What is Automated Reasoning?

Automated reasoning:

- Logical reasoning using a computer program,
- with little or no user interaction,
- using general methods, rather than approaches that work only for one specific problem.

Two examples:

- Solving a sudoku.
- Reasoning with equations.

Introductory Example 1: Sudoku

Goal:

Fill the empty fields with digits 1,...,9, so that each digit occurs exactly once in each row, column, and 3×3 box.

Introductory Example 1: Sudoku

Idea:

Use boolean variables $P_{i,j}^d$ with $d, i, j \in \{1, ..., 9\}$ to encode the problem:

 $P_{i,j}^d = true$ iff the value of square *i*, *j* is *d*.

Introductory Example 1: Sudoku

Idea:

Use boolean variables $P_{i,j}^d$ with $d, i, j \in \{1, ..., 9\}$ to encode the problem:

 $P_{i,j}^d = true$ iff the value of square i, j is d.

For example: $P_{5,3}^8 = true.$ $P_{5,3}^7 = false.$

Coding Sudoku in Boolean Logic

- Concrete values result in formulas $P_{i,i}^d$
- For every square (i, j) we generate $P_{i,j}^1 \vee \ldots \vee P_{i,j}^9$
- For every square (i, j) and pair of values d < d' we generate $\neg P_{i,j}^d \lor \neg P_{i,j}^{d'}$
- For every value *d* and row *i* we generate P^d_{i,1} ∨ ... ∨ P^d_{i,9} (Analogously for columns and 3 × 3 boxes)
- For every value d, row i, and pair of columns j < j' we generate ¬P^d_{i,j} ∨ ¬P^d_{i,j}, (Analogously for columns and 3 × 3 boxes)

Every assignment of boolean values to the variables $P_{i,j}^d$ so that all formulas become true corresponds to a Sudoku solution (and vice versa).

Coding Sudoku in Boolean Logic

Now use a SAT solver to check whether there is an assignment to the variables $P_{i,i}^d$ so that all formulas become true:

Niklas Eén, Niklas Sörensson: MiniSat (http://minisat.se/),

Beware:

The satisfiability problem is NP-complete.

Every known algorithm to solve it has an exponential time worst-case behaviour (or worse).

Coding Sudoku in Boolean Logic

MiniSat solves the problem in a few milliseconds.

How? See part 2 of this lecture.

Does that contradict NP-completeness? No!

NP-completeness implies that there are really hard problem instances,

it does not imply that all practically interesting problem instances are hard (for a well-written SAT solver).

Some real-life applications of modern SAT solvers:

- hardware verification (model checking)
- with extensions:

. . .

- software verification, hybrid system verification,
- checking software package dependencies
- solving combinatory problems
- "The Largest Math Proof Ever" (Marijn Heule)

Task:

Prove:
$$\frac{a}{a+1} = 1 + \frac{-1}{a+1}$$
.

$$\frac{a}{a+1}$$

$$1 + \frac{-1}{a+1}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$
$$1 + \frac{-1}{a+1}$$

 $x + 0 = x \tag{1}$

$$\frac{a}{a+1} = \frac{a+0}{a+1} = \frac{a+(1+(-1))}{a+1}$$

 $x + 0 = x \tag{1}$

$$x + (-x) = 0$$
 (2)

$$1 + \frac{-1}{a+1}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$
$$= \frac{a+(1+(-1))}{a+1}$$
$$= \frac{(a+1)+(-1)}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$1+rac{-1}{a+1}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$
$$= \frac{a+(1+(-1))}{a+1}$$
$$= \frac{(a+1)+(-1)}{a+1}$$
$$= \frac{a+1}{a+1} + \frac{-1}{a+1}$$
$$1 + \frac{-1}{a+1}$$

$$x + 0 = x$$
 (1)
 $x + (-x) = 0$ (2)

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{a}{a+1} = \frac{a+0}{a+1}$$
$$= \frac{a+(1+(-1))}{a+1}$$
$$= \frac{(a+1)+(-1)}{a+1}$$
$$= \frac{a+1}{a+1} + \frac{-1}{a+1}$$
$$= 1 + \frac{-1}{a+1}$$

$$x + 0 = x$$
(1)

$$x + (-x) = 0$$
(2)

$$+ (y + z) = (x + y) + z$$
(3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z}$$
(4)

$$\frac{x}{x} = 1$$
(5)

X

How could we write a program that takes a set of equations and two terms and tests whether the terms can be connected via a chain of equalities?

