Automated Reasoning I*

Uwe Waldmann

Winter Term 2023/2024

Topics of the Course

Preliminaries
abstract reduction systems
well-founded orderings
Propositional logic
syntax, semantics
calculi: CDCL-procedure, OBDDs
implementation: Two watched literals
First-order predicate logic
syntax, semantics, model theory, ...
calculi: resolution, tableaux
implementation: sharing, indexing
First-order predicate logic with equality
term rewriting systems
calculi: Knuth-Bendix completion, dependency pairs
Emphasis on:
logics and their properties,
proof systems for these logics and their properties:
soundness, completeness, implementation

[^0]
1 Preliminaries

Literature:
Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge Univ. Press, 1998, Chapter 2.

Before we start with the main subjects of the lecture, we repeat some prerequisites from mathematics and computer science and introduce some tools that we will need throughout the lecture.

1.1 Mathematical Prerequisites

$\mathbb{N}=\{0,1,2, \ldots\}$ is the set of natural numbers (including 0).
$\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ denote the integers, rational numbers and the real numbers, respectively.
\emptyset is the empty set.
If M and M^{\prime} are sets, then $M \cap M^{\prime}, M \cup M^{\prime}$, and $M \backslash M^{\prime}$ denote the intersection, union, and set difference of M and M^{\prime}.

The subset relation is denoted by \subseteq. The strict subset relation is denoted by \subset (i.e., $M \subset M^{\prime}$ if and only if $M \subseteq M^{\prime}$ and $\left.M \neq M^{\prime}\right)$.

Relations

Let M be a set, let $n \geq 2$. We write M^{n} for the n-fold cartesian product $M \times \cdots \times M$.
In order to handle the cases $n \geq 2, n=1$, and $n=0$ simultaneously, we also define $M^{1}=M$ and $M^{0}=\{()\}$. (We do not distinguish between an element m of M and a 1-tuple (m) of an element of M.)

An n-ary relation R over some set M is a subset of $M^{n}: R \subseteq M^{n}$.
We often use predicate notation for relations:
Instead of $\left(m_{1}, \ldots, m_{n}\right) \in R$ we write $R\left(m_{1}, \ldots, m_{n}\right)$, and say that $R\left(m_{1}, \ldots, m_{n}\right)$ holds or is true.

For binary relations, we often use infix notation, so
$\left(m, m^{\prime}\right) \in<\Leftrightarrow<\left(m, m^{\prime}\right) \Leftrightarrow m<m^{\prime}$.
Since relations are sets, we can use the usual set operations for then.
Example: Let $R=\{(0,2),(1,2),(2,2),(3,2)\} \subseteq \mathbb{N} \times \mathbb{N}$.
Then $R \cap<=R \cap\{(n, m) \in \mathbb{N} \times \mathbb{N} \mid n<m\}=\{(0,2),(1,2)\}$.
A relation Q is a subrelation of a relation R if $Q \subseteq R$.

Words

Given a non-empty set (also called alphabet) Σ, the set Σ^{*} of finite words over Σ is defined inductively by
(i) the empty word ε is in Σ^{*},
(ii) if $u \in \Sigma^{*}$ and $a \in \Sigma$ then $u a$ is in Σ^{*}.

The set of non-empty finite words Σ^{+}is $\Sigma^{*} \backslash\{\varepsilon\}$.

The concatenation of two words $u, v \in \Sigma^{*}$ is denoted by $u v$.

The length $|u|$ of a word $u \in \Sigma^{*}$ is defined by
(i) $|\varepsilon|:=0$,
(ii) $|u a|:=|u|+1$ for any $u \in \Sigma^{*}$ and $a \in \Sigma$.

1.2 Abstract Reduction Systems

Throughout the lecture, we will have to work with reduction systems, on the object level, in particular in the section on equality, and on the meta level, i. e., to describe deduction calculi.

