
Automated Reasoning I, 2019/20
Endterm Exam, Sample Solution

Assignment 1

Part (a) The statement holds: If {b} ≻mul S1,
then by definition S1 = ({b} −X) ∪ Y for mul-
tisets X and Y such that ∅ 6= X ⊆ {b} and
such that for each y ∈ Y there is an x ∈ X with
x ≻ y. Clearly X must equal {b}, and therefore
Y = S1. Thus we have b ≻ y for each y ∈ S1.
Analogously, we can show that b ≻ y for each
y ∈ S2. Therefore b ≻ y for each y ∈ S1 ∪ S2,
which implies {b} ≻mul S1 ∪ S2.

Part (b) The statement does not hold: Let
S = {b1, b2}, then obviously {b1, b2} ≻mul {b1}
and {b1, b2} ≻mul {b2}, but not {b1, b2} ≻mul

{b1, b2}.

Assignment 2

(1) true: in particular, it has models with ar-
bitrarily large universes.
(2) true: ∀xP (x) |= ∀xP (f(x)).
(3) false: the formula is unsatisfiable, so it has
no models at all.
(4) true: take UA = {1, 2}, bA = 1, cA = 1,
fA : x 7→ 2, PA = {2}.
(5) false: take UA = {1, 2}, bA = 1, cA = 1,
fA : x 7→ 1, PA = {1}.
(6) true: in fact all Herbrand interpreta-
tions over Σ have the same infinite universe
{b, c, f(b), f(c), f(f(b)), f(f(c)), . . . }.
(7) false: P (b) ∨ P (c) has infinitely many Her-
brand models over Σ, which differ in the inter-
pretation of P on ground terms different from
b and c.
(8) true: the interpretation of P on all ground
terms with f at the root is fixed, but P can be
either true or false for b and either true or false
for c; this leaves four combinations.

Grading scheme: 5th, 6th, 7th, 8th correct an-
swer: 2, 3, 3, 2 points.

Assignment 3

We construct a strict tableau for (1)–(3):

P (b) ∧ ¬P (d) (1)

P (c) ∨
(

P (b) ∧ P (d)
)

(2)

P (c) → ¬
(

P (b) ∨ P (d)
)

(3)

P (b) (4)

¬P (d) (5)

P (c) (6) P (b) ∧ P (d) (7)

P (b) (8)

P (d) (9)

¬P (c) (10) ¬
(

P (b) ∨ P (d)
)

(11)

¬P (b) (12)

¬P (d) (13)

We start with α-expansion of (1), this yields
(4) and (5), then β-expansion of (2) yields (6)
and (7), and α-expansion of (7) yields (8) and
(9). The rightmost branch is now closed.

We continue with β-expansion of (3), this
yields (10) and (11). The leftmost branch is
now also closed.

Finally, α-expansion of (11) yields (12) and
(13), so that the middle branch is closed as well.

Since every path is now closed, the set of
input formulas is unsatisfiable.

Grading scheme: tableau: 8 points; explanation:
2 points.

1



Assignment 4

E ⊢ f g f b ≈ b

E ⊢ g f g f b ≈ g b

E ⊢ f g f g f b ≈ f g b

E ⊢ f g b ≈ f g f g f b E ⊢ f g f g f b ≈ b

E ⊢ f g b ≈ b

Note that the Instance rule (which is used to
derive the two leaf formulas) does not have a
premise.

Assignment 5

We start with the given equations (1)–(3).

f(x, x) ≈ f(x, b) (1) f(x, x) → g(x) (4)

f(x, x) ≈ f(c, x) (2) f(x, b) → g(x) (7)

f(x, x) ≈ g(x) (3) f(c, x) → g(x) (8)

g(x) ≈ f(x, b) (5) g(b) → g(c) (12)

g(x) ≈ f(c, x) (6)

g(b) ≈ g(b) (9)

g(c) ≈ g(c) (10)

g(b) ≈ g(c) (11)

Equations (1) and (2) cannot be oriented, so
we apply “Orient” to replace (3) by (4). Now
we can use “Simplify-Eq” twice with (4) to re-
place equation (1) by (5) and to replace equa-
tion (2) by (6). By applying “Orient” twice,
we replace (5) and (6) by the corresponding
rewrite rules (7) and (8). Using the critical
pair between rules (4) and (7), the “Deduce”
rule adds equation (9), which is trivial and
gets eliminated using “Delete”. Using the crit-
ical pair between rules (4) and (8), the “De-
duce” rule adds equation (10), which is also
trivial and gets eliminated using “Delete”. Fi-
nally, using the critical pair between rules (7)
and (8), the “Deduce” rule adds equation (11);
this equation is replaced by the corresponding
rewrite rule (12) using “Orient”. Since all crit-
ical pairs between persisting rules have been
computed and all equations have been elimi-
nated, we can stop now; the final rewrite sys-
tem is {(4), (7), (8), (12)}.

Grading scheme: starting with orienting the
right input equation, i.e., (3): 4 points; sim-
plifying the remaining equations afterwards:

4 points; computing the critical pair between
(7) and (8): 4 points; computing the other criti-
cal pairs: 2 points; additional errors: −2 points.

Assignment 6

Part (a) Let R be the one-rule rewrite system
{ f(f(x)) → f(g(f(x))) }. As shown in the lec-
ture, R is not contained in any simplification
ordering, so it is in particular not contained in
any LPO. The system R has only one depen-
dency pair, namely f ♯(f(x)) → f ♯(g(f(x))),
and therefore only one node in the dependency
graph. Since ren(cap(f ♯(g(f(x))))) = f ♯(g(y))
is not unifiable with f ♯(f(x)), the approxi-
mated dependency graph has no edges.

Part (b) Let R be the one-rule rewrite sys-
tem { f(g(x)) → f(x) }. Since f(x) is embed-
ded in f(g(x)), R is contained in every simplifi-
cation ordering, so it is in particular contained
in every LPO. The system R has only one
dependency pair, namely f ♯(g(x)) → f ♯(x),
and therefore only one node in the dependency
graph. Since ren(cap(f ♯(x))) = f ♯(y) is unifi-
able with f ♯(g(x)), the approximated depen-
dency graph has an edge between the only node
and itself.

2


