$$
(12+5=17 \text { points })
$$

Part (a) Prove: If $>$ is a well-founded strict partial ordering on a set M and if b is the only element of M that is minimal in M, then b is the smallest element of M.

Part (b) Give an example of a strict partial ordering $>$ on a set M and an element $b \in M$ such that b is the only element of M that is minimal in M but not the smallest element of M.

Assignment 2 (Algebras)
(12 points)
Let $\Sigma=(\Omega, \Pi)$ be a first-order signature with $\Omega=\{b / 0, f / 1\}$ and $\Pi=\{P / 1\}$. Let F be the Σ-formula

$$
\neg P(b) \wedge P(f(f(b))) \wedge \forall x(P(x) \vee P(f(x)))
$$

Decide for each of the following statements whether they are true or false:
(1) If \mathcal{A} is a Σ-model of F, then $P_{\mathcal{A}} \neq \emptyset$ and $P_{\mathcal{A}} \neq U_{\mathcal{A}}$.
(2) There is a Σ-model \mathcal{A} of F such that $U_{\mathcal{A}}=\{7,8,9\}$.
(3) There is a Σ-model \mathcal{A} of F such that $f_{\mathcal{A}}(a)=f_{\mathcal{A}}\left(a^{\prime}\right)$ for all $a, a^{\prime} \in U_{\mathcal{A}}$.
(4) F has exactly four Σ-models.
(5) There are infinitely many Herbrand interpretations over Σ.
(6) There is an Herbrand model of F over Σ with a finite universe.
(7) There is an Herbrand model \mathcal{A} of F over Σ and an assignment β such that $\mathcal{A}(\beta)(f(b))=\mathcal{A}(\beta)(f(f(b)))$.
(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least four correct answers to get any points for this assignment. Missing answers count like false answers.)

Assignment 3 (Critical pairs)

Let R be the following set of rewrite rules over $\Sigma=(\{f / 1, g / 2, h / 1, c / 0\}, \emptyset)$.

$$
\begin{align*}
f(f(x)) & \rightarrow h(h(x)) \tag{1}\\
g(f(y), x) & \rightarrow g(y, x) \tag{2}\\
h(g(z, f(c))) & \rightarrow f(z) \tag{3}
\end{align*}
$$

Give all (non-trivial) critical pairs between the three rules.

Assignment 4 (Confluence)

Let $\Sigma=(\Omega, \emptyset)$ be a finite signature, let \succ be a simplification ordering. Let R be a TRS over $\mathrm{T}_{\Sigma}(X)$ such that $l \succ r$ for all $l \rightarrow r \in R$. Let h be an n-ary function symbol in Ω (with $n>0$) that does not occur in any left-hand side of a rule in R. Prove: If R is confluent, then $R \cup\{h(x, \ldots, x) \rightarrow x\}$ is confluent.

Part (a) Let $\Sigma=(\{f / 2, g / 2, h / 2\}, \emptyset)$; let R be the term rewrite system

$$
\{g(x, f(x, y)) \rightarrow h(y, g(x, y)), \quad h(x, y) \rightarrow g(y, y)\}
$$

Is there a lexicographic path ordering $\succ_{\text {lpo }}$ such that $\rightarrow_{R} \subseteq \succ_{\text {lpo }}$? If yes, give the precedence of this LPO; if no, explain why such an LPO does not exist.

Part (b) Let $\Sigma=(\{f / 2, g / 1, h / 1, b / 0\}, \emptyset)$; let R be the term rewrite system

$$
\{f(g(x), y) \rightarrow g(f(x, x)), \quad h(f(x, b)) \rightarrow g(x)\}
$$

Is there a Knuth-Bendix ordering $\succ_{\text {kbo }}$ such that $\rightarrow_{R} \subseteq \succ_{\text {kbo }}$? If yes, give the weights and precedence of this KBO; if no, explain why such a KBO does not exist.

Part (c) Let $\Sigma=(\{f / 1, g / 1, b / 0, c / 0\}, \emptyset)$; let R be the term rewrite system

$$
\{f(g(x)) \rightarrow g(g(f(x))), \quad c \rightarrow f(b)\}
$$

Is there a polynomial ordering $\succ_{\mathcal{A}}$ in which the function symbols are interpreted by linear polynomials over $U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 1\}$ such that $\rightarrow_{R} \subseteq_{\succ_{\mathcal{A}}}$? If yes, give the polynomials by which the symols of Σ are interpreted; if no, explain why such an ordering does not exist.

Assignment 6 (Path indexing) $\quad(3+3+6=12$ points $)$
Consider the following path index:

Part (a) Which terms have the numbers 3, 5, and 12 in the path index?
Part (b) Which of the terms $g(*, h(*)), f(g(c, b))$, and $g(h(*), b)$ are contained in the path index? If they are contained, what are their numbers?

Part (c) Assume that the terms in the path index are the left-hand sides of the rewrite rules of a TRS R. Is the term $f(g(h(c), f(b)))$ reducible by rules in R ? If yes, what are the numbers of the left-hand sides of these rules?

