
Automated Reasoning I, 2021/22
Endterm Exam, Sample Solution

Assignment 1

Since the derivation ε ‖ N ⇒∗

CDCL M ‖ N
uses only “Unit Propagate”, M does not con-
tain any decision literals. Assume that neither
“Unit Propagate” nor “Fail” can be applied to
M ‖ N . If for some clause C ∈ N all liter-
als were false in M , then “Fail” would be ap-
plicable; if all literals but one were false and
one literal were undefined, “Unit Propagate”
would be applicable. Therefore, for every clause
C ∈ N either some literal is true in M or at
least two literals are undefined in M . In the
second case, at least one of these two literals
must be negative, since C is a Horn clause.
If we extend M to a total valuation by mak-
ing all previously undefined atoms false, then
those clauses in N that were already true in M
remain true, and in all the other clauses one
previously undefined negative literal becomes
true, so we get a total model of N .

Assignment 2

Part (a) The following literals are maximal
in clauses (1)–(5):
(1): literal 1;
(2): literal 1 and 2 (literal 3 is smaller than 1);
(3): literal 1 (literals 2 & 3 are smaller than 1);
(4): literal 1 (literal 2 is smaller than 1);
(5): literal 1 and 2.
We get the following three Res≻

sel
inferences:

Factorization (2) literals 1 and 2:
mgu {x 7→ b, z 7→ f(y)},
conclusion Q(g(b, f(y))) ∨ ¬R(b, f(y)) (6).

Resolution (3) literal 1, (4) literal 1
(after renaming x in (4) to x′):
mgu {x′ 7→ f(c), x 7→ c},
conclusion ¬Q(f(c)) ∨ ¬R(c, c) ∨Q(f(c)) (7).

Resolution (3) literal 1, (5) literal 1
(after renaming x in (5) to x′):
mgu {x′ 7→ f(b), x 7→ b},
conclusion R(c, y) ∨ ¬Q(f(c)) ∨ ¬R(b, c) (8).

Grading scheme:

3/3/2 points for three correct inferences,

−2 points further (incorrect) inferences,
−1 point for other errors, e.g., wrong unifiers.

Part (b) All conclusions of Res≻
sel

infer-
ences between the clauses in N are redundant
w.r.t. N : Clauses (6) and (8) are subsumed by
(1); clause (7) contains complementary literals
and is therefore a tautology. So N is saturated
up to redundancy.

Part (c) If sel selects literal 3 in (2), literal 2
and/or 3 in (3), literal 1 in (5), and optionally
literal 1 in (1) and/or literal 1 in (4), then there
are no Res≻

sel
inferences between the clauses

(1)–(5).

Assignment 3

Part (a) The shortest rewrite proof has the
form b ←E f(f(f(t))) →E f(b), where the
term t can be chosen arbitrarily. (There are
also more complicated rewrite proofs that con-
sist of more than two steps.)

Notes:

– The assignment asked how the rewrite proof
of b ↔∗

E f(b) looks, it did not ask for a
derivation of E ⊢ b ≈ f(b) using the con-
gruence axioms.

– ↔∗

E is the reflexive-transitive closure of↔E

(that is, →E ∪←E). It is neither the union
nor the intersection of→∗

E and←∗

E. In fact,
neither b →∗

E f(b) nor b ←∗

E f(b) holds,
since every rewrite proof of b↔∗

E f(b) must
contain at least one →E step and one ←E

step.

Part (b) The universe of TΣ(∅)/E consists of
5 congruence classes, namely [c] = {c}, [d] =
{d}, [f(c)] = {f(c)}, [f(d)] = {f(d)}, and [b].
The latter contains all remaining ground terms,
that is, b, f(b), and all terms of the form f(f(t))
with t ∈ TΣ(∅).

Assignment 4

Since an LPO is a simplification ordering, we
know that h(t) ≻lpo t, so s �lpo h(t) implies
s �lpo h(t) ≻lpo t and thus s ≻lpo t by transi-
tivity. This proves the “if” part.

