3 First-Order Logic

First-order logic

- is expressive: can be used to formalize mathematical concepts, can be used to encode Turing machines, but cannot axiomatize natural numbers or uncountable sets,
- has important decidable fragments,
- has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

- non-logical symbols (domain-specific)
 ⇒ terms, atomic formulas
- logical connectives (domain-independent)
 ⇒ Boolean combinations, quantifiers

Signatures

A signature $\Sigma = (\Omega, \Pi)$ fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \ge 0$, written arity(f) = n,
- Π is a set of predicate symbols P with arity $m \ge 0$, written arity(P) = m.

Function symbols are also called operator symbols. If n = 0 then f is also called a constant (symbol). If m = 0 then P is also called a propositional variable.

We will usually use

b, c, d for constant symbols,

f, g, h for non-constant function symbols,

P, Q, R, S for predicate symbols.

Convention: We will usually write $f/n \in \Omega$ instead of $f \in \Omega$, $\operatorname{arity}(f) = n$ (analogously for predicate symbols).

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming languages); no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote variables.

Terms

Terms over Σ and X (Σ -terms) are formed according to these syntactic rules:

 $\begin{array}{rrrr} s,t,u,v & ::= & x & , \ x \in X & (\text{variable}) \\ & \mid & f(s_1,...,s_n) & , \ f/n \in \Omega & (\text{functional term}) \end{array}$

By $T_{\Sigma}(X)$ we denote the set of Σ -terms (over X). A term not containing any variable is called a ground term. By T_{Σ} we denote the set of Σ -ground terms.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$A, B ::= P(s_1, \dots, s_m) , P/m \in \Pi \text{ (non-equational atom)}$$
$$\begin{bmatrix} | & (s \approx t) & (\text{equation}) \end{bmatrix}$$

Whenever we admit equations as atomic formulas we are in the realm of *first-order logic with equality*. Admitting equality does not really increase the expressiveness of first-order logic (see next chapter). But deductive systems where equality is treated specifically are much more efficient.

Literals

 $\begin{array}{ccc} L & ::= & A & (\text{positive literal}) \\ & & | & \neg A & (\text{negative literal}) \end{array}$

Clauses

$$\begin{array}{rcl} C,D & ::= & \bot & (\text{empty clause}) \\ & \mid & L_1 \lor \ldots \lor L_k, \ k \ge 1 & (\text{non-empty clause}) \end{array}$$

General First-Order Formulas

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

F, G, H	::=	\perp	(falsum)
		Т	(verum)
		A	(atomic formula)
		$\neg F$	(negation)
		$(F \wedge G)$	(conjunction)
		$(F \lor G)$	(disjunction)
		$(F \to G)$	(implication)
		$(F \leftrightarrow G)$	(equivalence)
		$\forall x F$	(universal quantification)
		$\exists x F$	(existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

 $\forall x_1, \ldots, x_n F$ and $\exists x_1, \ldots, x_n F$ abbreviate $\forall x_1 \ldots \forall x_n F$ and $\exists x_1 \ldots \exists x_n F$.

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:

s + t * ufor +(s, *(t, u)) $s * u \le t + v$ for $\le (*(s, u), +(t, v))$ for -(s)-ss!for !(s)||(s)|s|for 0 for 0()

Example: Peano Arithmetic

 $\begin{array}{rcl} \Sigma_{\rm PA} &=& (\Omega_{\rm PA}, \ \Pi_{\rm PA}) \\ \Omega_{\rm PA} &=& \{0/0, \ +/2, \ */2, \ s/1\} \\ \Pi_{\rm PA} &=& \{<\!/2\} \end{array}$

Examples of formulas over this signature are:

$$\begin{aligned} &\forall x, y \left((x < y \lor x \approx y) \leftrightarrow \exists z \left(x + z \approx y \right) \right) \\ &\exists x \forall y \left(x + y \approx y \right) \\ &\forall x, y \left(x * s(y) \approx x * y + x \right) \\ &\forall x, y \left(s(x) \approx s(y) \rightarrow x \approx y \right) \\ &\forall x \exists y \left(x < y \land \neg \exists z (x < z \land z < y) \right) \end{aligned}$$

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

$$pos(x) = \{\varepsilon\},\pos(f(s_1, \dots, s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(s_i)\},\pos(P(t_1, \dots, t_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(t_i)\},\pos(\forall x F) = \{\varepsilon\} \cup \{1p \mid p \in pos(F)\},\pos(\exists x F) = \{\varepsilon\} \cup \{1p \mid p \in pos(F)\}.$$

The prefix order \leq , the subformula (subterm) operator, the formula (term) replacement operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by var(t) (and analogously for atoms, literals, clauses, and formulas).