It is easy to write a program that applies formulas *correctly*.

But: correct \neq useful.

 $rac{a}{a+1}$

$$x + 0 = x \qquad (1)$$

$$x + (-x) = 0 \qquad (2)$$

$$x + (y + z) = (x + y) + z \qquad (3)$$

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z} \qquad (4)$$

$$\frac{x}{x} = 1 \qquad (5)$$

 $\frac{a}{a+1} \longrightarrow \frac{a+0}{a+1}$

$$x + 0 = x$$
(1)

$$x + (-x) = 0$$
(2)

$$+ (y + z) = (x + y) + z$$
(3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z}$$
(4)

$$\frac{x}{x} = 1$$
(5)

X

$$\frac{a}{a+1} \xrightarrow{a+0} \frac{a+0}{a+1}$$
$$\frac{a}{a+1} + 0$$

$$x + 0 = x$$

$$x + (-x) = 0$$

$$(2)$$

$$+ (y + z) = (x + y) + z$$

$$(3)$$

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z}$$

$$(4)$$

$$\frac{x}{x} = 1$$

$$(5)$$

X

$$\frac{a}{a+1} \xrightarrow{a+0} \frac{a+1}{a+1}$$

$$\frac{a}{a+1} + 0$$

$$\frac{a}{a+1} + 0$$

$$\frac{a}{a+1} + 0$$

$$x + 0 = x$$
 (1)

$$x + (-x) = 0$$
 (2)

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z}$$
 (4)

$$\frac{x}{x} = 1$$
 (5)

$$x + 0 = x \qquad (1)$$

$$x + (-x) = 0 \qquad (2)$$

$$x + (y + z) = (x + y) + z \qquad (3)$$

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z} \qquad (4)$$

$$\frac{x}{x} = 1 \qquad (5)$$

$$x + 0 = x$$
(1)

$$x + (-x) = 0$$
(2)

$$x + (y + z) = (x + y) + z$$
(3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z}$$
(4)

$$\frac{x}{x} = 1 \tag{5}$$

 $x + 0 = x \qquad (1)$ $x + (-x) = 0 \qquad (2)$ $x + (y + z) = (x + y) + z \qquad (3)$ $\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z} \qquad (4)$ $\frac{x}{x} = 1 \qquad (5)$ $1 + \frac{-1}{a+1}$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1}$$
$$\frac{a}{a} + \frac{-1}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1}$$
$$\frac{a}{a} + \frac{-1}{a+1}$$
$$1 + \frac{-1}{a+\frac{a}{a}}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1$$
 (5)

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1}$$

$$\frac{a}{a} + \frac{-1}{a+1}$$

$$1 + \frac{-1}{a+\frac{a}{a}}$$

$$1 + \frac{-1+0}{a+1}$$

$$x + 0 = x$$

$$x + (-x) = 0$$

$$(2)$$

$$x + (y + z) = (x + y) + z$$

$$(3)$$

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z}$$

$$(4)$$

$$\frac{x}{x} = 1$$

$$(5)$$

$$1 + \frac{-1}{a+1} \longrightarrow \frac{a+1}{a+1} + \frac{-1}{a+1}$$

$$\frac{a}{a} + \frac{-1}{a+1}$$

$$1 + \frac{-1}{a+\frac{a}{a}}$$

$$1 + \frac{-1+0}{a+1}$$

$$x + 0 = x \tag{1}$$

$$x + (-x) = 0 \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z} \tag{4}$$

$$\frac{x}{x} = 1 \tag{5}$$

Unrestricted application of equations leads to

- infinitely many equality chains,
- infinitely long equality chains.

 \Rightarrow The chance to reach the desired goal is very small.

In fact, the general problem is only recursively enumerable, but not decidable.

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

• •

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

A better approach:

Apply equations in such a way that terms become "simpler".

Start from both sides:

The terms are equal, if both derivations meet.

$$x + 0 = x \qquad (1)$$

$$x + (-x) = 0 \qquad (2)$$

$$x + (y + z) = (x + y) + z \qquad (3)$$

$$\frac{x}{z} + \frac{y}{z} = \frac{x + y}{z} \qquad (4)$$

$$\frac{x}{x} = 1 \qquad (5)$$

Orient equations.

$$x + 0 \rightarrow x \qquad (1)$$

$$x + (-x) \rightarrow 0 \qquad (2)$$

$$+ (y + z) \rightarrow (x + y) + z \qquad (3)$$

$$\frac{x}{z} + \frac{y}{z} \rightarrow \frac{x + y}{z} \qquad (4)$$

$$\frac{x}{x} \rightarrow 1 \qquad (5)$$

Χ

Orient equations.

