
Automated Reasoning I

Uwe Waldmann

Winter Term 2021/2022

1

What is Automated Reasoning?

Automated reasoning:

Logical reasoning using a computer program,

with little or no user interaction,

using general methods, rather than approaches that work only

for one specific problem.

Two examples:

Solving a sudoku.

Reasoning with equations.

2

Introductory Example 1: Sudoku

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Goal:

Fill the empty

fields with digits

1,. . . ,9 so that

each digit occurs

exactly once in

each row, column,

and 3× 3 box

3

Introductory Example 1: Sudoku

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Idea:

Use boolean

variables Pd
i ,j with

d , i , j ∈ {1, . . . , 9}

to encode the

problem:

Pd
i ,j=true iff

the value of

square i , j is d

4

Introductory Example 1: Sudoku

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Idea:

Use boolean

variables Pd
i ,j with

d , i , j ∈ {1, . . . , 9}

to encode the

problem:

Pd
i ,j=true iff

the value of

square i , j is d

For example:

P8
5,3 = true

5

Coding Sudoku in Boolean Logic

• Concrete values result in formulas Pd
i ,j

• For every square (i , j) we generate P1
i ,j ∨ . . . ∨ P9

i ,j

• For every square (i , j) and pair of values d < d ′ we generate

¬Pd
i ,j ∨ ¬P

d′

i ,j

• For every value d and row i we generate Pd
i ,1 ∨ . . . ∨ Pd

i ,9

(Analogously for columns and 3× 3 boxes)

• For every value d , row i , and pair of columns j < j ′

we generate ¬Pd
i ,j ∨ ¬P

d
i ,j′

(Analogously for columns and 3× 3 boxes)

6

Coding Sudoku in Boolean Logic

Every assignment of boolean values to the variables Pd
i ,j

so that all formulas become true

corresponds to a Sudoku solution (and vice versa).

7

Coding Sudoku in Boolean Logic

Now use a SAT solver to check whether there is an assignment

to the variables Pd
i ,j so that all formulas become true:

Niklas Eén, Niklas Sörensson:

MiniSat (http://minisat.se/),

Beware:

The satisfiability problem is NP-complete.

Every known algorithm to solve it has an exponential time

worst-case behaviour (or worse).

8

Coding Sudoku in Boolean Logic

MiniSat solves the problem in a few milliseconds.

How? See part 2 of this lecture.

Does that contradict NP-completeness? No!

NP-completeness implies that there are really hard problem

instances,

it does not imply that all practically interesting problem

instances are hard (for a well-written SAT solver).

9

SAT Solvers in Practice

Some real-life applications of modern SAT solvers:

hardware verification (model checking)

with extensions:

software verification, hybrid system verification, . . .

checking software package dependencies

solving combinatory problems

“The Largest Math Proof Ever” (Marijn Heule)

. . .

10

Introductory Example 2: Equations

Task:

Prove:
a

a+ 1
= 1 +

−1

a+ 1
.

11

Introductory Example 2: Equations

a

a+ 1
=

a+ 0

a+ 1

=
a+ (1 + (−1))

a + 1

=
(a+ 1) + (−1)

a + 1

=
a+ 1

a+ 1
+

−1

a+ 1

= 1 +
−1

a+ 1

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

12

Introductory Example 2: Equations

a

a+ 1
=

a+ 0

a+ 1

=
a+ (1 + (−1))

a + 1

=
(a+ 1) + (−1)

a + 1

=
a+ 1

a+ 1
+

−1

a+ 1

= 1 +
−1

a+ 1

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

13

Introductory Example 2: Equations

a

a+ 1
=

a+ 0

a+ 1

=
a+ (1 + (−1))

a + 1

=
(a+ 1) + (−1)

a + 1

=
a+ 1

a+ 1
+

−1

a+ 1

= 1 +
−1

a+ 1

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

14

Introductory Example 2: Equations

a

a+ 1
=

a+ 0

a+ 1

=
a+ (1 + (−1))

a + 1

=
(a+ 1) + (−1)

