Elimination of Trivial Subformulas

Eliminate subformulas ⊤ and ⊥ essentially as in the propositional case modulo associa-
tivity/commutativity of ∧, ∨:

H [(F ∧ ⊤)]p ⇒OCNF H [F]p

H [(F ∨ ⊥)]p ⇒OCNF H [F]p

H [(F ↔ ⊥)]p ⇒OCNF H [¬F]p

H [(F ↔ ⊤)]p ⇒OCNF H [F]p

H [(F ∨ ⊤)]p ⇒OCNF H [⊤]p

H [(F ∧ ⊥)]p ⇒OCNF H [⊥]p

H [¬⊤]p ⇒OCNF H [⊥]p

H [¬⊥]p ⇒OCNF H [⊤]p

H [(F → ⊥)]p ⇒OCNF H [¬F]p

H [(F → ⊤)]p ⇒OCNF H [⊤]p

H [(⊥ → F)]p ⇒OCNF H [⊤]p

H [(⊤ → F)]p ⇒OCNF H [F]p

H [Qx⊤]p ⇒OCNF H [⊤]p

H [Qx⊥]p ⇒OCNF H [⊥]p

61

Replacement of Beneficial Subformulas

The functions ν and ν̄ that give us an overapproximation for the number of clauses
generated by a formula are extended to quantified formulas by

ν(∀xF) = ν(∃xF) = ν(F),
ν̄(∀xF) = ν̄(∃xF) = ν̄(F).

The other cases are defined as for propositional formulas.

Introduce top-down fresh predicates for beneficial subformulas:

H [F]p ⇒OCNF H [P (x1, . . . , xn)]p ∧ def(H, p, P, F)

if ν(H [F]p) > ν(H [P (. . .)]p ∧ def(H, p, P, F)),

where {x1, . . . , xn} are the free variables in F , P/n is a predicate new to H [F]p, and
def(H, p, P, F) is defined by

∀x1, . . . , xn (P (x1, . . . , xn) → F), if pol(H, p) = 1,
∀x1, . . . , xn (F → P (x1, . . . , xn)), if pol(H, p) = −1,
∀x1, . . . , xn (P (x1, . . . , xn) ↔ F), if pol(H, p) = 0.

As in the propositional case, one can test ν(H [F]p) > ν(H [P]p ∧ def(H, p, P, F)) in
constant time without actually computing ν.

Negation Normal Form (NNF)

Apply the reduction system ⇒NNF:

H [F ↔ G]p ⇒NNF H [(F → G) ∧ (G → F)]p

if pol(H, p) = 1 or pol(H, p) = 0.

H [F ↔ G]p ⇒NNF H [(F ∧G) ∨ (¬G ∧ ¬F)]p

if pol(H, p) = −1.

H [F → G]p ⇒NNF H [¬F ∨G]p

H [¬¬F]p ⇒NNF H [F]p

H [¬(F ∨G)]p ⇒NNF H [¬F ∧ ¬G]p

H [¬(F ∧G)]p ⇒NNF H [¬F ∨ ¬G]p

H [¬Qx F]p ⇒NNF H [Qx ¬F]p

62

Miniscoping

Apply the reduction system ⇒MS modulo associativity and commutativity of ∧, ∨. For
the rules below we assume that x occurs freely in F , F ′, but x does not occur freely
in G:

H [Qx (F ∧G)]p ⇒MS H [(QxF) ∧G]p

H [Qx (F ∨G)]p ⇒MS H [(QxF) ∨G]p

H [∀x (F ∧ F ′)]p ⇒MS H [(∀xF) ∧ (∀xF ′)]p

H [∃x (F ∨ F ′)]p ⇒MS H [(∃xF) ∨ (∃xF ′)]p

H [QxG]p ⇒MS H [G]p

Variable Renaming

Rename all variables in H such that there are no two different positions p, q with H|p =
QxF and H|q = Q′xG.

Standard Skolemization

Apply the reduction system:

H [∃xF]p ⇒SK H [F{x 7→ f(y1, . . . , yn)}]p

where p has minimal length,
{y1, . . . , yn} are the free variables in ∃xF ,
and f/n is a new function symbol to H .

Final Steps

Apply the reduction system modulo commutativity of ∧, ∨ to push ∀ upward:

H [(∀xF) ∧G]p ⇒OCNF H [∀x (F ∧G)]p

H [(∀xF) ∨G]p ⇒OCNF H [∀x (F ∨G)]p

Note that variable renaming ensures that x does not occur in G.

Apply the reduction system modulo commutativity of ∧, ∨ to push disjunctions down-
ward:

H [(F ∧ F ′) ∨G]p ⇒CNF H [(F ∨G) ∧ (F ′ ∨G)]p

63

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at
least one constant symbol.

An Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f/n ∈ Ω

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m ∈ Π may be freely interpreted as relations
PA ⊆ Tm

Σ .

Proposition 3.12 Every set of ground atoms I uniquely determines an Herbrand in-
terpretation A via

(s1, . . . , sn) ∈ PA if and only if P (s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Existence of Herbrand Models

An Herbrand interpretation I is called an Herbrand model of F , if I |= F .

The importance of Herbrand models lies in the following theorem, which we will prove
later in this lecture:

Let N be a set of (universally quantified) Σ-clauses. Then the following properties are
equivalent:

(1) N has a model.
(2) N has an Herbrand model (over Σ).
(3) GΣ(N) has an Herbrand model (over Σ).

where GΣ(N) = {Cσ ground clause | (∀~xC) ∈ N, σ : X → TΣ } is the set of ground
instances of N .

64

