What is Automated Reasoning?

Automated reasoning:
Logical reasoning using a computer program,
with little or no user interaction,

using general methods, rather than approaches that work only for one
specific problem.

Two examples:
Solving a sudoku.

Reasoning with equations.

Introductory Example 1: Sudoku

12345678109
1 1
2 | 4

3 2

4 5 4 7
5 8 3

6 1 9

71 3 4 2

8 5 1

9 8 6

Goal:

Fill the empty fields with
digits 1,...,9, so that each
digit occurs exactly once

In each row, column, and
3 X 3 box.

Introductory Example 1: Sudoku

12345678109
1 1
2 | 4

3 2

4 5 4 7
5 8 3

6 1 9

71 3 4 2

8 5 1

9 8 6

ldea:

Use boolean variables P,-‘f'j
with d,i,j € {1,...,9} to
encode the problem:

P,-‘f'j = true iff the value of

square /,j is d.

Introductory Example 1: Sudoku

12345678109
1 1
2 | 4

3 2

4 5 4 7
5 8 3

6 1 9

71 3 4 2

8 5 1

9 8 6

ldea:

Use boolean variables P,-‘f'j
with d,i,j € {1,...,9} to
encode the problem:

P,-‘f'j = true iff the value of

square /,j is d.

For example:
P58,3 = true.
P57,3 — false.

Coding Sudoku in Boolean Logic

e Concrete values result in formulas P,.dj
e For every square (/,j) we generate P,-lj V...V P?j

e For every square (/,j) and pair of values d < d’ we generate
=PZ v —~Pd

e for every value d and row / we generate Pﬂl V...V P,-‘f'g
(Analogously for columns and 3 x 3 boxes)

e For every value d, row 7, and pair of columns j < j’
we generate ﬂP,-‘,’j Y ﬂPﬁj,
(Analogously for columns and 3 x 3 boxes)

Coding Sudoku in Boolean Logic

Every assignment of boolean values to the variables P,-dj
so that all formulas become true
corresponds to a Sudoku solution (and vice versa).

Coding Sudoku in Boolean Logic

Now use a SAT solver to check whether there is an assignment to the
variables Pﬁj so that all formulas become true:

Niklas Eén, Niklas Sorensson:
MiniSat (http://minisat.se/),

Beware:
The satisfiability problem is NP-complete.

Every known algorithm to solve it has an exponential time worst-case
behaviour (or worse).

Coding Sudoku in Boolean Logic

MiniSat solves the problem in a few milliseconds.

How? See part 2 of this lecture.

Does that contradict NP-completeness? No!
NP-completeness implies that there are really hard problem instances,

it does not imply that all practically interesting problem instances are
hard (for a well-written SAT solver).

SAT Solvers in Practice

Some real-life applications of modern SAT solvers:
hardware verification (model checking)

with extensions:

software verification, hybrid system verification, . ..

checking software package dependencies

solving combinatory problems

“The Largest Math Proof Ever” (Marijn Heule)

10

Introductory Example 2: Equations

Task:

P : = 1 .
rove a-+1 —I_a—l—l

11

Introductory Example 2: Equations

a+1

a+1

12

Introductory Example 2: Equations

a a+0
at+1l a+1
—1
1+

a+1

x+0=x

(1)

13

Introductory Example 2: Equations

a a+0
a+1 a+1
a+(1+(-1))
a a-+1
i

a+1

x+0=x

x+(—x)=0

(1)

(2)

14

Introductory Example 2: Equations

a a+0
a+1 a+1
_a+(1+(-1))
- a-+1
~(a+1)+ (1)
a a+1
i

a+1

x+0=x

x+(—x)=0

x+(y+z)=(x+y)+z

(1)

(2)

(3)

15

Introductory Example 2: Equations

a a+0
a+1 a-+1

a+ (14 (-1))

a+1

(a+1)+(—-1)

a+1

a-+1 —1
a—|—1+a—|—1

—1

1
+a—|—1

x+0=x (1)
x+(—x)=0 (2)

x+(y+z)=Kx+y)+z (3)

Lo @)

16

Introductory Example 2: Equations

a a+0

at1l a+l1 o= 4
=t e ot (x) =0 2)
B (a+31)++1(_1) x+y+z)=K+y)+z (3
- S
e S =1 (5)

Introductory Example 2: Equations

How could we write a program that takes a set of equations and two terms
and tests whether the terms can be connected via a chain of equalities?

