
Automated Reasoning I∗

Uwe Waldmann

Winter Term 2023/2024

Topics of the Course

Preliminaries

abstract reduction systems
well-founded orderings

Propositional logic

syntax, semantics
calculi: CDCL-procedure, OBDDs
implementation: Two watched literals

First-order predicate logic

syntax, semantics, model theory, . . .
calculi: resolution, tableaux
implementation: sharing, indexing

First-order predicate logic with equality

term rewriting systems
calculi: Knuth-Bendix completion, dependency pairs

Emphasis on:

logics and their properties,

proof systems for these logics and their properties:
soundness, completeness, implementation

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, in particular proofs of theorems that are presented on the blackboard during the course.
It is not a full script and does not contain the examples and additional explanations given during
the lecture. Moreover it should not be taken as an example how to write a research paper – neither
stylistically nor typographically.
Parts of this document are based on lecture notes by Harald Ganzinger and Christoph Weidenbach.

1

1 Preliminaries

Literature:
Franz Baader and Tobias Nipkow: Term rewriting and all that,
Cambridge Univ. Press, 1998, Chapter 2.

Before we start with the main subjects of the lecture, we repeat some prerequisites
from mathematics and computer science and introduce some tools that we will need
throughout the lecture.

1.1 Mathematical Prerequisites

N = {0, 1, 2, . . .} is the set of natural numbers (including 0).

Z, Q, R denote the integers, rational numbers and the real numbers, respectively.

∅ is the empty set.

If M and M ′ are sets, then M ∩ M ′, M ∪ M ′, and M \ M ′ denote the intersection,
union, and set difference of M and M ′.

The subset relation is denoted by ⊆. The strict subset relation is denoted by ⊂ (i. e.,
M ⊂M ′ if and only if M ⊆M ′ and M 6= M ′).

Relations

Let M be a set, let n ≥ 2. We write Mn for the n-fold cartesian product M × · · · ×M .

In order to handle the cases n ≥ 2, n = 1, and n = 0 simultaneously, we also define
M1 = M and M0 = {()}. (We do not distinguish between an element m of M and a
1-tuple (m) of an element of M .)

An n-ary relation R over some set M is a subset of Mn: R ⊆Mn.

We often use predicate notation for relations:

Instead of (m1, . . . , mn) ∈ R we write R(m1, . . . , mn), and say that R(m1, . . . , mn) holds
or is true.

For binary relations, we often use infix notation, so
(m,m′) ∈ < ⇔ <(m,m′) ⇔ m < m′.

Since relations are sets, we can use the usual set operations for then.

Example: Let R = {(0, 2), (1, 2), (2, 2), (3, 2)} ⊆ N× N.
Then R ∩< = R ∩ { (n,m) ∈ N× N | n < m } = {(0, 2), (1, 2)}.

A relation Q is a subrelation of a relation R if Q ⊆ R.

2

Words

Given a non-empty set (also called alphabet) Σ, the set Σ∗ of finite words over Σ is
defined inductively by

(i) the empty word ε is in Σ∗,

(ii) if u ∈ Σ∗ and a ∈ Σ then ua is in Σ∗.

The set of non-empty finite words Σ+ is Σ∗ \ {ε}.

The concatenation of two words u, v ∈ Σ∗ is denoted by uv.

The length |u| of a word u ∈ Σ∗ is defined by

(i) |ε| := 0,

(ii) |ua| := |u|+ 1 for any u ∈ Σ∗ and a ∈ Σ.

1.2 Abstract Reduction Systems

Throughout the lecture, we will have to work with reduction systems,

on the object level, in particular in the section on equality,

and on the meta level, i. e., to describe deduction calculi.

An abstract reduction system is a pair (A,→), where

A is a non-empty set,

→ ⊆ A× A is a binary relation on A.

The relation → is usually written in infix notation, i. e., a→ b instead of (a, b) ∈ →.

