Automated Reasoning |, 2019/20
Re-Exam, Sample Solution

Assignment 1

F = 392 ((y P(=,) © (Q(.y)))

Since the equivalence occurs in F' with positive
polarity, we replace it by a conjunction of two
implications.

vz ((ByPzy) > (yQ(e.y))
A ((Hy Qz,y)) — (ﬂyP(%y))))

Then we replace the implications by disjunc-
tions:

Iz Vz ((ﬂ(ﬂy P(z,y)) vV (Jy Q(ﬂv,y)))
A (@ QE.w) v (BuP))

After pushing the negations inward, we obtain
the negation normal form

J2Vz (((Vy —P(z,y)) vV (Jy Q(ﬂv,y)))
A (9 -Q(.w) v (Jy P(2w) )

We can now use miniscoping. The quantifier Va
can be pushed inward

3z (((Vy =P(z,y)) V (Vz Iy Q(z, y)))
A (V2 ¥y =Q(a,y) v By P(2,1)) ) )

but the quantifier 4z cannot. Variable renam-
ing yields

Jz (<(Vy ﬁP(z,y)) \ (Vw EIy'Q(:U,y')))
A (v vy Q! ") v By P(,y™)) ) )

After Skolemization (starting with the outer-
most existential quantifier), we obtain

((vy=Pley) v (V2 Q. f(2))) )
A ((V:c’Vy”—'Q(x/,y”)) \/P(C, c/))

Finally we push the remaining quantifiers out-
ward:

VwaVx'Vy”((ﬂP(C,y) vV Q(z, f(2)))
A Q' y") v Ple, )

The resulting formula in CNF is equisatisfi-
able to F', but not equivalent, since the Skolem-
ization step does not yield an equivalent for-
mula.

Grading scheme: —2 points per error.

Assignment 2

Part (a)

The second literal of clause (4) is not maxi-
mal, since it is strictly smaller than the first
literal of (4) in the given ordering. All other
literals in the clauses (1)—(5) are maximal in
their clauses.

Grading scheme: —1 point per error.

Part (b) When the second literal in (5) is se-
lected, we get the following three Res?,, infer-
ences:

Resolution (1) literal 1, (4) literal 1

(after renaming z in (4) to 2/):

mau {#' o 7, y ~ f(2)),

conclusion —=P(z, f(z)) V —P(f(z),g(z)).

Resolution (2) literal 1, (4) literal 3

(after renaming z in (4) to 2/):

mgu {z’ =z, y — g(z)},

conclusion =P(f(x),g(z)) V =P(z,g(x)).

Factorization (3) literals 1 and 2:
mgu {x — b, y — b},
conclusion P(h(b),h(b)).

Grading scheme: 3 + 4 + 3 points for three in-
ferences.



Assignment 3

The statement holds. Proof: Assume that there
is a variable x € X such that [z] # {z}.
Since = € [z], this means that [z] must con-
tain some term ¢ different from z. Therefore
E + x~t, and by Birkhoff’s Theorem, this
implies x <+7, t. Since t is different from z, we
have z ¢}, t, and therefore z <vp t' <% ¢
for some term t'. Consequently, z —g t or
t' — g x. So some subterm of x must be equal
to either so or s'o for some equation s ~ s’ in
E. This is impossible, though, since neither s
nor s’ is a variable.

An alternative proof uses induction over the
derivation tree for E + ¢t ~ t' to show that
no statemenn F + x ~ t with ¢ # x can be
derived.

Assignment 4

The relation > is irreflexive, transitive, and
well-founded. It is not compatible with con-
texts, since

f(b) = b,
but not
g(h(h(D)), f (b)) = g(h(h(D)),D).

It is also not stable under substitutions, since

g(z, h(h(h(b)))) = g(h(h(z)), h(h(D))),
but not

9(f(f(c)), h(h(h(b))))
= g(h(h(f(f(€)))), h(h(b)))-

Assignment 5

Part (a) There are many possible Knuth-
Bendix orderings > such that —-p C >. One
possibility: w(h) = 5, w(f) = 3, w(g) = w(b) =
w(c) = w(x) = 1; in this case the precedence
does not matter.

Part (b) There are two critical pairs:
Critical pair between (1) and (1):
(h(f(c,c),b), f(h(c,b), f(c,0)))

Both terms are in normal form, therefore not
joinable.

Critical pair between (1) and (2):

(h(b,b), g(f(b,c)))

h(b,b) can be rewritten to g(f(b,c)) using (3),
therefore joinable.

Grading scheme: 5 points if a critical pair was
computed correctly; 2 points if it was detected
correctly but computed incorrectly.

Assignment 6

To give a recursive definition for F;,, we need
an auxiliary formula G,, over {Py, ..., P,} such
that A(G,) = 1if and only if A maps all propo-
sitional variables Py, ..., P, to 0. Then we have

FoHL

GoHT

F, H if P, then G, else F,,_;
G, Hif P, then L else G,,—1

for n > 1. (The if-then-else construct can be
encoded using the usual boolean connectives
as shown in the lecture notes.)

The recursive definition can be translated di-
rectly into a reduced OBDD: The OBDD has
2n + 1 nodes: one node labelled with P, (cor-
responding to the formula F},), two nodes la-
belled with P; for every i € {1,...,n — 1} (cor-
responding to F; and G;), and two leaf nodes:




