Automated Reasoning I, 2017 Midterm Exam, Sample Solution

Assignment 1

Part (a) With a reasonable strategy and the given literal selection rule, the CDCL procedure yields

$$P^{\mathrm{d}} Q^{\mathrm{d}} R^{\mathrm{d}} \neg S \neg U T \parallel N$$

$$(8) (7) (9)$$

At this point, clause (10) is a conflict clause. By resolving (10) with (9), we obtain $\neg P \lor \neg R \lor S \lor U$ (which is not a backjump clause), by resolving this clause with (7), we obtain $\neg P \lor \neg R \lor S$ (which is not a backjump clause either), by resolving this clause with (8), we obtain $\neg P \lor \neg R$ (11), which is a backjump clause. The best possible successor state for this backjump clause is $P^d \neg R \parallel N$. After learning clause (11), we continue and obtain

$$P^{d} \neg R \neg S T \neg U \neg Q \parallel N \cup \{(11)\}$$
(11) (5) (6) (7) (4)

Since all literals are defined and all clauses in N are true, this is a final state, so by Thm. 2.19, the literals on the trail are a model of N.

Grading scheme: Decide and Unit Propagation steps: 3 points; computing the backjump clause according to the 1UIP strategy: 2 points; choosing a legal successor state for backjumping: 1 point; choosing the optimal successor state: 2 more points. (Participants who avoided backjumping completely by ignoring the given literal selection rule for *Decide* did not get the 5 points for backjumping.)

Part (b) In the final state of part (a), all literals on the trail except the initial P^{d} are deduced literals. By Lemma 2.16, all literals after P^{d} are implied by N and P: After making P true, we are *forced* to make R false, S false, T true, U false, and Q false. As there cannot exist any other model of N in which P is true, the model that we derived in part (a) is the only one.

Part (c) To show that there is no model of N in which P is false, we add the clause $\neg P$ (12) to N. With a reasonable strategy we get

$$\neg P \ S \ R \parallel N \cup \{(12)\}\$$
(12) (1) (5)

At this point, clause (8) is a conflict clause. Since there are no decision literals, we can derive *fail*, so the clause set is unsatisfiable.

Assignment 2

Part (a) By Thm. 3.13, ground resolution is sound. That means that for every algebra \mathcal{A} , whenever the premises of an inference hold in \mathcal{A} , then the conclusion holds in \mathcal{A} as well. In particular, if the premises are tautological (i.e., hold in every algebra \mathcal{A}), then the conclusion holds in every algebra \mathcal{A} , so it is also tautological. Thus, if all clauses in a set Mare tautologies, then all clauses in $\operatorname{Res}(M)$ are tautologies. By induction over n we can now show that, if all clauses in N are tautologies, then all clauses in $\operatorname{Res}^n(N)$ are tautologies. So, all clauses in $\operatorname{Res}^n(N) = \bigcup_{n\geq 0} \operatorname{Res}^n(N)$ are tautologies. The reverse direction follows immediately from the fact that $N \subseteq \operatorname{Res}^*(N)$.

Grading scheme: " \Rightarrow ": 3 points; " \Leftarrow ": 5 points.

Part (b) The statement does not hold. For instance, if $N = \{P \lor Q, \neg P, \neg Q\}$ then $Res(N) = \{Q, P\}$; if $N = \{\neg P \lor \neg P, P\}$ then $Res(N) = \{\neg P\}$; and if $N = \{\bot\}$ then $Res(N) = \emptyset$. In all three examples, the set N is unsatisfiable, but Res(N) is satisfiable.

Assignment 3

The "only if" part is trivial. For the "if" part suppose that N' is satisfiable, that is, there is a valuation \mathcal{B} such that $\mathcal{B}(C) = 1$ for every $C \in N'$. Define a valuation \mathcal{A} by $\mathcal{A}(P) = 1$ if $P \in S, \mathcal{A}(P) = 0$ if $\neg P \in S$, and $\mathcal{A}(P) = \mathcal{B}(P)$ otherwise. Since every clause in N contains some literal of S, $\mathcal{A}(C) = 1$ for every $C \in N$. For a clause $C \in N'$ we distinguish two cases: If C contains some literal of S, then again $\mathcal{A}(C) = 1$. Otherwise C contains neither a literal in S nor the complement of a literal in S, so $\mathcal{A}(C) = \mathcal{B}(C)$. Since $\mathcal{B}(C) = 1$ for every $C \in N'$, we get $\mathcal{A}(C) = 1$ for every $C \in N'$.

Grading scheme: " \Rightarrow ": 3 points; " \Leftarrow ": 9 points.