Bound and Free Variables

In Qx F, $Q \in \{\exists, \forall\}$, we call F the scope of the quantifier Qx. An occurrence of a variable x is called *bound*, if it is inside the scope of a quantifier Qx. Any other occurrence of a variable is called *free*.

Formulas without free variables are called *closed formulas* (or sentential forms).

Formulas without variables are called ground.

Example:

$$\forall y \quad \overbrace{((\forall x \quad P(x) \quad) \quad \rightarrow \quad R(x,y))}^{\text{scope of } \forall y}$$

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

Substitutions are mappings

$$\sigma: X \to \mathrm{T}_{\Sigma}(X)$$

such that the domain of σ , that is, the set

$$\operatorname{dom}(\sigma) = \{ x \in X \mid \sigma(x) \neq x \},\$$

is finite. The set of variables introduced by σ , that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in \text{dom}(\sigma)$, is denoted by $\text{codom}(\sigma)$.

Substitutions are often written as $\{x_1 \mapsto s_1, \ldots, x_n \mapsto s_n\}$, with x_i pairwise distinct, and then denote the mapping

$$\{x_1 \mapsto s_1, \dots, x_n \mapsto s_n\}(y) = \begin{cases} s_i, & \text{if } y = x_i \\ y, & \text{otherwise} \end{cases}$$

We also write $x\sigma$ for $\sigma(x)$.

The modification of a substitution σ at x is defined as follows:

$$\sigma[x \mapsto t](y) = \begin{cases} t, & \text{if } y = x \\ \sigma(y), & \text{otherwise} \end{cases}$$

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations below.

In the presence of quantification it is surprisingly complex: We must not only ensure that bound variables are not replaced by σ . We must also make sure that the (free) variables in the codomain of σ are not *captured* upon placing them into the scope of a quantifier Qy. Hence the bound variable must be renamed into a "fresh", that is, previously unused, variable z.

Application of a Substitution

"Homomorphic" extension of σ to terms and formulas:

$$f(s_1, \dots, s_n)\sigma = f(s_1\sigma, \dots, s_n\sigma)$$

$$\perp \sigma = \perp$$

$$\top \sigma = \top$$

$$P(s_1, \dots, s_n)\sigma = P(s_1\sigma, \dots, s_n\sigma)$$

$$(u \approx v)\sigma = (u\sigma \approx v\sigma)$$

$$\neg F\sigma = \neg(F\sigma)$$

$$(F \circ G)\sigma = (F\sigma \circ G\sigma) \text{ for each binary connective of}$$

$$(\mathbf{Q}x F)\sigma = \mathbf{Q}z (F \sigma[x \mapsto z]) \text{ with } z \text{ a fresh variable}$$

If $s = t\sigma$ for some substitution σ , we call the term s an instance of the term t, and we call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas. The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values "true" and "false" denoted by 1 and 0, respectively.

Algebras

A Σ -algebra (also called Σ -interpretation or Σ -structure) is a triple

$$\mathcal{A} = (U_{\mathcal{A}}, \ (f_{\mathcal{A}} : U_{\mathcal{A}}^n \to U_{\mathcal{A}})_{f/n \in \Omega}, \ (P_{\mathcal{A}} \subseteq U_{\mathcal{A}}^m)_{P/m \in \Pi})$$

where $U_{\mathcal{A}} \neq \emptyset$ is a set, called the *universe* of \mathcal{A} .

By Σ -Alg we denote the class of all Σ -algebras.