Let →′ ⊆ A×A and →′′ ⊆ A×A be two binary relations. Then the composition of →′

and →′′ is the binary relation (→′ ◦→′′) ⊆ A× A defined by

a (→′ ◦→′′) c if and only if there exists some b ∈ A such that a→′ b and b→′′ c.

3

For a binary relation → ⊆ A×A, we define:

→0 = { (a, a) | a ∈ A } identity
→i+1 = →i ◦→ i+ 1-fold composition
→+ =

⋃

i>0
→i transitive closure

→∗ =
⋃

i≥0
→i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure
← = →−1 = { (b, c) | c→ b } inverse
↔ = →∪← symmetric closure
↔+ = (↔)+ transitive symmetric closure
↔∗ = (↔)∗ reflexive transitive symmetric closure

or equivalence closure

b ∈ A is reducible, if there is a c such that b→ c.

b is in normal form (or irreducible), if it is not reducible.

c is a normal form of b, if b→∗ c and c is in normal form.
Notation: c = b↓ (if the normal form of b is unique).

A relation → is called

terminating, if there is no infinite descending chain b0 → b1 → b2 →

normalizing, if every b ∈ A has a normal form.

Lemma 1.1 If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

1.3 Orderings

Important properties of binary relations:

Let M 6= ∅. A binary relation R ⊆M ×M is called

reflexive, if R(x, x) for all x ∈M ,

irreflexive, if ¬R(x, x) for all x ∈M ,

antisymmetric, if R(x, y) and R(y, x) imply x = y for all x, y ∈M ,

transitive, if R(x, y) and R(y, z) imply R(x, z) for all x, y, z ∈M ,

total, if R(x, y) or R(y, x) or x = y for all x, y ∈M .

4

A strict partial ordering ≻ on a set M 6= ∅ is a transitive and irreflexive binary relation
on M .

Notation:
≺ for the inverse relation ≻−1

� for the reflexive closure (≻ ∪=) of ≻

Let ≻ be a strict partial ordering on M ; let M ′ ⊆M .

a ∈M ′ is called minimal in M ′, if there is no b ∈ M ′ with a ≻ b.

a ∈M ′ is called smallest in M ′, if b ≻ a for all b ∈M ′ \ {a}.

Analogously:

a ∈M ′ is called maximal in M ′, if there is no b ∈M ′ with a ≺ b.

a ∈M ′ is called largest in M ′, if b ≺ a for all b ∈M ′ \ {a}.

Notation:
M≺x = { y ∈M | y ≺ x },
M�x = { y ∈M | y � x }.

A subset M ′ ⊆M is called downward closed, if x ∈M ′ and x ≻ y implies y ∈ M ′.

Well-Foundedness

Termination of reduction systems is strongly related to the concept of well-founded
orderings.

A strict partial ordering ≻ on M is called well-founded (or Noetherian), if there is no
infinite descending chain a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈M .

Well-Foundedness and Termination

Lemma 1.2 If ≻ is a well-founded partial ordering and→ ⊆ ≻, then→ is terminating.

Proof. Suppose that→ ⊆ ≻ for some partial ordering ≻ and that→ is not terminating.
Then there exists an infinite descending chain b0 → b1 → b2 → Since → ⊆ ≻, we
have an infinite descending chain b0 ≻ b1 ≻ b2 ≻ . . . , hence ≻ is not well-founded. ✷

Lemma 1.3 If → is a terminating binary relation over A, then →+ is a well-founded
partial ordering.

Proof. Transitivity of →+ is obvious; irreflexivity and well-foundedness follow from
termination of →. ✷

5

Well-Founded Orderings: Examples

Natural numbers: (N, >)

Lexicographic orderings: Let (M1,≻1), (M2,≻2) be well-founded orderings. Define their
lexicographic combination

≻ = (≻1,≻2)lex

on M1 ×M2 by

(a1, a2) ≻ (b1, b2) :⇔ a1 ≻1 b1 or (a1 = b1 and a2 ≻2 b2)

(analogously for more than two orderings). This again yields a well-founded ordering
(proof below).