Assignment 4

(1) **true:** Define $b_{\mathcal{A}} = 7$, $f_{\mathcal{A}}(a) = 8$ for $a \in \{7, 8, 9\}$ and $P_{\mathcal{A}} = \{7\}$.

(2) **false:** If $f_{\mathcal{A}}(a) = a$ for every $a \in U_{\mathcal{A}}$, then $b_{\mathcal{A}} = f_{\mathcal{A}}(b_{\mathcal{A}}) = f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}}))$, but $b_{\mathcal{A}} \in P_{\mathcal{A}}$ and $f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}})) \notin P_{\mathcal{A}}$.

(3) **true:** Define $P_{\mathcal{A}} = \{b\}$.

(4) **false:** The formula is contradictory; it has no model and in particular no Herbrand model. (5) **false:** Every Herbrand interpretation (and therefore every Herbrand model) over the signature Σ has the infinite universe $T_{\Sigma} = \{b, f(b), f(f(b)), \dots\}$.

(6) **true:** The Herbrand interpretation in which $P_{\mathcal{A}} = T_{\Sigma}$ is the only Herbrand model.

(7) **true:** If $f_{\mathcal{A}}(a) \in P_{\mathcal{A}}$ for every $a \in U_{\mathcal{A}}$, then $f_{\mathcal{A}}(f_{\mathcal{A}}(a)) \in P_{\mathcal{A}}$ for every $a \in U_{\mathcal{A}}$.

Grading scheme: 4th, 5th, 6th, 7th correct answer: 3 points each.

Assignment 5

The NNF transformation of

$$\exists v \,\forall x \,\forall y \,\forall z \,\neg \forall w \left(\neg P(c, w, z, x) \right. \\ \wedge Q(w, y, f(x), v) \right)$$

yields

$$\exists v \,\forall x \,\forall y \,\forall z \,\exists w \left(P(c, w, z, x) \right. \\ \left. \lor \neg Q(w, y, f(x), v) \right)$$

Miniscoping proceeds bottom-up. We start with moving $\exists w$ inside the disjunction and get

$$\exists v \,\forall x \,\forall y \,\forall z \, \big(\exists w \, P(c, w, z, x) \\ \vee \, \exists w \,\neg Q(w, y, f(x), v) \big)$$

We move $\forall z$ inside the disjunction (which is possible since z occurs only in the first subformula), then we move $\forall y$ inside the disjunction (which is possible since y occurs only in the second subformula). We obtain

$$\exists v \,\forall x \, \big(\forall z \,\exists w \, P(c, w, z, x) \\ \lor \,\forall y \,\exists w \,\neg Q(w, y, f(x), v) \big)$$

As x occurs in both subformulas, the quantifier $\forall x$ may not be moved inside the disjunction. The quantifier $\exists v$ is located in front of a universally quantified formula, not in front of a disjunction, so it may not be moved either. Variable renaming yields

$$\exists v \,\forall x \, \big(\forall z \,\exists w \, P(c, w, z, x) \\ \lor \,\forall y \,\exists w' \,\neg Q(w', y, f(x), v)\big)$$

Skolemization starts with the *outermost* existential quantifiers. First, v is replaced by a *new* constant b. We obtain

$$\forall x \left(\forall z \exists w P(c, w, z, x) \\ \lor \forall y \exists w' \neg Q(w', y, f(x), b) \right)$$

Then w and w' are replaced by new functions g(applied to the free variables x and z) and g'(applied to the free variables x and y). We get

$$\forall x \left(\forall z P(c, g(x, z), z, x) \\ \lor \forall y \neg Q(g'(x, y), y, f(x), b) \right)$$

Finally, the universal quantifiers are pushed upward. We obtain

$$\forall x \,\forall z \,\forall y \left(P(c, g(x, z), z, x) \right. \\ \left. \vee \neg Q(g'(x, y), y, f(x), b) \right)$$

which is in CNF.

Grading scheme: Miniscoping: 4 points; Skolemization: 4 points; Rest: 4 points.

Assignment 6

Since $P(b) \prec_L \neg P(b)$, (1) implies $\neg P(c) \succ_L \neg P(b)$ and thus $P(c) \succ P(b)$.

From (2) we conclude $P(b) \succ_L R$ and thus $P(b) \succ R$.

Since we already know that $\neg P(b) \prec_L P(c)$, (3) implies $Q \succ_L P(c)$ and thus $Q \succ P(c)$.

Combining all properties, we obtain $Q \succ P(c) \succ P(b) \succ R$.

Grading scheme: 3rd, 4th, 5th, 6th correctly ordered pair of atoms: 3 points each; ignoring the fixed relationship between \succ and \succ_L : -50%.