Advantage: Now there are only finitely many and finitely long derivations.

$$x + 0 \rightarrow x \qquad (1)$$

$$x + (-x) \rightarrow 0 \qquad (2)$$

$$+ (y + z) \rightarrow (x + y) + z \qquad (3)$$

$$\frac{x}{z} + \frac{y}{z} \rightarrow \frac{x + y}{z} \qquad (4)$$

$$\frac{x}{x} \rightarrow 1 \qquad (5)$$

X

Orient equations.

But:

Now none of the equations is applicable to one of the terms

$$\frac{a}{a+1}, \quad 1+\frac{-1}{a+1}$$

$$x + 0 \rightarrow x \qquad (1)$$

$$x + (-x) \rightarrow 0 \qquad (2)$$

$$x + (y + z) \rightarrow (x + y) + z \qquad (3)$$

$$\frac{x}{z} + \frac{y}{z} \rightarrow \frac{x + y}{z} \qquad (4)$$

$$\frac{x}{x} \rightarrow 1 \qquad (5)$$

The chain of equalities that we considered at the beginning looks roughly like this:

Idea:

Idea:

Derive new equations that enable "shortcuts".

$$x + (-x) \rightarrow 0$$
 (2)
 $x + (y + z) \rightarrow (x + y) + z$ (3)

we derive

 $(x+y)+(-y) \rightarrow x+0$ (6)

Idea:

Derive new equations that enable "shortcuts".

$$x + (-x) \rightarrow 0 \qquad (2)$$
$$x + (y + z) \rightarrow (x + y) + z \quad (3)$$

we derive

From

 $(x+y)+(-y) \rightarrow x+0$ (6)

Idea:

Idea:

Idea:

$$\frac{x+y}{x} + (-y) \rightarrow x + 0 \quad (6)$$
$$\frac{x+y}{x} \rightarrow 1 + \frac{y}{x} \quad (7)$$

$$1 + \frac{-y}{x+y} \to \frac{x+0}{x+y} \qquad (8)$$

Idea:

Idea:

Derive new equations that enable "shortcuts".

Using these equations we can get a chain of equalities of the desired form.

In fact, it is not necessary to know some equational proof for the problem in advance.

We can derive these shortcut equations just by looking at the existing equation set.

How? See part 4 of this lecture.

Thomas Hilenbrand's Waldmeister prover solves the problem in a few milliseconds.

But it's not the solution that we wanted to get!

We have to be more careful in formulating our axioms:

 \Rightarrow Exclude division by zero.

Then we get in fact a "real" proof.

So it works, but it looks like a lot of effort for a problem that one can solve with a little bit of highschool mathematics.

Reason: Pupils learn not only axioms, but also recipes to work efficiently with these axioms.

It makes a huge difference whether we work with well-known axioms

x + 0 = xx + (-x) = 0

or with "new" unknown ones

 $\forall Agent \ \forall Message \ \forall Key.$ knows(Agent, crypt(Message, Key)) $\land knows(Agent, Key)$ $\rightarrow knows(Agent, Message).$ This difference is also important for automated reasoning:

- For axioms that are well-known and frequently used, we can develop optimal specialized methods.
 - $\Rightarrow \mathsf{Computer} \ \mathsf{Algebra}$
 - \Rightarrow Automated Reasoning II (next semester)
- For new axioms, we have to develop methods that do "something reasonable" for arbitrary formulas.
 - \Rightarrow this lecture
- Combining the two approaches
 - \Rightarrow Automated Reasoning II

Real-life application:

Use general-purpose provers to make interactive proof assistants more automatic:

Isabelle tactic "Sledgehammer".