Length-based ordering on words: For alphabets Σ with a well-founded ordering >Σ, the
relation ≻ defined as

w ≻ w′ :⇔ |w| > |w′| or (|w| = |w′| and w >Σ,lex w
′)

is a well-founded ordering on the set Σ∗ of finite words over the alphabet Σ (Exercise).

Counterexamples:
(Z, >)
(N, <)
the lexicographic ordering on Σ∗

Basic Properties of Well-Founded Orderings

Lemma 1.4 (M,≻) is well-founded if and only if every non-empty M ′ ⊆ M has a
minimal element.

Proof. “⇐”: Suppose that (M,≻) is not well-founded. Then there is an infinite descend-
ing chain a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈M . Consequently, the subset M ′ = { ai | i ∈ N },
does not have a minimal element.

“⇒”: Suppose that the non-empty subset M ′ ⊆ M does not have a minimal element.
Choose a0 ∈ M ′ arbitrarily. Since for every ai ∈ M ′ there is a smaller ai+1 ∈ M ′

(otherwise ai would be minimal in M ′), there is an infinite descending chain a0 ≻ a1 ≻
a2 ≻ . . . ✷

Lemma 1.5 (M1,≻1) and (M2,≻2) are well-founded if and only if (M1 ×M2, ≻) with
≻ = (≻1,≻2)lex is well-founded.

6

Proof. “⇒”: Suppose (M1 × M2, ≻) is not well-founded. Then there is an infinite
sequence (a0, b0) ≻ (a1, b1) ≻ (a2, b2) ≻

Let A = { ai | i ≥ 0 } ⊆ M1. Since (M1,≻1) is well-founded, A has a minimal element
an. But then B = { bi | i ≥ n } ⊆ M2 can not have a minimal element, contradicting the
well-foundedness of (M2,≻2).

“⇐”: obvious. ✷

Monotone Mappings

Let (M,≻) and (M ′,≻′) be strict partial orderings. A mapping ϕ : M → M ′ is called
monotone, if a ≻ b implies ϕ(a) ≻′ ϕ(b) for all a, b ∈M .

Lemma 1.6 If ϕ is a monotone mapping from (M,≻) to (M ′,≻′) and (M ′,≻′) is well-
founded, then (M,≻) is well-founded.

Proof. Suppose that (M,≻) is not well-founded, then there exists an infinite descending
chain a0 ≻ a1 ≻ a2 ≻ Since ai ≻ ai+1 implies ϕ(ai) ≻

′ ϕ(ai+1), we obtain an infinite
descending chain ϕ(a0) ≻

′ ϕ(a1) ≻
′ ϕ(a2) ≻

′ . . . , contradicting the well-foundedness of
(M ′,≻′). ✷

Well-founded Induction

Well-founded induction generalizes the usual induction over natural numbers or data
structures.

Theorem 1.7 (Well-founded (or Noetherian) Induction) Let (M,≻) be a well-
founded ordering, let Q be a property of elements of M .

If for all m ∈M the implication

if Q(m′) for all m′ ∈ M such that m ≻ m′,1

then Q(m).2

is satisfied, then the property Q(m) holds for all m ∈M .

Proof. Let X = {m ∈ M | Q(m) false }. Suppose that X 6= ∅. Since (M,≻) is well-
founded, X has a minimal element m0. Hence for all m

′ ∈M with m′ ≺ m0 the property
Q(m′) holds. On the other hand, the implication which is presupposed for this theorem
holds in particular also for m0, hence Q(m0) must be true. Therefore m0 cannot be in
X , contradicting the assumption. ✷

1induction hypothesis
2induction step

7

Well-founded Recursion

Similarly, well-founded recursion generalizes the usual recursion over natural numbers
or data structures. We will need this concept only once in this lecture (and once more
in Automated Reasoning II), but in one of the main theorems.

Let M and S be sets, let N ⊆M , and let f : M → S be a function. Then the restriction
of f to N , denoted by f |N , is a function from N to S with f |N(x) = f(x) for all x ∈ N .