 Σ -algebras generalize the valuations from propositional logic.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Σ -algebra \mathcal{A}), is a function $\beta: X \to U_{\mathcal{A}}$.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in \mathcal{A} with respect to β

By structural induction we define

$$\mathcal{A}(\beta): \mathrm{T}_{\Sigma}(X) \to U_{\mathcal{A}}$$

as follows:

$$\mathcal{A}(\beta)(x) = \beta(x), \qquad x \in X$$

$$\mathcal{A}(\beta)(f(s_1, \dots, s_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(s_1), \dots, \mathcal{A}(\beta)(s_n)), \quad f/n \in \Omega$$

In the scope of a quantifier we need to evaluate terms with respect to modified assignments. To that end, let $\beta[x \mapsto a] : X \to U_A$, for $x \in X$ and $a \in U_A$, denote the assignment

$$\beta[x \mapsto a](y) = \begin{cases} a & \text{if } x = y \\ \beta(y) & \text{otherwise} \end{cases}$$

Truth Value of a Formula in \mathcal{A} with respect to β

 $\mathcal{A}(\beta): F_{\Sigma}(X) \to \{0,1\}$ is defined inductively as follows:

$$\begin{aligned} \mathcal{A}(\beta)(\bot) &= 0\\ \mathcal{A}(\beta)(\top) &= 1\\ \mathcal{A}(\beta)(P(s_1, \dots, s_n)) &= \text{ if } (\mathcal{A}(\beta)(s_1), \dots, \mathcal{A}(\beta)(s_n)) \in P_{\mathcal{A}} \text{ then } 1 \text{ else } 0\\ \mathcal{A}(\beta)(s \approx t) &= \text{ if } \mathcal{A}(\beta)(s) = \mathcal{A}(\beta)(t) \text{ then } 1 \text{ else } 0\\ \mathcal{A}(\beta)(\neg F) &= 1 - \mathcal{A}(\beta)(F)\\ \mathcal{A}(\beta)(F \wedge G) &= \min(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))\\ \mathcal{A}(\beta)(F \vee G) &= \max(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))\\ \mathcal{A}(\beta)(F \rightarrow G) &= \max(1 - \mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))\\ \mathcal{A}(\beta)(F \leftrightarrow G) &= \text{ if } \mathcal{A}(\beta)(F) = \mathcal{A}(\beta)(G) \text{ then } 1 \text{ else } 0\\ \mathcal{A}(\beta)(\forall x F) &= \min_{a \in U_{\mathcal{A}}} \{\mathcal{A}(\beta[x \mapsto a])(F)\}\\ \mathcal{A}(\beta)(\exists x F) &= \max_{a \in U_{\mathcal{A}}} \{\mathcal{A}(\beta[x \mapsto a])(F)\}\end{aligned}$$

Example

The "Standard" interpretation for Peano arithmetic:

 $U_{\mathbb{N}} = \{0, 1, 2, ...\} \\ 0_{\mathbb{N}} = 0 \\ s_{\mathbb{N}} : n \mapsto n+1 \\ +_{\mathbb{N}} : (n, m) \mapsto n+m \\ *_{\mathbb{N}} : (n, m) \mapsto n * m \\ <_{\mathbb{N}} = \{(n, m) \mid n \text{ less than } m \}$

Note that \mathbb{N} is just one out of many possible Σ_{PA} -interpretations.

Values over \mathbb{N} for sample terms and formulas:

Under the assignment $\beta : x \mapsto 1, y \mapsto 3$ we obtain

$$\begin{split} \mathbb{N}(\beta)(s(x)+s(0)) &= 3\\ \mathbb{N}(\beta)(x+y \approx s(y)) &= 1\\ \mathbb{N}(\beta)(\forall x, y \, (x+y \approx y+x)) &= 1\\ \mathbb{N}(\beta)(\forall z \, (z < y)) &= 0\\ \mathbb{N}(\beta)(\forall x \exists y \, (x < y)) &= 1 \end{split}$$

Ground Terms and Closed Formulas

If t is a ground term, then $\mathcal{A}(\beta)(t)$ does not depend on β , that is, $\mathcal{A}(\beta)(t) = \mathcal{A}(\beta')(t)$ for every β and β' .

Analogously, if F is a closed formula, then $\mathcal{A}(\beta)(F)$ does not depend on β , that is, $\mathcal{A}(\beta)(F) = \mathcal{A}(\beta')(F)$ for every β and β' .

An element $a \in U_{\mathcal{A}}$ is called *term-generated*, if $a = \mathcal{A}(\beta)(t)$ for some ground term t.