An abstract reduction system is a pair (A, \rightarrow), where
A is a non-empty set,
$\rightarrow \subseteq A \times A$ is a binary relation on A.
The relation \rightarrow is usually written in infix notation, i.e., $a \rightarrow b$ instead of $(a, b) \in \rightarrow$.

Let $\rightarrow^{\prime} \subseteq A \times A$ and $\rightarrow^{\prime \prime} \subseteq A \times A$ be two binary relations. Then the composition of \rightarrow^{\prime} and $\rightarrow^{\prime \prime}$ is the binary relation $\left(\rightarrow^{\prime} \circ \rightarrow^{\prime \prime}\right) \subseteq A \times A$ defined by
$a\left(\rightarrow^{\prime} \circ \rightarrow^{\prime \prime}\right) c$ if and only if there exists some $b \in A$ such that $a \rightarrow^{\prime} b$ and $b \rightarrow^{\prime \prime} c$.

For a binary relation $\rightarrow \subseteq A \times A$, we define:

$$
\begin{array}{ll}
\rightarrow^{0}=\{(a, a) \mid a \in A\} & \text { identity } \\
\rightarrow^{i+1}=\rightarrow^{i} \circ \rightarrow & i+1 \text {-fold composition } \\
\rightarrow^{+}=\bigcup_{i>0} \rightarrow^{i} & \text { transitive closure } \\
\rightarrow^{*}=\bigcup_{i \geq 0} \rightarrow^{i}=\rightarrow^{+} \cup \rightarrow^{0} & \text { reflexive transitive closure } \\
\rightarrow^{=}=\cup^{0} \rightarrow^{0} & \text { reflexive closure } \\
\leftarrow=\rightarrow^{-1}=\{(b, c) \mid c \rightarrow b\} & \text { inverse } \\
\leftrightarrow=\rightarrow \cup \leftarrow & \text { symmetric closure } \\
\leftrightarrow^{+}=(\leftrightarrow)^{+} & \text {transitive symmetric closure } \\
\leftrightarrow^{*}=(\leftrightarrow)^{*} & \text { reflexive transitive symmetric closure } \\
& \text { or equivalence closure }
\end{array}
$$

$b \in A$ is reducible, if there is a c such that $b \rightarrow c$.
b is in normal form (or irreducible), if it is not reducible.
c is a normal form of b, if $b \rightarrow^{*} c$ and c is in normal form.
Notation: $c=b \downarrow$ (if the normal form of b is unique).
A relation \rightarrow is called terminating, if there is no infinite descending chain $b_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \ldots$. normalizing, if every $b \in A$ has a normal form.

Lemma 1.1 If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.

1.3 Orderings

Important properties of binary relations:
Let $M \neq \emptyset$. A binary relation $R \subseteq M \times M$ is called reflexive, if $R(x, x)$ for all $x \in M$, irreflexive, if $\neg R(x, x)$ for all $x \in M$, antisymmetric, if $R(x, y)$ and $R(y, x)$ imply $x=y$ for all $x, y \in M$, transitive, if $R(x, y)$ and $R(y, z)$ imply $R(x, z)$ for all $x, y, z \in M$, total, if $R(x, y)$ or $R(y, x)$ or $x=y$ for all $x, y \in M$.

A strict partial ordering \succ on a set $M \neq \emptyset$ is a transitive and irreflexive binary relation on M.

Notation:
\prec for the inverse relation \succ^{-1}
\succeq for the reflexive closure ($\succ \cup=$) of \succ
Let \succ be a strict partial ordering on M; let $M^{\prime} \subseteq M$.
$a \in M^{\prime}$ is called minimal in M^{\prime}, if there is no $b \in M^{\prime}$ with $a \succ b$.
$a \in M^{\prime}$ is called smallest in M^{\prime}, if $b \succ a$ for all $b \in M^{\prime} \backslash\{a\}$.
Analogously:
$a \in M^{\prime}$ is called maximal in M^{\prime}, if there is no $b \in M^{\prime}$ with $a \prec b$.
$a \in M^{\prime}$ is called largest in M^{\prime}, if $b \prec a$ for all $b \in M^{\prime} \backslash\{a\}$.
Notation:
$M^{\prec x}=\{y \in M \mid y \prec x\}$,
$M^{\preceq x}=\{y \in M \mid y \preceq x\}$.
A subset $M^{\prime} \subseteq M$ is called downward closed, if $x \in M^{\prime}$ and $x \succ y$ implies $y \in M^{\prime}$.