a + 1

=
a+ 1

a+ 1
+

−1

a+ 1

= 1 +
−1

a+ 1

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

15

Introductory Example 2: Equations

a

a+ 1
=

a+ 0

a+ 1

=
a+ (1 + (−1))

a + 1

=
(a+ 1) + (−1)

a + 1

=
a+ 1

a+ 1
+

−1

a+ 1

= 1 +
−1

a+ 1

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

16

Introductory Example 2: Equations

a

a+ 1
=

a+ 0

a+ 1

=
a+ (1 + (−1))

a + 1

=
(a+ 1) + (−1)

a + 1

=
a+ 1

a+ 1
+

−1

a+ 1

= 1 +
−1

a+ 1

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

17

Introductory Example 2: Equations

How could we write a program that takes a set of equations and

two terms and tests whether the terms can be connected via a

chain of equalities?

It is easy to write a program that applies formulas correctly.

But: correct 6= useful.

18

Introductory Example 2: Equations

a

a+ 1

a+ 0

a+ 1

a

a+ 1
+ 0

a

a+ (1 + 0)

a

a+ a+2
a+2

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

19

Introductory Example 2: Equations

a

a+ 1

a+ 0

a+ 1

a

a+ 1
+ 0

a

a+ (1 + 0)

a

a+ a+2
a+2

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

20

Introductory Example 2: Equations

a

a+ 1

a+ 0

a+ 1

a

a+ 1
+ 0

a

a+ (1 + 0)

a

a+ a+2
a+2

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

21

Introductory Example 2: Equations

a

a+ 1

a+ 0

a+ 1

a

a+ 1
+ 0

a

a+ (1 + 0)

a

a+ a+2
a+2

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

22

Introductory Example 2: Equations

a

a+ 1

a+ 0

a+ 1

a

a+ 1
+ 0

a

a+ (1 + 0)

a

a+ a+2
a+2

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

23

Introductory Example 2: Equations

a

a+ 1

a+ 0

a+ 1

a

a+ 1
+ 0

a

a+ (1 + 0)

a

a+ a+2
a+2

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

24

Introductory Example 2: Equations

1 +
−1

a+ 1

a+ 1

a+ 1
+

−1

a+ 1

a

a
+

−1

a+ 1

1 +
−1

a + a
a

1 +
−1 + 0

a+ 1

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

25

Introductory Example 2: Equations

1 +
−1

a+ 1

a+ 1

a+ 1
+

−1

a+ 1

a

a
+

−1

a+ 1

1 +
−1

a + a
a

1 +
−1 + 0

a+ 1

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

26

Introductory Example 2: Equations

1 +
−1

a+ 1

a+ 1

a+ 1
+

−1

a+ 1

a

a
+

−1

a+ 1

1 +
−1

a + a
a

1 +
−1 + 0

a+ 1

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

27

Introductory Example 2: Equations

1 +
−1

a+ 1

a+ 1

a+ 1
+

−1

a+ 1

a

a
+

−1

a+ 1

1 +
−1

a + a
a

1 +
−1 + 0

a+ 1

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

28

Introductory Example 2: Equations

1 +
−1

a+ 1

a+ 1

a+ 1
+

−1

a+ 1

a

a
+

−1

a+ 1

1 +
−1

a + a
a

1 +
−1 + 0

a+ 1

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

29

Introductory Example 2: Equations

1 +
−1

a+ 1

a+ 1

a+ 1
+

−1

a+ 1

a

a
+

−1

a+ 1

1 +
−1

a + a
a

1 +
−1 + 0

a+ 1

...

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

30

Introductory Example 2: Equations

Unrestricted application of equations leads to

• infinitely many equality chains,

• infinitely long equality chains.

⇒ The chance to reach the desired goal is very small.

In fact, the general problem is only recursively enumerable,

but not decidable.

31

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

• •

32

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

•

•
•

•

33

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

•

•

•

•

•

•

•

•

34

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

•

•

•

•

•

•

•

•

•

•

35

Introductory Example 2: Equations

A better approach:

Apply equations in such a way that terms become “simpler”.