It is easy to write a program that applies formulas correctly.

But: correct # useful.

18

Introductory Example 2: Equations

P x+0=x (1)

x+(=x) =0 (2)

_y X—|—y
4 4
Z ()

= =1 (5)

19

Introductory Example 2: Equations

d

a+o0
>

a+1

a+1

x+0=x (1)
x+(—x)=0 (2)

x+(y+z)=Kx+y)+z (3)

y X+y
Z 4
; (4)

§:1 (5)

20

Introductory Example 2: Equations

a \a—I—O
a+1\a—|—1
a

0

aH—lJr

x+0=x (1)

x+(=x) =0 (2)

x+(y+z)=Kx+y)+z (3)

y X+y
— 4
; (4)

21

Introductory Example 2: Equations

a \a—I—O
a+1\\a+1
a
0
a—|—1+
a
a+(1+0)

x+0=x (1)
x+(—x)=0 (2)

x+(y+z)=Kx+y)+z (3)

y X+y
Z 4
; (4)

§:1 (5)

22

Introductory Example 2: Equations

a \a—I—O
a+1\\a+1
a
0
a—|—1+
a
a+ (1+0)
a
a-+2
a—l_aj—t2

x+0=x (1)

x+(=x) =0 (2)

x+(y+z)=Kx+y)+z (3)

y X+y
— 4
; (4)

23

Introductory Example 2: Equations

a \a—I—O
a+1\\a+1
a
0
\ a+1+
a
a+ (1+0)
a
| 7
¢.

x+0=x (1)
x+(—x)=0 (2)

x+(y+z)=Kx+y)+z (3)

y X+y
Z 4
; (4)

§:1 (5)

24

Introductory Example 2: Equations

x+0=x (1)

x+(=x) =0 (2)

_y X—|—y
4 4
Z ()

= =1 (5)

25

Introductory Example 2: Equations

1+

—1

a+1 —1

a+1

)a+1+a+1

x+0=x (1)

x+(=x) =0 (2)

x+(y+z)=Kx+y)+z (3)

y X+y
— 4
; (4)

26

Introductory Example 2: Equations

—1 a+1 —1
1 .
+a—|—1\a+1+a—|—1
a, -1
a a-+1

x+0=x (1)

x+(—x)=0 (2)

x+(y+z)=Kx+y)+z (3)

Yy X—|—y
_ 4
Z ()

= =1 (5)

Introductory Example 2: Equations

\a+1 —1

a+1\

a+1+a—|—1

a, -1
a a-+1

—1
a+ =

1+

x+0=x (1)

x+(—x)=0 (2)

x+(y+z)=Kx+y)+z (3)

_y X—|—y
4 4
Z ()

X | X
I
—
<

Introductory Example 2: Equations

—1 a+1 —1
1 > O: 1
+a+1\\a+1+a+1 X x (1)
a —1
g—i_a—l—l X—I—(—X):O (2)
—1
L+ .= x+(y+z)=(x+y)+z (3)
—1+0
1 X Yy _XxXty (4)
a+1 z z z
X
— =1 5
- (5)

Introductory Example 2: Equations

—1 a—+1 —1
1 > O: 1
+a+1\\a+1+a+1 X x ()
a —1
\ g+a+1 x+(—x)=0 (2)
—1
L+ .= x+(y+z)=(x+y)+z (3)
~14+0
1 X 'y X4y
l a+1 St (4)
= X
: Z =1
| " (5)

Introductory Example 2: Equations

Unrestricted application of equations leads to
e infinitely many equality chains,

e infinitely long equality chains.

= T'he chance to reach the desired goal is very small.

In fact, the general problem is only recursively enumerable,
but not decidable.

31

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

32

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

\ o

33

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

\ o

. e

\ o

34

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

35

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

. e

\ o
\ e

'\./'/

The terms are equal, if both derivations meet.