Well-Foundedness

Termination of reduction systems is strongly related to the concept of well-founded orderings.

A strict partial ordering \succ on M is called well-founded (or Noetherian), if there is no infinite descending chain $a_{0} \succ a_{1} \succ a_{2} \succ \ldots$ with $a_{i} \in M$.

Well-Foundedness and Termination

Lemma 1.2 If \succ is a well-founded partial ordering and $\rightarrow \subseteq \succ$, then \rightarrow is terminating.

Proof. Suppose that $\rightarrow \subseteq \succ$ for some partial ordering \succ and that \rightarrow is not terminating. Then there exists an infinite descending chain $b_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \ldots$. Since $\rightarrow \subseteq \succ$, we have an infinite descending chain $b_{0} \succ b_{1} \succ b_{2} \succ \ldots$, hence \succ is not well-founded.

Lemma 1.3 If \rightarrow is a terminating binary relation over A, then \rightarrow^{+}is a well-founded partial ordering.

Proof. Transitivity of \rightarrow^{+}is obvious; irreflexivity and well-foundedness follow from termination of \rightarrow.

Well-Founded Orderings: Examples

Natural numbers: $(\mathbb{N},>)$
Lexicographic orderings: Let $\left(M_{1}, \succ_{1}\right),\left(M_{2}, \succ_{2}\right)$ be well-founded orderings. Define their lexicographic combination

$$
\succ=\left(\succ_{1}, \succ_{2}\right)_{\mathrm{lex}}
$$

on $M_{1} \times M_{2}$ by

$$
\left(a_{1}, a_{2}\right) \succ\left(b_{1}, b_{2}\right) \quad: \Leftrightarrow \quad a_{1} \succ_{1} b_{1} \text { or }\left(a_{1}=b_{1} \text { and } a_{2} \succ_{2} b_{2}\right)
$$

(analogously for more than two orderings). This again yields a well-founded ordering (proof below).

Length-based ordering on words: For alphabets Σ with a well-founded ordering $>_{\Sigma}$, the relation \succ defined as

$$
w \succ w^{\prime} \quad: \Leftrightarrow|w|>\left|w^{\prime}\right| \text { or }\left(|w|=\left|w^{\prime}\right| \text { and } w>_{\Sigma, \text { lex }} w^{\prime}\right)
$$

is a well-founded ordering on the set Σ^{*} of finite words over the alphabet Σ (Exercise).
Counterexamples:
the lexicographic ordering on Σ^{*}

Basic Properties of Well-Founded Orderings

Lemma $1.4(M, \succ)$ is well-founded if and only if every non-empty $M^{\prime} \subseteq M$ has a minimal element.

Proof. " \Leftarrow ": Suppose that (M, \succ) is not well-founded. Then there is an infinite descending chain $a_{0} \succ a_{1} \succ a_{2} \succ \ldots$ with $a_{i} \in M$. Consequently, the subset $M^{\prime}=\left\{a_{i} \mid i \in \mathbb{N}\right\}$, does not have a minimal element.
" \Rightarrow ": Suppose that the non-empty subset $M^{\prime} \subseteq M$ does not have a minimal element. Choose $a_{0} \in M^{\prime}$ arbitrarily. Since for every $a_{i} \in M^{\prime}$ there is a smaller $a_{i+1} \in M^{\prime}$ (otherwise a_{i} would be minimal in M^{\prime}), there is an infinite descending chain $a_{0} \succ a_{1} \succ$ $a_{2} \succ \ldots$

Lemma $1.5\left(M_{1}, \succ_{1}\right)$ and $\left(M_{2}, \succ_{2}\right)$ are well-founded if and only if $\left(M_{1} \times M_{2}, \succ\right)$ with $\succ=\left(\succ_{1}, \succ_{2}\right)_{\text {lex }}$ is well-founded.