Start from both sides:

•

•

•

•

•

•

•

•

•

•

•

The terms are equal, if both derivations meet.

36

Introductory Example 2: Equations

x + 0 = x (1)

x + (−x) = 0 (2)

x + (y + z) = (x + y) + z (3)

x

z
+

y

z
=

x + y

z
(4)

x

x
= 1 (5)

37

Introductory Example 2: Equations

Orient equations. x + 0 → x (1)

x + (−x) → 0 (2)

x + (y + z) → (x + y) + z (3)

x

z
+

y

z
→

x + y

z
(4)

x

x
→ 1 (5)

38

Introductory Example 2: Equations

Orient equations.

Advantage:

Now there are only finitely

many and finitely long

derivations.

x + 0 → x (1)

x + (−x) → 0 (2)

x + (y + z) → (x + y) + z (3)

x

z
+

y

z
→

x + y

z
(4)

x

x
→ 1 (5)

39

Introductory Example 2: Equations

Orient equations.

But:

Now none of the equations

is applicable to one of the

terms

a

a+ 1
, 1 +

−1

a+ 1

x + 0 → x (1)

x + (−x) → 0 (2)

x + (y + z) → (x + y) + z (3)

x

z
+

y

z
→

x + y

z
(4)

x

x
→ 1 (5)

40

Introductory Example 2: Equations

The chain of equalities that we considered at the beginning

looks roughly like this:

•

•

•

•

•

•

41

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

42

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

From

x + (−x) → 0 (2)

x + (y + z) → (x + y) + z (3)

we derive

(x + y) + (−y) → x + 0 (6)

43

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

From

x + (−x) → 0 (2)

x + (y + z) → (x + y) + z (3)

we derive

(x + y) + (−y) → x + 0 (6)

44

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

From

x

z
+

y

z
→

x + y

z
(4)

x

x
→ 1 (5)

we derive

x + y

x
→ 1 +

y

x
(7)

45

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

From

x

z
+

y

z
→

x + y

z
(4)

x

x
→ 1 (5)

we derive

x + y

x
→ 1 +

y

x
(7)

46

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

From

(x + y) + (−y) → x + 0 (6)

x + y

x
→ 1 +

y

x
(7)

we derive

1 +
−y

x + y
→

x + 0

x + y
(8)

47

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

From

(x + y) + (−y) → x + 0 (6)

x + y

x
→ 1 +

y

x
(7)

we derive

1 +
−y

x + y
→

x + 0

x + y
(8)

48

Introductory Example 2: Equations

Idea:

Derive new equations that enable “shortcuts”.

•

•

•

•

•

•

Using these equations we can

get a chain of equalities of the

desired form.

49

Introductory Example 2: Equations

In fact, it is not necessary to know some equational proof for

the problem in advance.

We can derive these shortcut equations just by looking at the

existing equation set.

How? See part 4 of this lecture.

50

Result

Thomas Hilenbrand’s Waldmeister prover solves the problem

in a few milliseconds.

51

Result

But it’s not the solution that we wanted to get!

We have to be more careful in formulating our axioms:

⇒ Exclude division by zero.

Then we get in fact a “real” proof.

52

Result

So it works, but it looks like a lot of effort for a problem that

one can solve with a little bit of highschool mathematics.

Reason: Pupils learn not only axioms, but also recipes

to work efficiently with these axioms.

53

Result

It makes a huge difference whether we work with

well-known axioms

x + 0 = x

x + (−x) = 0

or with “new” unknown ones

∀Agent ∀Message ∀Key .

knows(Agent , crypt(Message ,Key))

∧ knows(Agent ,Key)

→ knows(Agent ,Message).

54

Result

This difference is also important for automated reasoning:

• For axioms that are well-known and frequently used,

we can develop optimal specialized methods.

⇒ Computer Algebra

⇒ Automated Reasoning II (next semester)

• For new axioms, we have to develop methods that

do “something reasonable” for arbitrary formulas.

⇒ this lecture

• Combining the two approaches

⇒ Automated Reasoning II

55

First-order Provers in Practice

Real-life application:

Isabelle tactic “Sledgehammer”:

use general-purpose provers to make interactive proof

assistants more automatic.