36

Introductory Example 2: Equations

x+0 = x (1)

X+ (=x) = 0 (2)

x+(y+2z)=(x+y)+z (3)

N | X

Yy X—|—_)/
— = 4
. (4)

X | %
|
—
G

37

Introductory Example 2: Equations

Orient equations. x+0— x (1)

x+(—x)—0 (2)

x+(y+z)—=>(x+y)+z (3)

|

N | X

y Xty
z 4
. . (4)

X | %
d
—

(5)

Introductory Example 2: Equations

Orient equations. x+0— x (1)

Advantage:

- x+(=x) =0 (2)
Now there are only finitely many
and finitely long derivations.

x+(y+z)—=>(x+y)+z (3)

y Xty
z 4
. . (4)

N | X
+

X | %
d
—
G

Introductory Example 2: Equations

Orient equations. x+0— x (1)

But:

. . +(—x) =0 2
Now none of the equations is X+ (=x) (2)

applicable to one of the terms

a 1 —1
a+1 a+1

x+(y+z)—=>(x+y)+z (3)

N | X

y Xty
z 4
. . (4)

X | %
d
—
G

Introductory Example 2: Equations

The chain of equalities that we considered at the beginning looks
roughly like this:

A

41

Introductory Example 2: Equations

|dea:

Derive new equations that enable “shortcuts’.

A

42

Introductory Example 2: Equations

|dea:
Derive new equations that enable “shortcuts’.

From

\./ \ x+(—x) =0 (2)

x+(y+2z)—=(x+y)+z (3)

we derive

/ (x+y)+ (—y) = x+0 (6)

43

Introductory Example 2: Equations

|dea:
Derive new equations that enable “shortcuts’.

From

\./ x+(—=x)—0
x+(y+z)=>(x+y)+z (3)
we derive
/

(x+y)+(—y) > x+0

(2)

(6)

44

Introductory Example 2: Equations

|dea:

Derive new equations that enable “shortcuts’.

From

X | X

.\/. =4+ X >X+y
o Z Z Z
/ * —1

(.
/ we derive

° X+Yy
X

>1jLZ
X

(7)

45

Introductory Example 2: Equations

|dea:

Derive new equations that enable “shortcuts’.

From
X
\ ~ 47 , XY
\ z Z z
/ Z 51
X
we derive
o X+Yy

>1jLZ
X X

(7)

46

Introductory Example 2: Equations

|dea:

Derive new equations that enable “shortcuts’.

PA

From

(x+y)+(—y) > x+0

Xy >1jLZ
X X
we derive
14 —y \X—I—O

X+y /X%—y

(6)

(7)

(8)

47

Introductory Example 2: Equations

|dea:
Derive new equations that enable “shortcuts’.

From

(x+y)+(—y) > x+0

AT

>1jLZ
X

X

we derive

14 —y >><+O
X+y X+y

(6)

(7)

(8)

48

Introductory Example 2: Equations

|dea:
Derive new equations that enable “shortcuts’.

A

Using these equations we can get a
chain of equalities of the desired form.

49

Introductory Example 2: Equations

In fact, it is not necessary to know some equational proof for the problem

In advance.

We can derive these shortcut equations just by looking at the existing

equation set.

How? See part 4 of this lecture.

50

Result

Thomas Hilenbrand's Waldmeister prover solves the problem
in a few milliseconds.

51

Result

But it's not the solution that we wanted to get!

We have to be more careful in formulating our axioms:
= Exclude division by zero.

Then we get in fact a “real” proof.

52

Result

So it works, but it looks like a lot of effort for a problem that one can solve

with a little bit of highschool mathematics.

Reason: Pupils learn not only axioms, but also recipes to work efficiently

with these axioms.

53

Result

It makes a huge difference whether we work with well-known axioms
x+0=x
x+(—x)=0
or with “new” unknown ones
VAgent Y Message VKey.
knows(Agent, crypt(Message, Key))

A knows(Agent, Key)
— knows(Agent, Message).