In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in \mathcal{A} under assignment β :

 $\mathcal{A}, \beta \models F : \Leftrightarrow \mathcal{A}(\beta)(F) = 1$

F is true in \mathcal{A} (\mathcal{A} is a model of F; F is valid in \mathcal{A}):

 $\mathcal{A} \models F \quad :\Leftrightarrow \quad \mathcal{A}, \beta \models F \text{ for all } \beta \in X \to U_{\mathcal{A}}$

F is valid (or is a tautology):

 $\models F \quad :\Leftrightarrow \quad \mathcal{A} \models F \quad \text{for all } \mathcal{A} \in \Sigma\text{-Alg}$

F is called satisfiable if there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$. Otherwise F is called unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$, we have

$$\mathcal{A}, \beta \models F \quad \Rightarrow \quad \mathcal{A}, \beta \models G$$

F and G are called *equivalent*, written $F \models G$, if for all $\mathcal{A} \in \Sigma$ -Alg and $\beta \in X \to U_{\mathcal{A}}$ we have

$$\mathcal{A},\beta\models F\quad\Leftrightarrow\quad\mathcal{A},\beta\models G$$

Proposition 3.1 $F \models G$ if and only if $(F \rightarrow G)$ is valid

Proof. (\Rightarrow) Suppose that $(F \to G)$ is not valid. Then there exist an algebra \mathcal{A} and an assignment β such that $\mathcal{A}(\beta)(F \to G) = 0$, which means that $\mathcal{A}(\beta)(F) = 1$ and $\mathcal{A}(\beta)(G) = 0$, or in other words $\mathcal{A}, \beta \models F$ but not $\mathcal{A}, \beta \models G$. Consequently, $F \models G$ does not hold.

(\Leftarrow) Suppose that $F \models G$ does not hold. Then there exist an algebra \mathcal{A} and an assignment β such that $\mathcal{A}, \beta \models F$ but not $\mathcal{A}, \beta \models G$. Therefore $\mathcal{A}(\beta)(F) = 1$ and $\mathcal{A}(\beta)(G) = 0$, which implies $\mathcal{A}(\beta)(F \to G) = 0$, so $(F \to G)$ is not valid. \Box

Proposition 3.2 $F \models G$ if and only if $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N as in propositional logic, e.g.:

 $N \models F \quad :\Leftrightarrow \quad \text{for all } \mathcal{A} \in \Sigma\text{-Alg and } \beta \in X \to U_{\mathcal{A}}:$ if $\mathcal{A}, \beta \models G$ for all $G \in N$, then $\mathcal{A}, \beta \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.3 Let F and G be formulas, let N be a set of formulas. Then

- (i) F is valid if and only if $\neg F$ is unsatisfiable.
- (ii) $F \models G$ if and only if $F \land \neg G$ is unsatisfiable.
- (iii) $N \models G$ if and only if $N \cup \{\neg G\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Substitution Lemma

Lemma 3.4 Let \mathcal{A} be a Σ -algebra, let β be an assignment, let σ be a substitution. Then for any Σ -term t

 $\mathcal{A}(\beta)(t\sigma) = \mathcal{A}(\beta \circ \sigma)(t),$

where $\beta \circ \sigma : X \to U_{\mathcal{A}}$ is the assignment $\beta \circ \sigma(x) = \mathcal{A}(\beta)(x\sigma)$.

Proof. We use induction over the structure of Σ -terms.

If t = x, then $\mathcal{A}(\beta \circ \sigma)(x) = \beta \circ \sigma(x) = \mathcal{A}(\beta)(x\sigma)$ by definition of $\beta \circ \sigma$.

If $t = f(t_1, \ldots, t_n)$, then $\mathcal{A}(\beta \circ \sigma)(f(t_1, \ldots, t_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta \circ \sigma)(t_1), \ldots, \mathcal{A}(\beta \circ \sigma)(t_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1\sigma), \ldots, \mathcal{A}(\beta)(t_n\sigma)) = \mathcal{A}(\beta)(f(t_1\sigma, \ldots, t_n\sigma)) = \mathcal{A}(\beta)(f(t_1, \ldots, t_n)\sigma)$ by induction.

Proposition 3.5 Let \mathcal{A} be a Σ -algebra, let β be an assignment, let σ be a substitution. Then for every Σ -formula F

$$\mathcal{A}(\beta)(F\sigma) = \mathcal{A}(\beta \circ \sigma)(F) \,.$$

Corollary 3.6 $\mathcal{A}, \beta \models F\sigma \iff \mathcal{A}, \beta \circ \sigma \models F$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Two Lemmas

Lemma 3.7 Let \mathcal{A} be a Σ -algebra. Let F be a Σ -formula with free variables x_1, \ldots, x_n . Then

$$\mathcal{A} \models \forall x_1, \ldots, x_n F$$
 if and only if $\mathcal{A} \models F$.