Proof. " \Rightarrow ": Suppose $\left(M_{1} \times M_{2}, \succ\right)$ is not well-founded. Then there is an infinite sequence $\left(a_{0}, b_{0}\right) \succ\left(a_{1}, b_{1}\right) \succ\left(a_{2}, b_{2}\right) \succ \ldots$.
Let $A=\left\{a_{i} \mid i \geq 0\right\} \subseteq M_{1}$. Since $\left(M_{1}, \succ_{1}\right)$ is well-founded, A has a minimal element a_{n}. But then $B=\left\{b_{i} \mid i \geq n\right\} \subseteq M_{2}$ can not have a minimal element, contradicting the well-foundedness of (M_{2}, \succ_{2}).
" \Leftarrow ": obvious.

Monotone Mappings

Let (M, \succ) and $\left(M^{\prime}, \succ^{\prime}\right)$ be strict partial orderings. A mapping $\varphi: M \rightarrow M^{\prime}$ is called monotone, if $a \succ b$ implies $\varphi(a) \succ^{\prime} \varphi(b)$ for all $a, b \in M$.

Lemma 1.6 If φ is a monotone mapping from (M, \succ) to $\left(M^{\prime}, \succ^{\prime}\right)$ and $\left(M^{\prime}, \succ^{\prime}\right)$ is wellfounded, then (M, \succ) is well-founded.

Proof. Suppose that (M, \succ) is not well-founded, then there exists an infinite descending chain $a_{0} \succ a_{1} \succ a_{2} \succ \ldots$. Since $a_{i} \succ a_{i+1}$ implies $\varphi\left(a_{i}\right) \succ^{\prime} \varphi\left(a_{i+1}\right)$, we obtain an infinite descending chain $\varphi\left(a_{0}\right) \succ^{\prime} \varphi\left(a_{1}\right) \succ^{\prime} \varphi\left(a_{2}\right) \succ^{\prime} \ldots$, contradicting the well-foundedness of $\left(M^{\prime}, \succ^{\prime}\right)$.

Well-founded Induction

Well-founded induction generalizes the usual induction over natural numbers or data structures.

Theorem 1.7 (Well-founded (or Noetherian) Induction) Let (M, \succ) be a wellfounded ordering, let Q be a property of elements of M.

If for all $m \in M$ the implication
if $Q\left(m^{\prime}\right)$ for all $m^{\prime} \in M$ such that $m \succ m^{\prime},{ }^{1}$
then $Q(m) .{ }^{2}$
is satisfied, then the property $Q(m)$ holds for all $m \in M$.

Proof. Let $X=\{m \in M \mid Q(m)$ false $\}$. Suppose that $X \neq \emptyset$. Since (M, \succ) is wellfounded, X has a minimal element m_{0}. Hence for all $m^{\prime} \in M$ with $m^{\prime} \prec m_{0}$ the property $Q\left(m^{\prime}\right)$ holds. On the other hand, the implication which is presupposed for this theorem holds in particular also for m_{0}, hence $Q\left(m_{0}\right)$ must be true. Therefore m_{0} cannot be in X, contradicting the assumption.

[^1]
Well-founded Recursion

Similarly, well-founded recursion generalizes the usual recursion over natural numbers or data structures. We will need this concept only once in this lecture (and once more in Automated Reasoning II), but in one of the main theorems.

Let M and S be sets, let $N \subseteq M$, and let $f: M \rightarrow S$ be a function. Then the restriction of f to N, denoted by $\left.f\right|_{N}$, is a function from N to S with $\left.f\right|_{N}(x)=f(x)$ for all $x \in N$.

