
Automated Reasoning I, 2015
Midterm Exam, Sample Solution

Assignment 1

Suppose that S and S′ are finite multisets over
a set M , and that S ≻mul S

′ holds for every

strict partial ordering ≻ over M . The empty
relation ≻0, for which x ≻0 y is false for all
elements x and y, is a strict partial ordering
(it is trivially irreflexive and transitive). So
the property holds in particular for ≻0. By the
definition of the multiset extension, S (≻0)mul

S′ if and only if there are multisets X and Y
such that ∅ 6= X ⊆ S and S′ = (S − X) ∪ Y
and for every y ∈ Y there is an x ∈ X such
that x ≻0 y. Since x ≻0 y is false for all x and
y, Y must be empty. So S′ equals S −X, this
is a subset of S, and since X is non-empty, we
obtain S′ ⊂ S.

Notes:

– S and S′ are multisets, not sets. So S′ ⊆ S
means “for all m ∈ M , S′(m) ≤ S(m)”.
This is not the same as “for all m ∈ M ,
m ∈ S′ ⇒ m ∈ S”, or in other words, “for
all m ∈ M , S′(m) > 0 ⇒ S(m) > 0”.

– One has to show S′ 6= S and S′ ⊆ S. Prov-
ing just the first part (which is trivial by
Thm. 1.10) is not sufficient.

– The assignment does not ask to prove the
reverse direction, that is, “if S′ ⊂ S then
S ≻mul S

′” (which is again obvious).

Assignment 2

Part (a) Proof: Suppose that H[F ]p and
H[G]p are valid. Let A be any valuation. By
assumption, A(H[F ]p) = A(H[G]p) = 1. If
A(F ) = 1, then A(F ∨ G) = A(F ), therefore,
by Prop. 2.8, A(H[F ∨ G]p) = A(H[F ]p) = 1.
Otherwise A(F ) = 0, then A(F ∨ G) = A(G),
therefore. by Prop. 2.8, A(H[F ∨ G]p) =
A(H[G]p) = 1. So A(H[F ∨G]p) = 1 for every
valuation A.

Notes:

– A case analysis based on whether the va-
lidity of H[F ]p depends on F or not is not

useful, since the second case is just as com-
plicated as the original problem.

– It is unavoidable to look at individual valu-
ations A in the proof. One cannot replace
this by a case analysis based on whether F
is valid, satisfiable, or unsatisfiable.

Part (b) Counterexample: Let F = P and
G = ¬P . Then H[F ∧ G]1 = ¬(F ∧ G) =
¬(P ∧ ¬P ) is valid, but H[F ]1 = ¬F = ¬P
and H[G]1 = ¬G = ¬¬P are not valid.

Part (c) Proof: Suppose that H[F ]p is valid
and that pol(H, p) = −1. Let A be any valu-
ation. By assumption, A(H[F ]p) = 1. Obvi-
ously A(F ∧ G) = min(A(F ),A(G)) ≤ A(F ),
therefore, by Prop. 2.13, A(H[F ∧ G]p) ≥
A(H[F ]p) = 1. So A(H[F ∧G]p) = 1 for every
valuation A.

Assignment 3

Part (a) With the given strategy, the CDCL
procedure yields

P d Qd S ¬T ¬U Rd V d ‖ N
(8) (6) (7)

Since all literals are defined and all clauses inN
are true, this is a final state, so by Thm. 2.18,
we have computed a (total) model of N .

Note:

– After ¬U has been added, all clauses are
true, but some literals are still undefined,
so this is a partial model. The assignment
asked for a total model, though.