Proof. (\Rightarrow) Suppose that $\mathcal{A} \models \forall x_1, \ldots, x_n F$, that is, $\mathcal{A}(\beta)(\forall x_1, \ldots, x_n F) = 1$ for all assignments β . By definition, that means

$$\min_{a_1,\dots,a_n\in U_{\mathcal{A}}}\{\mathcal{A}(\beta[x_1\mapsto a_1,\dots,x_n\mapsto a_n])(F)\}=1,$$

and therefore $\mathcal{A}(\beta[x_1 \mapsto a_1, \dots, x_n \mapsto a_n])(F) = 1$ for all $a_1, \dots, a_n \in U_{\mathcal{A}}$.

Let γ be an arbitrary assignment. We have to show that $\mathcal{A}(\gamma)(F) = 1$. For every $i \in \{1, \ldots, n\}$ define $a_i = \gamma(x_i)$, then $\gamma = \gamma[x_1 \mapsto a_1, \ldots, x_n \mapsto a_n]$, and therefore $\mathcal{A}(\gamma)(F) = \mathcal{A}(\gamma[x_1 \mapsto a_1, \ldots, x_n \mapsto a_n])(F) = 1$.

(\Leftarrow) Suppose that $\mathcal{A} \models F$, that is, $\mathcal{A}(\gamma)(F) = 1$ for all assignments γ .

Then in particular $\mathcal{A}(\beta[x_1 \mapsto a_1, \dots, x_n \mapsto a_n])(F) = 1$ for all $a_1, \dots, a_n \in U_{\mathcal{A}}$ (take $\gamma = \beta[x_1 \mapsto a_1, \dots, x_n \mapsto a_n]$). Therefore

$$\mathcal{A}(\beta)(\forall x_1,\ldots,x_n F) = \min_{a_1,\ldots,a_n \in U_{\mathcal{A}}} \{\mathcal{A}(\beta[x_1 \mapsto a_1,\ldots,x_n \mapsto a_n])(F)\} = 1.$$

Note that it is not possible to replace $\mathcal{A} \models \ldots$ by $\mathcal{A}, \beta \models \ldots$ in Lemma 3.7.

Lemma 3.8 Let \mathcal{A} be a Σ -algebra. Let F be a Σ -formula with free variables x_1, \ldots, x_n . Let σ be a substitution and let y_1, \ldots, y_m be the free variables of $F\sigma$. Then

$$\mathcal{A} \models \forall x_1, \dots, x_n F$$
 implies $\mathcal{A} \models \forall y_1, \dots, y_m F \sigma$.

Proof. By the previous lemma, we have $\mathcal{A} \models \forall x_1, \ldots, x_n F$ if and only if $\mathcal{A} \models F$ and similarly $\mathcal{A} \models \forall y_1, \ldots, y_m F \sigma$ if and only if $\mathcal{A} \models F \sigma$. So it suffices to show that $\mathcal{A} \models F$ implies $\mathcal{A} \models F \sigma$. Suppose that $\mathcal{A} \models F$, that is, $\mathcal{A}(\beta)(F) = 1$ for all assignments β . Then for every assignment γ , we have by Prop. 3.5 $\mathcal{A}(\gamma)(F\sigma) = \mathcal{A}(\gamma \circ \sigma)(F) = 1$ (take $\beta = \gamma \circ \sigma$), and therefore $\mathcal{A} \models F \sigma$.

3.4 Algorithmic Problems

Validity(F): $\models F$? Satisfiability(F): F satisfiable? Entailment(F,G): does F entail G? Model(\mathcal{A},F): $\mathcal{A} \models F$? Solve(\mathcal{A},F): find an assignment β such that $\mathcal{A}, \beta \models F$. Solve(F): find a substitution σ such that $\models F\sigma$. Abduce(F): find G with "certain properties" such that $G \models F$.