1



The “only if” part is proved by induction
over |s|+ |t|. First assume that the top symbol
f of s is different from h. Since h is the smallest
element of the precedence, we have f ≻ h, so
s ≻lpo t implies s ≻lpo h(t) by Case (2b).

Otherwise s = h(s′).

If h(s′) ≻lpo t by Case (1), then t is
a variable that occurs in h(s′). So either
s′ = t, then s = h(s′) = h(t), or s′ ⊲ t, then
s′ ≻lpo t, and by compatibility with contexts
s = h(s′) ≻lpo h(t).

If h(s′) ≻lpo t by Case (2a), then s′ = t or
s′ ≻lpo t. In the first case s = h(s′) = h(t), in
the second case s = h(s′) ≻lpo h(t) by compat-
ibility with contexts.

We cannot have h(s′) ≻lpo t by Case (2b)
since h is the smallest element of the prece-
dence. So it remains to consider the case that
h(s′) ≻lpo t by Case (2c). Then t = h(t′) and
s′ ≻lpo t

′. By induction, we get s′ �lpo h(t
′). So

s′ = h(t′) or s′ ≻lpo h(t
′), therefore s = h(s′) =

h(h(t′)) = h(t) or s = h(s′) ≻lpo h(h(t′)) =
h(t) by Case (2c).

Grading scheme:

4 points for the “if” part,
10 points for the “only if” part.

Assignment 5

To simplify the notation, we omit parentheses
after unary operators.

We start with the given equations (1)–(2).

f g x ≈ hx (1) f g x→ hx (3)

g f x ≈ hx (2) g f x→ hx (4)

h f x ≈ f hx (5) f hx→ h f x (6)

h g x ≈ g hx (7) g hx→ h g x (8)

hhx ≈ g h f x (9)

hhx ≈ h g f x (10)

hhx ≈ hhx (11)

hhx ≈ f h g x (12)

hhx ≈ h f g x (13)

hhx ≈ hhx (14)

By applying “Orient” twice, we replace (1)–(2)
by the corresponding rewrite rules (3)–(4).

Using the critical pair between rules (3) and

(4), “Deduce” adds equation (5). Then “Ori-
ent” replaces equation (5) by rule (6).

Using the critical pair between rules (4) and
(3), “Deduce” adds equation (7). Then “Ori-
ent” replaces equation (7) by rule (8).

Using the critical pair between rules (4) and
(6), “Deduce” adds equation (9). “Simplify-
Eq” uses rewrite rule (8) to replace equation
(9) by equation (10); then “Simplify-Eq” uses
rewrite rule (4) to replace equation (10) by
equation (11). Equation (11) is trivial, so it can
be eliminated using “Delete”.

Using the critical pair between rules (3) and
(8), “Deduce” adds equation (12). “Simplify-
Eq” uses rewrite rule (6) to replace equation
(12) by equation (13); then “Simplify-Eq” uses
rewrite rule (3) to replace equation (13) by
equation (14). Equation (14) is trivial, so it can
be eliminated using “Delete”.

Since all critical pairs between persisting
rules have been computed and all equations
have been eliminated, we can stop now; the fi-
nal rewrite system is {(3), (4), (6), (8)}.

Grading scheme:

3/3/2/1 points for four critical pairs,
2/1/1/1 points for four simplifications,
up to −2 points for other errors.

Assignment 6

Part (a)
R = {f(h(x))→ g(x), g(h(x))→ f(x)};
DP(R) =
{f ♯(h(x))→ g♯(x), g♯(h(x))→ f ♯(x)}.

Part (b)
R = {f(h(x))→ f(x), g(h(x)) → g(x)};
DP(R) =
{f ♯(h(x))→ f ♯(x), g♯(h(x))→ g♯(x)}.

Part (c)
R = {f(h(x))→ f(x), f(g(x))→ f(h(x))};
DP(R) =
{f ♯(h(x))→ f ♯(x), f ♯(g(x))→ f ♯(h(x))}.

Grading scheme:

2 points if R is not terminating or if the condi-
tion l 6⊲ u is violated; no points if there is more
than one error or if the graph does not have
the desired shape.

2