Isabelle2018/HOL - ex02.thy (modified) Ele Edit Search Markers Folding View Litities Magroe Plugins Help Image: Im	
<pre>lemma in_set_count_ge0:</pre>	
<pre>exv2.thy (/local/home/salt/stourret-rg1/teaching/cswi-ss19/exercises_etc/ex02/) lemma in_set_count_ge0:</pre>	
<pre>ex02.thy (/local/home/salt/stourret-rg1/teaching/cswi-ss19/exercises_etc/ex02/) lemma in_set_count_ge0:</pre>	
<pre><x count="" set="" x="" ys="" ⇒="" ∈=""> 0> by (induction ys) auto (*>*) text <first prove="" that:=""> lemma count_removel_if:</first></x></pre>	
<pre><x count="" set="" x="" ys="" ⇒="" ∈=""> 0> by (induction ys) auto (*>*) text <first prove="" that:=""> lemma count_removel_if:</first></x></pre>	
<pre><x count="" set="" x="" ys="" ⇒="" ∈=""> 0> by (induction ys) auto (*>*) text <first prove="" that:=""> lemma count_removel_if:</first></x></pre>	
<pre>by (induction ys) auto (*>*) text <first prove="" that:=""> Lemma count_removel_if:</first></pre>	
<pre>(*>*) text <first prove="" that:=""> lemma count_removel_if:</first></pre>	
<pre>text <first prove="" that:=""> lemma count_removel_if:</first></pre>	
<pre>lemma count_removel_if:</pre>	
<pre>lemma count_removel_if:</pre>	
$x \in set ys \implies count (removel x ys) xa = (if x = xa then count ys x - 1 else count ys x)$	
	(a) >
4	
4	
4	
4	
5	Proof state

A

Activities 👩 jedit 👻 Tue 15:32	
Isabelle2018/HOL - ex02.thy (modified)	
le Edit Search Markers Folding View Utilities Magros Plugins Help	
i 🖴 🖻 🗳 🤌 🔏 🗊 📋 🗔 🐎 🗂 🗆 🗉 🗷 🔆 💮 🕢 🌗 💿	
ex02.thy (/local/home/salt/stourret-rg1/teaching/cswi-ss19/exercises_etc/ex02/)	
<pre>lemma in_set_count_ge0:</pre>	
$x \in set ys \implies count ys x > 0$	
by (induction ys) auto	
(*>*)	
text (First prove that.)	
text <first prove="" that:=""></first>	
<pre>lemma count_removel_if:</pre>	
$x \in set ys \implies count (removel x ys) xa = (if x = xa then count ys x - 1 els)$	e count ys xa)>
sledgehammer	
	Proof state
	E FIOD State

Activities 👔 jedit 🔫	Tue 15:32
	Isabelle2018/HOL - ex02.thy (modified)
le <u>E</u> dit <u>S</u> earch <u>M</u> arkers F <u>o</u> lding <u>V</u> iew <u>U</u> tilities Ma <u>c</u> ros <u>P</u> lugins <u>H</u> elp	
) 🖴 🖭 🗳 🔶 👗 🗇 📋 🔍 🕀 🗂 🗆 🖬 🖉 🍐 🌘 🛛 🏟	b
x02.thy (/local/home/salt/stourret-rg1/teaching/cswi-ss19/exercises_etc/ex02/)	
<pre>lemma in_set_count_ge0:</pre>	then count ys x - 1 else count ys xa)>
	I∕P Proof state
Sledgehammering	Proof state
Proof found	
"vampire": Try this: using count_removel count_removel_it	and the second
"e": Try this: using count_removel count_removel_itself b	by fastforce (66 ms)
"cvc4": Try this: using count_removel count_removel_itsel	f by fastforce (79 ms)
"z3": Try this: using count removel count removel itself	by fastforce (67 ms)
	•

	Tue 15:32 OL - ex02.thy (modified)
Eile Edit <u>S</u> earch <u>M</u> arkers F <u>o</u> lding <u>V</u> iew <u>U</u> tilities Ma <u>c</u> ros <u>P</u> lugins <u>H</u> elp	
ex02.thy (/local/home/salt/stourret-rg1/teaching/cswi-ss19/exercises etc/ex02/)	
<pre>lemma in_set_count_ge0:</pre>	unt ys x - 1 else count ys xa)>
	☑ Proof state
Sledgehammering	
Proof found	
"vampire": Try this: using count removel count removel itself by	fastforce (24 ms)
"e": Try this: using count_removel count_removel_itself by fastfo	
"cvc4": Try this: using count_removel count_removel_itself by fac	
"z3": Try this: using count_removel count_removel_itself by fast	force (67 ms)

Real-life application:

Use general-purpose provers to make interactive proof assistants more automatic:

Isabelle tactic "Sledgehammer".

 \Rightarrow 70% of all subgoals are solved automatically.