Theory of an Algebra

Let $\mathcal{A} \in \Sigma$ -Alg. The *(first-order)* theory of \mathcal{A} is defined as

 $Th(\mathcal{A}) = \{ G \in F_{\Sigma}(X) \mid \mathcal{A} \models G \}$

Problem of axiomatizability:

Given an algebra \mathcal{A} (or a class of algebras) can one axiomatize Th(\mathcal{A}), that is, can one write down a formula F (or a recursively enumerable set F of formulas) such that

$$Th(\mathcal{A}) = \{ G \mid F \models G \}?$$

Two Interesting Theories

Let $\Sigma_{\text{Pres}} = (\{0/0, s/1, +/2\}, \{<\})$ and $\mathbb{N}_+ = (\mathbb{N}, 0, s, +, <)$ its standard interpretation on the natural numbers. Th(\mathbb{N}_+) is called *Presburger arithmetic* (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{N} , considers the integer numbers \mathbb{Z} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $\text{Th}(\mathbb{Z}_+) \notin \text{NTIME}(2^{2^{cn}})$).

However, $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *, <)$, the standard interpretation of $\Sigma_{\text{PA}} = (\{0/0, s/1, +/2, */2\}, \{<\})$, has as theory the so-called *Peano arithmetic* which is undecidable and not even recursively enumerable.

(Non-)Computability Results

- 1. For most signatures Σ , validity is undecidable for Σ -formulas. (One can easily encode Turing machines in most signatures.)
- Gödel's completeness theorem: For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We will prove this by giving complete deduction systems.)
- 3. Gödel's incompleteness theorem: For $\Sigma = \Sigma_{\text{PA}}$ and $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *, <)$, the theory $\text{Th}(\mathbb{N}_*)$ is not recursively enumerable.

These complexity results motivate the study of subclasses of formulas $(\mathit{fragments})$ of first-order logic

Some Decidable Fragments

Some decidable fragments:

- *Monadic class*: no function symbols, all predicates unary; validity is NEXPTIME-complete.
- Variable-free formulas without equality: satisfiability is NP-complete. (why?)
- Variable-free Horn clauses (clauses with at most one positive atom): entailment is decidable in linear time.
- Finite model checking is decidable in exponential time and PSPACE-complete.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

- reduction of logical concepts,
- efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent normal form transformations are intended to eliminate many of them.

Prenex Normal Form (Traditional)

Prenex formulas have the form

 $Q_1 x_1 \ldots Q_n x_n F$,

where F is quantifier-free and $Q_i \in \{\forall, \exists\}$; we call $Q_1 x_1 \dots Q_n x_n$ the quantifier prefix and F the matrix of the formula.

Computing prenex normal form by the reduction system \Rightarrow_P :

$$\begin{split} H[(F \leftrightarrow G)]_p &\Rightarrow_P & H[(F \to G) \land (G \to F)]_p \\ & H[\neg \mathsf{Q}x F]_p \Rightarrow_P & H[\bar{\mathsf{Q}}x \neg F]_p \\ H[((\mathsf{Q}x F) \circ G)]_p &\Rightarrow_P & H[\mathsf{Q}y (F\{x \mapsto y\} \circ G)]_p, \\ & \circ \in \{\land, \lor\} \\ H[((\mathsf{Q}x F) \to G)]_p &\Rightarrow_P & H[\bar{\mathsf{Q}}y (F\{x \mapsto y\} \to G)]_p, \\ H[(F \circ (\mathsf{Q}x G))]_p &\Rightarrow_P & H[\mathsf{Q}y (F \circ G\{x \mapsto y\})]_p, \\ & \circ \in \{\land, \lor, \to\} \end{split}$$

Here y is always assumed to be some fresh variable and $\overline{\mathbf{Q}}$ denotes the quantifier dual to \mathbf{Q} , i. e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.

Skolemization

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S (to be applied outermost, *not* in subformulas):

$$\forall x_1, \dots, x_n \exists y F \Rightarrow_S \forall x_1, \dots, x_n F\{y \mapsto f(x_1, \dots, x_n)\}$$

where f/n is a new function symbol (Skolem function).

Together: $F \Rightarrow_P^* \underbrace{G}_{\text{prenex}} \Rightarrow_S^* \underbrace{H}_{\text{prenex, no } \exists}$

Theorem 3.9 Let F, G, and H as defined above and closed. Then

- (i) F and G are equivalent.
- (ii) $H \models G$ but the converse is not true in general.
- (iii) G satisfiable (w.r.t. Σ -Alg) \Leftrightarrow H satisfiable (w.r.t. Σ' -Alg) where $\Sigma' = (\Omega \cup SKF, \Pi)$ if $\Sigma = (\Omega, \Pi)$.