56

First-order Provers in Practice

57

First-order Provers in Practice

58

First-order Provers in Practice

59

First-order Provers in Practice

60

Topics of the Course

Preliminaries

abstract reduction systems

well-founded orderings

Propositional logic

syntax, semantics

calculi: CDCL-procedure, OBDDs

implementation: Two watched literals

61

Topics of the Course

First-order predicate logic

syntax, semantics, model theory, . . .

calculi: resolution, tableaux

implementation: sharing, indexing

First-order predicate logic with equality

term rewriting systems

calculi: Knuth-Bendix completion, dependency pairs

62

Topics of the Course

Emphasis on:

logics and their properties,

proof systems for these logics and their properties:

soundness, completeness, implementation

63

Part 1: Preliminaries

Literature: Franz Baader and Tobias Nipkow: Term rewriting

and all that, Cambridge Univ. Press, 1998, Chapter 2.

Before we start with the main subjects of the lecture,

we repeat some prerequisites from mathematics and

computer science and introduce some tools

that we will need throughout the lecture.

64

1.1 Mathematical Prerequisites

N = {0, 1, 2, . . .} is the set of natural numbers (including 0).

Z, Q, R denote the integers, rational numbers and the real

numbers, respectively.

65

Relations

Let M be a set, let n ≥ 2.

We write Mn for the n-fold cartesian product M × · · · ×M .

In order to handle the cases n ≥ 2, n = 1, and n = 0

simultaneously, we also define M1 = M and M0 = {()}.

(We do not distinguish between an element m of M and

a 1-tuple (m) of an element of M .)

66

Relations

An n-ary relation R over some set M is a subset of Mn: R ⊆ Mn.

For two n-ary relations R,Q over some set M , their union (∪)

or intersection (∩) is again an n-ary relation, where

R ∪Q := { (m1, . . . ,mn) ∈ Mn | (m1, . . . ,mn) ∈ R

or (m1, . . . ,mn) ∈ Q }

R ∩Q := { (m1, . . . ,mn) ∈ Mn | (m1, . . . ,mn) ∈ R

and (m1, . . . ,mn) ∈ Q }.

A relation Q is a subrelation of a relation R if Q ⊆ R.

67

Relations

We often use predicate notation for relations:

Instead of (m1, . . . ,mn) ∈ R we write R(m1, . . . ,mn), and say

that R(m1, . . . ,mn) holds or is true.

For binary relations, we often use infix notation, so

(m,m′) ∈ < ⇔ <(m,m′) ⇔ m < m′.

68

Words

Given a non-empty set (also called alphabet) Σ,

the set Σ∗ of finite words over Σ is defined inductively by

(i) the empty word ε is in Σ∗,

(ii) if u ∈ Σ∗ and a ∈ Σ then ua is in Σ∗.

The set of non-empty finite words Σ+ is Σ∗ \ {ε}.

The concatenation of two words u, v ∈ Σ∗ is denoted by uv .

69

Words

The length |u| of a word u ∈ Σ∗ is defined by

(i) |ε| := 0,

(ii) |ua| := |u|+ 1 for any u ∈ Σ∗ and a ∈ Σ.

70

1.2 Abstract Reduction Systems

Througout the lecture, we will have to work with reduction

systems,

on the object level, in particular in the section on equality,

and on the meta level, i. e., to describe deduction calculi.

71

Abstract Reduction Systems

An abstract reduction system is a pair (A,→), where

A is a non-empty set,

→ ⊆ A× A is a binary relation on A.

The relation → is usually written in infix notation, i. e.,

a→ b instead of (a, b) ∈ →.

72

Abstract Reduction Systems

Let →′ ⊆ A × A and →′′ ⊆ A × A be two binary relations.

Then the composition of →′ and →′′ is the binary relation

(→′ ◦→′′) ⊆ A× A defined by

a (→′ ◦ →′′) c if and only if

a→′ b and b →′′ c for some b ∈ A.