Theorem 1.8 (Well-founded (or Noetherian) Recursion) Let (M,≻) be a well-
founded ordering, let S be a set. Let φ be a binary function that takes two arguments x
and g and maps them to an element of S, where x ∈ M and g is a function from M≺x

to S.

Then there exists exactly one function f : M → S such that for all x ∈M

f(x) = φ(x, f |M≺x)

Proof. The proof consists of four parts.

Part 1: For every downward closed subset N ⊆M there is at most one function f : N →
S such that f(x) = φ(x, f |N≺x) = φ(x, f |M≺x).

Proof: First observe that if N ⊆ M is downward closed and x ∈ N , then N≺x = M≺x.
Assume that there exist a downward closed subset N ⊆M and two different functions f1
and f2 from N to S with the property. Therefore, the set N ′ := { x ∈ N | f1(x) 6= f2(x) }
is non-empty. By well-foundedness, N ′ has a minimal element y. By minimality of y,
f1|M≺y = f2|M≺y . Therefore f1(y) = φ(y, f1|M≺y) = φ(y, f2|M≺y) = f2(y), contradicting
the assumption.

Part 2: If N1 and N2 are downward closed subsets of M and the functions f1 : N1 → S

and f2 : N2 → S satisfy fi(x) = φ(x, fi|M≺x) for all x ∈ Ni (i = 1, 2), then f1(x) = f2(x)
for all x ∈ N1 ∩N2.

Proof: Define N0 := N1 ∩N2 and f ′
i = fi|N0

for i = 1, 2. Clearly N0 is downward closed
and for all x ∈ N0 and i = 1, 2 we have f ′

i(x) = fi(x) = φ(x, fi|M≺x) = φ(x, f ′
i |M≺x). By

part 1, there is at most one function from N0 to S with this property, so f ′
1 = f ′

2, and
therefore f1(x) = f2(x) for all x ∈ N1 ∩N2.

8

Part 3: For every y ∈ M there exists a function fy : M�y → S such that fy(x) =
φ(x, fy|M≺x) for all x ∈M�y.

Proof: We use well-founded induction over ≻. Let y ∈M . By the induction hypothesis,
for every z ≺ y there exists a function fz : M

�z → S such that fz(x) = φ(x, fz|M≺x) for
all x ∈M�z. By part 2, all functions fz agree on the intersections of their domains. Define
the function fy : M

�y → S by fy(x) = fx(x) for x ≺ y and by fy(y) = φ(y, fy|M≺y). The
function fy has the desired property for x = y by construction and for all x ≺ y by the
induction hypothesis (since fy(x) = fx(x) for x ≺ y and fx has the desired property).

Part 4: There exists a function f : M → S such that f(x) = φ(x, f |M≺x) for all x ∈M .

Proof: Define f : M → S by f(x) = fx(x).

The claim of the theorem follows now from part 1 (for N := M) and part 4. ✷

The well-founded recursion scheme generalizes terminating recursive programs.

Note that functions defined by well-founded recursion need not be computable, in par-
ticular since for many well-founded orderings the sets M≺x may be infinite.

1.4 Multisets

Let M be a set. A multiset S over M is a mapping S : M → N. We interpret S(m) as
the number of occurrences of elements m of the base set M within the multiset S.

Example. S = {a, a, a, b, b} is a multiset over {a, b, c}, where S(a) = 3, S(b) = 2,
S(c) = 0.

We say that m is an element of S, if S(m) > 0.

We use set notation (∈, ⊆, ∪, ∩, etc.) with analogous meaning also for multisets, e. g.,

m ∈ S :⇔ S(m) > 0

(S1 ∪ S2)(m) := S1(m) + S2(m)

(S1 ∩ S2)(m) := min{S1(m), S2(m)}

(S1 − S2)(m) :=

{

S1(m)− S2(m) if S1(m) ≥ S2(m)
0 otherwise

S1 ⊆ S2 :⇔ S1(m) ≤ S2(m) for all m ∈M

A multiset S is called finite, if the set {m ∈M | S(m) > 0 } is finite.