The Complete Picture

$$F \Rightarrow_{P}^{*} Q_{1}y_{1}...Q_{n}y_{n}G \qquad (G \text{ quantifier-free})$$

$$\Rightarrow_{S}^{*} \forall x_{1},...,x_{m}H \qquad (m \leq n, H \text{ quantifier-free})$$

$$\Rightarrow_{CNF}^{*} \underbrace{\forall x_{1},...,x_{m}}_{\text{leave out}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{ij}}_{\text{clauses } C_{i}}$$

 $N = \{C_1, \ldots, C_k\}$ is called the *clausal (normal)* form (CNF) of F. Note: The variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F be closed. Then $F' \models F$. (The converse is not true in general.)

Theorem 3.11 Let F be closed. Then F is satisfiable if and only if F' is satisfiable if and only if N is satisfiable

Optimization

The normal form algorithm described so far leaves lots of room for optimization. Note that we only can preserve satisfiability anyway due to Skolemization.

- the size of the CNF is exponential when done naively; the transformations we introduced already for propositional logic avoid this exponential growth;
- we want to preserve the original formula structure;
- we want small arity of Skolem functions (see next section).

3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- eliminate trivial subformulas
- replace beneficial subformulas
- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- Skolemize
- push quantifiers upward
- apply distributivity

We start with a closed formula.

Elimination of Trivial Subformulas

Eliminate subformulas \top and \perp essentially as in the propositional case modulo associativity/commutativity of \land , \lor :

$$\begin{split} H[(F \wedge \top)]_p &\Rightarrow_{\text{OCNF}} H[F]_p \\ H[(F \vee \bot)]_p &\Rightarrow_{\text{OCNF}} H[F]_p \\ H[(F \leftrightarrow \bot)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \leftrightarrow \top)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \vee \top)]_p &\Rightarrow_{\text{OCNF}} H[\top]_p \\ H[(F \wedge \bot)]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \\ H[(\neg \top)]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \\ H[\neg \bot]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \\ H[(\neg \bot)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \rightarrow \bot)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \rightarrow \top)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(F \rightarrow \top)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[(\bot \rightarrow F)]_p &\Rightarrow_{\text{OCNF}} H[\top]_p \\ H[(\top \rightarrow F)]_p &\Rightarrow_{\text{OCNF}} H[\top]_p \\ H[(\nabla \neg F)]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[Qx \top]_p &\Rightarrow_{\text{OCNF}} H[\neg F]_p \\ H[Qx \bot]_p &\Rightarrow_{\text{OCNF}} H[\bot]_p \end{split}$$

Replacement of Beneficial Subformulas

The functions ν and $\bar{\nu}$ that give us an overapproximation for the number of clauses generated by a formula are extended to quantified formulas by

$$\begin{split} \nu(\forall x \, F) &= \nu(\exists x \, F) = \nu(F),\\ \bar{\nu}(\forall x \, F) &= \bar{\nu}(\exists x \, F) = \bar{\nu}(F). \end{split}$$

The other cases are defined as for propositional formulas.

Introduce top-down fresh predicates for beneficial subformulas:

$$H[F]_p \Rightarrow_{\text{OCNF}} H[P(x_1, \dots, x_n)]_p \wedge \det(H, p, P, F)$$

if $\nu(H[F]_p) > \nu(H[P(\ldots)]_p \wedge \operatorname{def}(H, p, P, F)),$

where $\{x_1, \ldots, x_n\}$ are the free variables in F, P/n is a predicate new to $H[F]_p$, and def(H, p, P, F) is defined by

$$\forall x_1, \dots, x_n \ (P(x_1, \dots, x_n) \to F), \text{ if } \operatorname{pol}(H, p) = 1, \\ \forall x_1, \dots, x_n \ (F \to P(x_1, \dots, x_n)), \text{ if } \operatorname{pol}(H, p) = -1, \\ \forall x_1, \dots, x_n \ (P(x_1, \dots, x_n) \leftrightarrow F), \text{ if } \operatorname{pol}(H, p) = 0.$$

As in the propositional case, one can test $\nu(H[F]_p) > \nu(H[P]_p \wedge def(H, p, P, F))$ in constant time without actually computing ν .