Part (b) We use the fact that N |= P ∨Q if
and only if N ∪ {¬(P ∨Q)} is unsatisfiable. In
order to use the CDCL prodedure, we trans-
form N ∪ {¬(P ∨Q)} into a set of clauses and
obtain the new clauses ¬P (9) and ¬Q (10).
With the given strategy, the CDCL procedure
yields

¬P ¬Q Rd Sd ¬T ¬U ‖ N ∪ {(9), (10)}
(9) (10) (6) (7)

At this point, clause (5) is a conflict clause. By
resolving (5) and (7), we obtain Q ∨ ¬S ∨ T
(which is not a backjump clause), and by
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resolving Q ∨ ¬S ∨ T and (6) we obtain
Q ∨ ¬S (11), which is a backjump clause. The
best possible successor state for this backjump
clause is ¬P ¬Q ¬S ‖ N ∪ {(9), (10)}. After
learning clause (11), we continue and obtain

¬P ¬Q ¬S V ¬U R ‖ N ∪ {(9), (10), (11)}
(9) (10) (11) (3) (4) (1)

Now clause (2) is a conflict clause. Since there
are no more decision literals, we can derive fail,
so the clause set is unsatisfiable.

Assignment 4

Part (a) We have to show that ≻ is irreflexive
and transitive. Irreflexivity is obvious, since
F ≻ F implies F |= F and F 6|= F , which is
clearly a contradiction. To prove transitivity
assume that F ≻ G and G ≻ H, so F |= G,
G |= H, G 6|= F , and H 6|= G. As shown in
Exercise 2.3, |= is transitive, therefore F |=
G and G |= H imply F |= H. Now suppose
that H |= F , then F |= G implies H |= G,
contradicting the assumption. Consequently.
H 6|= F , and thus F ≻ H.

Part (b) If Π is finite, then there are only
2|Π| Π-valuations, so the set of all valuations is
also finite. Now observe that F ≻ G implies
that every valuation that is a model of F is
also a model of G, but that there is at least
one model of G that is not a model of F . If
there is a chain F1 ≻ F2 ≻ F3 ≻ . . . , then
the number of models grows in each step, but
this number is bounded by 2|Π|. So the chain
cannot be infinite.

Notes:

– F ≻ G is equivalent to “∀A: A(F ) ≤ A(G)
and ∃A′: A′(F ) < A′(G).” Ignoring the
quantifications leads to non-sensical results.

– The elements of the chain are formulas over
Π, not necessarily elements of Π.

– Even if Π is finite, there are infinitely many
Π-formulas. The set of equivalence classes
of formulas is finite, though; this can be
proved either by looking at the sets of mod-
els (as above), or using the fact that every
Π-formula is equivalent to some formula in
CNF without duplicated literals or clauses.

Part (c) If Π = {P1, P2, P3, . . . } is infinite,
define Fi =

∨

1≤j≤i Pj , then F1 ≻ F2 ≻ F3 ≻
. . . is an infinite descending chain.

Note:

– There is no infinite descending chain whose
elements are only propositional variables
from Π, since for any two different propo-
sitional variables P and Q we always have
P 6|= Q and therefore P 6≻ Q.

Assignment 5

The Σ-algebra A with UA = {2, 3}, bA = 2,
cA = 2, dA = 3, fA(u) = 3 for all u ∈ UA, and
PA = {2} is a model of the given formula; its
universe has two elements.

Assignment 6

We first compute the negation normal form of
F , namely

∀x∃y
(

(

¬P (b) ∧ ∃z ¬Q(y, z)
)

∨R(x, y)
)

Miniscoping yields

(

¬P (b) ∧ ∃y ∃z ¬Q(y, z)
)

∨ ∀x∃y R(x, y)

and variable renaming yields

(

¬P (b) ∧ ∃y ∃z ¬Q(y, z)
)

∨ ∀x∃y′R(x, y′)

By Skolemization we obtain

(

¬P (b) ∧ ¬Q(c, d)
)

∨ ∀xR(x, f(x))

with Skolem functions c/0, d/0, and f/1. Fi-
nally, we push ∀ upward and apply the dis-
tributivity law to get the conjunctive normal
form

∀x
(

(

¬P (b) ∨R(x, f(x))
)

∧
(

¬Q(c, d) ∨R(x, f(x))
)

)

Notes:

– Skolemization starts with the outermost ex-
istential quantifiers.

– Every Skolem function symbol that is intro-
duced must be new, that is, different from
all symbols from Σ and all previously intro-
duced Skolem function symbols.
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