(12 + 5 = 17 points)

Part (a) Prove: If > is a well-founded strict partial ordering on a set M and if b is the only element of M that is minimal in M, then b is the smallest element of M.

Part (b) Give an example of a strict partial ordering > on a set M and an element $b \in M$ such that b is the only element of M that is minimal in M but not the smallest element of M.

Assignment 2 (Algebras)

Let $\Sigma = (\Omega, \Pi)$ be a first-order signature with $\Omega = \{b/0, f/1\}$ and $\Pi = \{P/1\}$. Let F be the Σ -formula

 $\neg P(b) \land P(f(f(b))) \land \forall x (P(x) \lor P(f(x))).$

Decide for each of the following statements whether they are true or false:

- (1) If \mathcal{A} is a Σ -model of F, then $P_{\mathcal{A}} \neq \emptyset$ and $P_{\mathcal{A}} \neq U_{\mathcal{A}}$.
- (2) There is a Σ -model \mathcal{A} of F such that $U_{\mathcal{A}} = \{7, 8, 9\}$.
- (3) There is a Σ -model \mathcal{A} of F such that $f_{\mathcal{A}}(a) = f_{\mathcal{A}}(a')$ for all $a, a' \in U_{\mathcal{A}}$.
- (4) F has exactly four Σ -models.
- (5) There are infinitely many Herbrand interpretations over Σ .
- (6) There is an Herbrand model of F over Σ with a finite universe.
- (7) There is an Herbrand model \mathcal{A} of F over Σ and an assignment β such that $\mathcal{A}(\beta)(f(b)) = \mathcal{A}(\beta)(f(f(b)))$.

(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least four correct answers to get any points for this assignment. Missing answers count like false answers.)

Assignment 3 (Critical pairs)

(12 points)

Let R be the following set of rewrite rules over $\Sigma = (\{f/1, g/2, h/1, c/0\}, \emptyset)$.

$$\begin{aligned} f(f(x)) &\to h(h(x)) & (1) \\ g(f(y), x) &\to g(y, x) & (2) \\ h(g(z, f(c))) &\to f(z) & (3) \end{aligned}$$

Give all (non-trivial) critical pairs between the three rules.

Assignment 4 (Confluence)

(12 points)

Let $\Sigma = (\Omega, \emptyset)$ be a finite signature, let \succ be a simplification ordering. Let R be a TRS over $T_{\Sigma}(X)$ such that $l \succ r$ for all $l \rightarrow r \in R$. Let h be an n-ary function symbol in Ω (with n > 0) that does not occur in any left-hand side of a rule in R. Prove: If R is confluent, then $R \cup \{h(x, \ldots, x) \rightarrow x\}$ is confluent.

(12 points)

Assignment 5 (Reduction orderings)

(5 + 5 + 5 = 15 points)

Part (a) Let $\Sigma = (\{f/2, g/2, h/2\}, \emptyset)$; let R be the term rewrite system

$$\{g(x, f(x, y)) \to h(y, g(x, y)), \quad h(x, y) \to g(y, y)\}$$

Is there a lexicographic path ordering \succ_{lpo} such that $\rightarrow_R \subseteq \succ_{\text{lpo}}$? If yes, give the precedence of this LPO; if no, explain why such an LPO does not exist.

Part (b) Let $\Sigma = (\{f/2, g/1, h/1, b/0\}, \emptyset)$; let R be the term rewrite system

$$\{ f(g(x), y) \to g(f(x, x)), \quad h(f(x, b)) \to g(x) \}$$

Is there a Knuth-Bendix ordering \succ_{kbo} such that $\rightarrow_R \subseteq \succ_{\text{kbo}}$? If yes, give the weights and precedence of this KBO; if no, explain why such a KBO does not exist.

Part (c) Let $\Sigma = (\{f/1, g/1, b/0, c/0\}, \emptyset)$; let R be the term rewrite system

$$\{ f(g(x)) \to g(g(f(x))), \quad c \to f(b) \}$$

Is there a polynomial ordering $\succ_{\mathcal{A}}$ in which the function symbols are interpreted by linear polynomials over $U_{\mathcal{A}} = \{ n \in \mathbb{N} \mid n \geq 1 \}$ such that $\rightarrow_R \subseteq \succ_{\mathcal{A}}$? If yes, give the polynomials by which the symols of Σ are interpreted; if no, explain why such an ordering does not exist.

Assignment 6 (Path indexing)

(3 + 3 + 6 = 12 points)

Consider the following path index:

Part (a) Which terms have the numbers 3, 5, and 12 in the path index?

Part (b) Which of the terms g(*, h(*)), f(g(c, b)), and g(h(*), b) are contained in the path index? If they are contained, what are their numbers?

Part (c) Assume that the terms in the path index are the left-hand sides of the rewrite rules of a TRS R. Is the term f(g(h(c), f(b))) reducible by rules in R? If yes, what are the numbers of the left-hand sides of these rules?