73

Abstract Reduction Systems

→0 = { (a, a) | a ∈ A } identity

→i+1 = →i ◦→ i + 1-fold composition

→+ =
⋃

i>0→
i transitive closure

→∗ =
⋃

i≥0→
i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure

← = →−1 = { (b, c) | c → b } inverse

↔ = →∪← symmetric closure

↔+ = (↔)+ transitive symmetric closure

↔∗ = (↔)∗ refl. trans. symmetric closure

or equivalence closure

74

Abstract Reduction Systems

b ∈ A is reducible, if there is a c such that b → c .

b is in normal form (irreducible), if it is not reducible.

c is a normal form of b, if b →∗ c and c is in normal form.

Notation: c = b↓ (if the normal form of b is unique).

75

Abstract Reduction Systems

A relation → is called

terminating, if there is no infinite descending chain

b0 → b1 → b2 →

normalizing, if every b ∈ A has a normal form.

76

Abstract Reduction Systems

Lemma 1.1:

If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

77

1.3 Orderings

Important properties of binary relations:

Let M 6= ∅. A binary relation R ⊆ M ×M is called

reflexive, if R(x , x) for all x ∈ M ,

irreflexive, if ¬R(x , x) for all x ∈ M ,

antisymmetric, if R(x , y) and R(y , x) imply x = y

for all x , y ∈ M ,

transitive, if R(x , y) and R(y , z) imply R(x , z)

for all x , y , z ∈ M ,

total, if R(x , y) or R(y , x) or x = y for all x , y ∈ M .

78

Orderings

A strict partial ordering ≻ on a set M 6= ∅ is a transitive and

irreflexive binary relation on M .

Notation:

≺ for the inverse relation ≻−1

� for the reflexive closure (≻ ∪=) of ≻

79

Orderings

Let ≻ be a strict partial ordering on M ; let M ′ ⊆ M .

a ∈ M ′ is called minimal in M ′, if there is no b ∈ M ′ with a ≻ b.

a ∈ M ′ is called smallest in M ′, if b ≻ a for all b ∈ M ′ \ {a}.

Analogously:

a ∈ M ′ is called maximal in M ′, if there is no b ∈ M ′ with a ≺ b.

a ∈ M ′ is called largest in M ′, if b ≺ a for all b ∈ M ′ \ {a}.

80

Orderings

Notation:

M≺x = { y ∈ M | y ≺ x },

M�x = { y ∈ M | y � x }.

A subset M ′ ⊆ M is called downward closed, if x ∈ M ′ and

x ≻ y implies y ∈ M ′.

81

Well-Foundedness

Termination of reduction systems is strongly related to the

concept of well-founded orderings.

A strict partial ordering ≻ on M is called well-founded (or

Noetherian), if there is no infinite descending chain

a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈ M .

82

Well-Foundedness and Termination

Lemma 1.2:

If ≻ is a well-founded partial ordering and → ⊆ ≻,

then → is terminating.

Lemma 1.3:

If → is a terminating binary relation over A,

then →+ is a well-founded partial ordering.

83

Well-Founded Orderings: Examples

Natural numbers. (N,>)

Lexicographic orderings. Let (M1,≻1), (M2,≻2) be well-

founded orderings. Then let their lexicographic combination

≻ = (≻1,≻2)lex

on M1 ×M2 be defined as

(a1, a2) ≻ (b1, b2) :⇔

a1 ≻1 b1 or (a1 = b1 and a2 ≻2 b2)

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).

84

Well-Founded Orderings: Examples

Length-based ordering on words. For alphabets Σ with a

well-founded ordering >Σ, the relation ≻ defined as

w ≻ w ′ :⇔

|w | > |w ′| or (|w | = |w ′| and w >Σ,lex w ′)

is a well-founded ordering on the set Σ∗ of finite words over

the alphabet Σ (Exercise).

Counterexamples:

(Z,>)

(N,<)

the lexicographic ordering on Σ∗

85

Basic Properties of Well-Founded Orderings

Lemma 1.4:

(M ,≻) is well-founded if and only if every non-empty M ′ ⊆ M

has a minimal element.