Theorem 1.8 (Well-founded (or Noetherian) Recursion) Let (M, \succ) be a wellfounded ordering, let S be a set. Let ϕ be a binary function that takes two arguments x and g and maps them to an element of S, where $x \in M$ and g is a function from $M^{\prec x}$ to S.

Then there exists exactly one function $f: M \rightarrow S$ such that for all $x \in M$

$$
f(x)=\phi\left(x,\left.f\right|_{M^{\prec x}}\right)
$$

Proof. The proof consists of four parts.
Part 1: For every downward closed subset $N \subseteq M$ there is at most one function $f: N \rightarrow$ S such that $f(x)=\phi\left(x,\left.f\right|_{N^{\prec x}}\right)=\phi\left(x,\left.f\right|_{M^{\prec x}}\right)$.
Proof: First observe that if $N \subseteq M$ is downward closed and $x \in N$, then $N^{\prec x}=M^{\prec x}$. Assume that there exist a downward closed subset $N \subseteq M$ and two different functions f_{1} and f_{2} from N to S with the property. Therefore, the set $N^{\prime}:=\left\{x \in N \mid f_{1}(x) \neq f_{2}(x)\right\}$ is non-empty. By well-foundedness, N^{\prime} has a minimal element y. By minimality of y, $\left.f_{1}\right|_{M \prec y}=\left.f_{2}\right|_{M^{\prec y}}$. Therefore $f_{1}(y)=\phi\left(y,\left.f_{1}\right|_{M \prec y}\right)=\phi\left(y,\left.f_{2}\right|_{M^{\prec}}\right)=f_{2}(y)$, contradicting the assumption.
Part 2: If N_{1} and N_{2} are downward closed subsets of M and the functions $f_{1}: N_{1} \rightarrow S$ and $f_{2}: N_{2} \rightarrow S$ satisfy $f_{i}(x)=\phi\left(x,\left.f_{i}\right|_{M \prec x}\right)$ for all $x \in N_{i}(i=1,2)$, then $f_{1}(x)=f_{2}(x)$ for all $x \in N_{1} \cap N_{2}$.

Proof: Define $N_{0}:=N_{1} \cap N_{2}$ and $f_{i}^{\prime}=\left.f_{i}\right|_{N_{0}}$ for $i=1,2$. Clearly N_{0} is downward closed and for all $x \in N_{0}$ and $i=1,2$ we have $f_{i}^{\prime}(x)=f_{i}(x)=\phi\left(x,\left.f_{i}\right|_{M^{\prec x}}\right)=\phi\left(x,\left.f_{i}^{\prime}\right|_{M^{\prec x}}\right)$. By part 1, there is at most one function from N_{0} to S with this property, so $f_{1}^{\prime}=f_{2}^{\prime}$, and therefore $f_{1}(x)=f_{2}(x)$ for all $x \in N_{1} \cap N_{2}$.

Part 3: For every $y \in M$ there exists a function $f_{y}: M^{\preceq y} \rightarrow S$ such that $f_{y}(x)=$ $\phi\left(x,\left.f_{y}\right|_{M<x}\right)$ for all $x \in M^{\preceq y}$.
Proof: We use well-founded induction over \succ. Let $y \in M$. By the induction hypothesis, for every $z \prec y$ there exists a function $f_{z}: M \preceq z \rightarrow S$ such that $f_{z}(x)=\phi\left(x,\left.f_{z}\right|_{M<x}\right)$ for all $x \in M^{\preceq z}$. By part 2, all functions f_{z} agree on the intersections of their domains. Define the function $f_{y}: M^{\preceq y} \rightarrow S$ by $f_{y}(x)=f_{x}(x)$ for $x \prec y$ and by $f_{y}(y)=\phi\left(y,\left.f_{y}\right|_{M^{\prec y}}\right)$. The function f_{y} has the desired property for $x=y$ by construction and for all $x \prec y$ by the induction hypothesis (since $f_{y}(x)=f_{x}(x)$ for $x \prec y$ and f_{x} has the desired property).
Part 4: There exists a function $f: M \rightarrow S$ such that $f(x)=\phi\left(x,\left.f\right|_{M^{\prec x}}\right)$ for all $x \in M$.
Proof: Define $f: M \rightarrow S$ by $f(x)=f_{x}(x)$.
The claim of the theorem follows now from part 1 (for $N:=M$) and part 4.