54

Result

This difference is also important for automated reasoning:

e For axioms that are well-known and frequently used, we can develop
optimal specialized methods.
= Computer Algebra
= Automated Reasoning Il (next semester)

e For new axioms, we have to develop methods that do “something
reasonable” for arbitrary formulas.
= this lecture

e Combining the two approaches
= Automated Reasoning |

55

First-order Provers in Practice

Real-life application:

Use general-purpose provers to make interactive proof assistants
more automatic:

Isabelle tactic “Sledgehammer” .

56

First-order Provers in Practice

Activities & jedit =

Eile Edit Search Markers Folding View Utilities Macros PElugins Help

E®d@E & 4§ ¢ L8

E# & @

Tue 15:32

Isabelle2018/HOL - ex02.thy (modified)

T

™ ex02.thy (/locallhome/saltistourret-rgliteaching/cswi-ss19/exercises_etc/ex02/)

© |lemma in_set_count_ge0:
<X € set ys — count ys x > 0>
by (induction ys) auto

(*>%)

text «First prove that:»
¢ |Llemma count_removel if:

<X € set ys = count (removel x ys) xa = (if x =

xa then count ys x - 1 else count ys xa)>

[v] Proof state

57

First-order Provers in Practice

Activities & jedit =

Eile Edit Search Markers Folding View Utilities Macros PElugins Help

D@dE & a¢ L00

Tue 15:32

Isabelle2018/HOL - ex02.thy (modified)

™ ex02.thy (/locallhome/saltistourret-rgliteaching/cswi-ss19/exercises_etc/ex02/)

© |lemma in_set_count_ge0:
<X € set ys — count ys x > 0>
by (induction ys) auto

(*>%)

text «First prove that:»
¢ |Llemma count_removel if:

sledgehammerl

<X € set ys = count (removel x ys) xa = (if x = xa then

count ys x - 1 else count ys xa)>

[v] Proof state

58

First-order Provers in Practice

Tue 15:32

Activities & jedit =

Isabelle2018/HOL - ex02.thy (modified)

Eile Edit Search Markers Folding View Utilities Macros PElugins Help

ImdbE & a¢ XPDE G® T SEE B @# @ €

™ ex02.thy (/locallhome/saltistourret-rgliteaching/cswi-ss19/exercises_etc/ex02/)

© |lemma in_set_count_ge0:
<X € set ys — count ys x > 0>
by (induction ys) auto

(*>*)

text «First prove that:»
lemma count_removel if:
<X € set ys = count (removel x ys) xa = (if x

sledgehammerl

xa then count ys x - 1 else count ys xa)>

V] Proof state

Sledgehammering. ..

Proof found...

"vampire": Try this: using count_removel count_removel itself by fastforce (24 ms)
"e": Try this: using count removel count removel itself by fastforce (66 ms)
"cved": Try this: using count_removel count_removel itself by fastforce (79 ms)

"z3": Try this: using count removel count removel itself by fastforce (67 ms)

First-order Provers in Practice

Tue 15:32

Activities & jedit =

Isabelle2018/HOL - ex02.thy (modified)

Eile Edit Search Markers Folding View Utilities Macros PElugins Help
a® "TBEED BX & ©@ @

i F. =1 + o J_ & 3 ™ =
I r'—'_" iil B = 1 o) D 6y, &P

™ ex02.thy (/locallhome/saltistourret-rgliteaching/cswi-ss19/exercises_etc/ex02/)

© |lemma in_set_count_ge0:
<X € set ys — count ys x > 0>
by (induction ys) auto

(*>*)

text «First prove that:»

lemma count_removel if:
<X € set ys = count (removel x ys) xa = (if x = xa then count ys x - 1 else count ys xa)->

sledgehammerl
using count_removel count removel itself by fastforce

V] Proof state

Sledgehammering. ..

Proof found...

"vampire": Try this: using count_removel count_removel itself by fastforce (24 ms)
"e": Try this: using count removel count removel itself by fastforce (66 ms)
"cved": Try this: using count_removel count_removel itself by fastforce (79 ms)

"z3": Try this: using count removel count removel itself by fastforce (67 ms)

First-order Provers in Practice

Real-life application:

Use general-purpose provers to make interactive proof assistants
more automatic:

Isabelle tactic “Sledgehammer” .

= 70% of all subgoals are solved automatically.

61