From now on we only consider finite multisets.

9

Multiset Orderings

Let (M,≻) be an abstract reduction system. The multiset extension of ≻ to multisets
over M is defined by

S1 ≻mul S2 if and only if

there exist multisets X and Y over M such that

∅ 6= X ⊆ S1,

S2 = (S1 −X) ∪ Y,

∀y ∈ Y ∃x ∈ X : x ≻ y

Lemma 1.9 (König’s Lemma) Every finitely branching tree with infinitely many
nodes contains an infinite path.

Theorem 1.10
(a) If ≻ is transitive, then ≻mul is transitive.

(b) If ≻ is irreflexive and transitive, then ≻mul is irreflexive.

(c) If ≻ is a well-founded ordering, then ≻mul is a well-founded ordering.

(d) If ≻ is a strict total ordering, then ≻mul is a strict total ordering.

Proof. see Baader and Nipkow, page 22–24. ✷

The multiset extension as defined above is due to Dershowitz and Manna (1979).

There are several other ways to characterize the multiset extension of a binary relation.
The following one is due to Huet and Oppen (1980):

Let (M,≻) be an abstract reduction system. The (Huet/Oppen) multiset extension of
≻ to multisets over M is defined by

S1 ≻
HO
mul S2 if and only if

S1 6= S2 and

∀m ∈M :
(

S2(m) > S1(m)

⇒ ∃m′ ∈M : m′ ≻ m and S1(m
′) > S2(m

′)
)

A third way to characterize the multiset extension of a binary relation ≻ is to define it
as the transitive closure of the relation ≻1

mul given by

S1 ≻
1
mul S2 if and only if

there exists x ∈ S1 and a multiset Y over M such that

S2 = (S1 − {x}) ∪ Y,

∀y ∈ Y : x ≻ y

10

For strict partial orderings all three characterizations of ≻mul are equivalent:

Theorem 1.11 If ≻ is a strict partial ordering, then
(a) ≻mul = ≻

HO
mul,

(b) ≻mul = (≻1
mul)

+.

Proof. (a) see Baader and Nipkow, page 24–26. (b) Exercise. ✷

Note, however, that for an arbitrary binary relation ≻ all three relations ≻mul, ≻
HO
mul, and

(≻1
mul)

+ may be different.

1.5 Complexity Theory Prerequisites

A decision problem is a subset L ⊆ Σ∗ for some fixed finite alphabet Σ.

The function chr(L, x) denotes the characteristic function for some decision problem L

and is defined by chr(L, u) = 1 if u ∈ L and chr(L, u) = 0 otherwise.

P and NP

A decision problem is called solvable in polynomial time if its characteristic function can
be computed in polynomial time. The class of all polynomial-time decision problems is
denoted by P.

We say that a decision problem L is in NP if there is a predicate Q(x, y) and a polynomial
p(n) such that for all u ∈ Σ∗ we have

(i) u ∈ L if and only if there is a v ∈ Σ∗ with |v| ≤ p(|u|) and Q(u, v) holds, and

(ii) the predicate Q is in P.

Intuitively, a decision problem is in P, if we can solve it in polynomial time, and it is in
NP, if we can verify a solution (namely the string v in the definition of NP) in polynomial
time.

11

Reducibility, NP-Hardness, NP-Completeness

A decision problem L is polynomial-time reducible to a decision problem L′ if there is
a function g computable in polynomial time such that for all u ∈ Σ∗ we have u ∈ L iff
g(u) ∈ L′.

For example, if L is polynomial-time reducible to L′ and L′ ∈ P then L ∈ P.

A decision problem is NP-hard if every problem in NP is polynomial-time reducible to
it.

A decision problem is NP-complete if it is NP-hard and in NP.

The following properties are equivalent:

(i) There exists some NP-complete problem that is in P.

(ii) P = NP.

The question whether P equals NP or not is probably the most famous unsolved problem
in theoretical computer science.

All known algorithms for NP-complete problems have an exponential time complexity
in the worst case.

12