The well-founded recursion scheme generalizes terminating recursive programs.
Note that functions defined by well-founded recursion need not be computable, in particular since for many well-founded orderings the sets $M^{\prec x}$ may be infinite.

1.4 Multisets

Let M be a set. A multiset S over M is a mapping $S: M \rightarrow \mathbb{N}$. We interpret $S(m)$ as the number of occurrences of elements m of the base set M within the multiset S.

Example. $S=\{a, a, a, b, b\}$ is a multiset over $\{a, b, c\}$, where $S(a)=3, S(b)=2$, $S(c)=0$.
We say that m is an element of S, if $S(m)>0$.
We use set notation ($\in \subseteq \subseteq, \cup, \cap$, etc.) with analogous meaning also for multisets, e. g.,

$$
\begin{aligned}
m \in S & : \Leftrightarrow S(m)>0 \\
\left(S_{1} \cup S_{2}\right)(m) & :=S_{1}(m)+S_{2}(m) \\
\left(S_{1} \cap S_{2}\right)(m) & :=\min \left\{S_{1}(m), S_{2}(m)\right\} \\
\left(S_{1}-S_{2}\right)(m) & := \begin{cases}S_{1}(m)-S_{2}(m) & \text { if } S_{1}(m) \geq S_{2}(m) \\
0 & \text { otherwise }\end{cases} \\
S_{1} \subseteq S_{2} & : \Leftrightarrow S_{1}(m) \leq S_{2}(m) \text { for all } m \in M
\end{aligned}
$$

A multiset S is called finite, if the set $\{m \in M \mid S(m)>0\}$ is finite.
From now on we only consider finite multisets.

Multiset Orderings

Let (M, \succ) be an abstract reduction system. The multiset extension of \succ to multisets over M is defined by

$$
\begin{aligned}
& S_{1} \succ_{\text {mul }} S_{2} \text { if and only if } \\
& \text { there exist multisets } X \text { and } Y \text { over } M \text { such that } \\
& \quad \emptyset \neq X \subseteq S_{1}, \\
& \quad S_{2}=\left(S_{1}-X\right) \cup Y, \\
& \forall y \in Y \exists x \in X: x \succ y
\end{aligned}
$$

Lemma 1.9 (König's Lemma) Every finitely branching tree with infinitely many nodes contains an infinite path.

Theorem 1.10

(a) If \succ is transitive, then $\succ_{\text {mul }}$ is transitive.
(b) If \succ is irreflexive and transitive, then $\succ_{\text {mul }}$ is irreflexive.
(c) If \succ is a well-founded ordering, then $\succ_{\text {mul }}$ is a well-founded ordering.
(d) If \succ is a strict total ordering, then $\succ_{\text {mul }}$ is a strict total ordering.

Proof. see Baader and Nipkow, page 22-24.

The multiset extension as defined above is due to Dershowitz and Manna (1979).
There are several other ways to characterize the multiset extension of a binary relation. The following one is due to Huet and Oppen (1980):

Let (M, \succ) be an abstract reduction system. The (Huet/Oppen) multiset extension of \succ to multisets over M is defined by

$$
\begin{aligned}
& S_{1} \succ_{\text {mul }}^{\mathrm{HO}} S_{2} \text { if and only if } \\
& \qquad \begin{array}{l}
S_{1} \neq S_{2} \text { and } \\
\qquad \forall m \in M:\left(S_{2}(m)>S_{1}(m)\right. \\
\left.\qquad \quad \Rightarrow \exists m^{\prime} \in M: m^{\prime} \succ m \text { and } S_{1}\left(m^{\prime}\right)>S_{2}\left(m^{\prime}\right)\right)
\end{array}
\end{aligned}
$$