Negation Normal Form (NNF)

Apply the reduction system \Rightarrow_{NNF} :

$$H[F \leftrightarrow G]_p \Rightarrow_{\rm NNF} H[(F \to G) \land (G \to F)]_p$$

if pol(H, p) = 1 or pol(H, p) = 0.

$$H[F \leftrightarrow G]_p \Rightarrow_{\rm NNF} H[(F \wedge G) \lor (\neg G \land \neg F)]_p$$

if $\operatorname{pol}(H, p) = -1$.

$$\begin{split} H[F \to G]_p &\Rightarrow_{\rm NNF} & H[\neg F \lor G]_p \\ H[\neg \neg F]_p &\Rightarrow_{\rm NNF} & H[F]_p \\ H[\neg (F \lor G)]_p &\Rightarrow_{\rm NNF} & H[\neg F \land \neg G]_p \\ H[\neg (F \land G)]_p &\Rightarrow_{\rm NNF} & H[\neg F \lor \neg G]_p \\ H[\neg Qx \ F]_p &\Rightarrow_{\rm NNF} & H[\overline{Q}x \ \neg F]_p \end{split}$$

Miniscoping

Apply the reduction system \Rightarrow_{MS} modulo associativity and commutativity of \land , \lor . For the rules below we assume that x occurs freely in F, F', but x does not occur freely in G:

$$\begin{aligned} H[\mathsf{Q}x\,(F \wedge G)]_p \ \Rightarrow_{\mathrm{MS}} \ H[(\mathsf{Q}x\,F) \wedge G]_p \\ H[\mathsf{Q}x\,(F \vee G)]_p \ \Rightarrow_{\mathrm{MS}} \ H[(\mathsf{Q}x\,F) \vee G]_p \\ H[\forall x\,(F \wedge F')]_p \ \Rightarrow_{\mathrm{MS}} \ H[(\forall x\,F) \wedge (\forall x\,F')]_p \\ H[\exists x\,(F \vee F')]_p \ \Rightarrow_{\mathrm{MS}} \ H[(\exists x\,F) \vee (\exists x\,F')]_p \\ H[\mathsf{Q}x\,G]_p \ \Rightarrow_{\mathrm{MS}} \ H[G]_p \end{aligned}$$

Variable Renaming

Rename all variables in H such that there are no two different positions p, q with $H|_p = \mathbf{Q}x F$ and $H|_q = \mathbf{Q}'x G$.

Standard Skolemization

Apply the reduction system:

$$H[\exists x F]_p \Rightarrow_{\mathrm{SK}} H[F\{x \mapsto f(y_1, \dots, y_n)\}]_p$$

where p has minimal length, $\{y_1, \ldots, y_n\}$ are the free variables in $\exists x F$, and f/n is a new function symbol to H.

Final Steps

Apply the reduction system modulo commutativity of \land , \lor to push \forall upward:

$$H[(\forall x F) \land G]_p \Rightarrow_{\text{OCNF}} H[\forall x (F \land G)]_p$$
$$H[(\forall x F) \lor G]_p \Rightarrow_{\text{OCNF}} H[\forall x (F \lor G)]_p$$

Note that variable renaming ensures that x does not occur in G.

Apply the reduction system modulo commutativity of \land , \lor to push disjunctions downward:

$$H[(F \wedge F') \vee G]_p \Rightarrow_{\mathrm{CNF}} H[(F \vee G) \wedge (F' \vee G)]_p$$

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at least one constant symbol.

An Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that

- $U_{\mathcal{A}} = T_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}: (s_1, \ldots, s_n) \mapsto f(s_1, \ldots, s_n), f/n \in \Omega$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P/m \in \Pi$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq T_{\Sigma}^{m}$.

Proposition 3.12 Every set of ground atoms I uniquely determines an Herbrand interpretation \mathcal{A} via

 $(s_1,\ldots,s_n) \in P_{\mathcal{A}}$ if and only if $P(s_1,\ldots,s_n) \in I$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ -ground atoms.

Existence of Herbrand Models

An Herbrand interpretation I is called an Herbrand model of F, if $I \models F$.

The importance of Herbrand models lies in the following theorem, which we will prove later in this lecture:

Let N be a set of (universally quantified) Σ -clauses. Then the following properties are equivalent:

- (1) N has a model.
- (2) N has an Herbrand model (over Σ).
- (3) $G_{\Sigma}(N)$ has an Herbrand model (over Σ).

where $G_{\Sigma}(N) = \{ C\sigma \text{ ground clause } | (\forall \vec{x} C) \in N, \sigma : X \to T_{\Sigma} \}$ is the set of ground instances of N.