A third way to characterize the multiset extension of a binary relation \succ is to define it as the transitive closure of the relation $\succ_{\text {mul }}^{1}$ given by
$S_{1} \succ_{\text {mul }}^{1} S_{2}$ if and only if
there exists $x \in S_{1}$ and a multiset Y over M such that

$$
\begin{aligned}
& S_{2}=\left(S_{1}-\{x\}\right) \cup Y, \\
& \forall y \in Y: x \succ y
\end{aligned}
$$

For strict partial orderings all three characterizations of $\succ_{\text {mul }}$ are equivalent:

Theorem 1.11 If \succ is a strict partial ordering, then
(a) $\succ_{\text {mul }}=\succ_{\text {mul }}^{\mathrm{HO}}$,
(b) $\succ_{\text {mul }}=\left(\succ_{\text {mul }}^{1}\right)^{+}$.

Proof. (a) see Baader and Nipkow, page 24-26. (b) Exercise.

Note, however, that for an arbitrary binary relation \succ all three relations $\succ_{\text {mul }}, \succ_{\text {mul }}^{\mathrm{HO}}$, and $\left(\succ_{\text {mul }}^{1}\right)^{+}$may be different.

1.5 Complexity Theory Prerequisites

A decision problem is a subset $L \subseteq \Sigma^{*}$ for some fixed finite alphabet Σ.
The function $\operatorname{chr}(L, x)$ denotes the characteristic function for some decision problem L and is defined by $\operatorname{chr}(L, u)=1$ if $u \in L$ and $\operatorname{chr}(L, u)=0$ otherwise.

P and NP

A decision problem is called solvable in polynomial time if its characteristic function can be computed in polynomial time. The class of all polynomial-time decision problems is denoted by P.
We say that a decision problem L is in NP if there is a predicate $Q(x, y)$ and a polynomial $p(n)$ such that for all $u \in \Sigma^{*}$ we have
(i) $u \in L$ if and only if there is a $v \in \Sigma^{*}$ with $|v| \leq p(|u|)$ and $Q(u, v)$ holds, and
(ii) the predicate Q is in P .

Intuitively, a decision problem is in P , if we can solve it in polynomial time, and it is in NP, if we can verify a solution (namely the string v in the definition of NP) in polynomial time.

Reducibility, NP-Hardness, NP-Completeness

A decision problem L is polynomial-time reducible to a decision problem L^{\prime} if there is a function g computable in polynomial time such that for all $u \in \Sigma^{*}$ we have $u \in L$ iff $g(u) \in L^{\prime}$.

For example, if L is polynomial-time reducible to L^{\prime} and $L^{\prime} \in \mathrm{P}$ then $L \in \mathrm{P}$.
A decision problem is NP-hard if every problem in NP is polynomial-time reducible to it.

A decision problem is NP-complete if it is NP-hard and in NP.
The following properties are equivalent:
(i) There exists some NP-complete problem that is in P .
(ii) $\mathrm{P}=\mathrm{NP}$.

The question whether P equals NP or not is probably the most famous unsolved problem in theoretical computer science.

All known algorithms for NP-complete problems have an exponential time complexity in the worst case.

[^0]: *This document contains the text of the lecture slides (almost verbatim) plus some additional information, in particular proofs of theorems that are presented on the blackboard during the course. It is not a full script and does not contain the examples and additional explanations given during the lecture. Moreover it should not be taken as an example how to write a research paper - neither stylistically nor typographically.
 Parts of this document are based on lecture notes by Harald Ganzinger and Christoph Weidenbach.

[^1]: ${ }^{1}$ induction hypothesis
 ${ }^{2}$ induction step