Lemma 1.5:

(M1,≻1) and (M2,≻2) are well-founded if and only if

(M1 ×M2, ≻) with ≻ = (≻1,≻2)lex is well-founded.

86

Monotone Mappings

Let (M ,≻) and (M ′,≻′) be strict partial orderings.

A mapping ϕ : M → M ′ is called monotone,

if a ≻ b implies ϕ(a) ≻′ ϕ(b) for all a, b ∈ M .

Lemma 1.6:

If ϕ is a monotone mapping from (M ,≻) to (M ′,≻′)

and (M ′,≻′) is well-founded, then (M ,≻) is well-founded.

87

Well-founded Induction

Theorem 1.7 (Well-founded (or Noetherian) Induction):

Let (M ,≻) be a well-founded ordering, let Q be a property of

elements of M .

If for all m ∈ M the implication

if Q(m′) for all m′ ∈ M such that m ≻ m′,a

then Q(m).b

is satisfied, then the property Q(m) holds for all m ∈ M .

ainduction hypothesis
binduction step

88

Well-founded Recursion

Let M and S be sets, let N ⊆ M , and let f : M → S be a

function. Then the restriction of f to N, denoted by f
∣∣
N
, is a

function from N to S with f
∣∣
N
(x) = f (x) for all x ∈ N.

Theorem 1.8 (Well-founded (or Noetherian) Recursion):

Let (M ,≻) be a well-founded ordering, let S be a set. Let φ be

a binary function that takes two arguments x and g and maps

them to an element of S , where x ∈ M and g is a function from

M≺x to S .

Then there exists exactly one function f : M → S such that for

all x ∈ M

f (x) = φ(x , f
∣∣
M≺x)

89

Well-founded Recursion

The well-founded recursion scheme generalizes terminating

recursive programs.

Note that functions defined by well-founded recursion need

not be computable, in particular since for many well-founded

orderings the sets M≺x may be infinite.

90

1.4 Multisets

Let M be a set. A multiset S over M is a mapping S : M → N.

We interpret S(m) as the number of occurrences of elements m

of the base set M within the multiset S .

Example. S = {a, a, a, b, b} is a multiset over {a, b, c},

where S(a) = 3, S(b) = 2, S(c) = 0.

We say that m is an element of S , if S(m) > 0.

91

Multisets

We use set notation (∈, ⊆, ∪, ∩, etc.) with analogous meaning

also for multisets, e. g.,

m ∈ S :⇔ S(m) > 0

(S1 ∪ S2)(m) := S1(m) + S2(m)

(S1 ∩ S2)(m) := min{S1(m),S2(m)}

(S1 − S2)(m) :=




S1(m)− S2(m) if S1(m) ≥ S2(m)

0 otherwise

S1 ⊆ S2 :⇔ S1(m) ≤ S2(m) for all m ∈ M

92

Multisets

A multiset S is called finite, if the set

{m ∈ M | S(m) > 0 }

is finite.

From now on we only consider finite multisets.

93

Multiset Orderings

Let (M ,≻) be an abstract reduction system. The multiset

extension of ≻ to multisets over M is defined by

S1 ≻mul S2 if and only if

there exist multisets X and Y over M such that

∅ 6= X ⊆ S1,

S2 = (S1 − X) ∪ Y ,

∀y ∈ Y ∃x ∈ X : x ≻ y

94

Multiset Orderings

Lemma 1.9 (König’s Lemma):

Every finitely branching tree with infinitely many nodes contains

an infinite path.

Theorem 1.10:

(a) If ≻ is transitive, then ≻mul is transitive.

(b) If ≻ is irreflexive and transitive, then ≻mul is irreflexive.

(c) If ≻ is a well-founded ordering,

then ≻mul is a well-founded ordering.

(d) If ≻ is a strict total ordering,

then ≻mul is a strict total ordering.

95

Multiset Orderings

The multiset extension as defined above is due to Dershowitz

and Manna (1979).

There are several other ways to characterize the multiset

extension of a binary relation. The following one is due to Huet

and Oppen (1980):

96

Multiset Orderings

Let (M ,≻) be an abstract reduction system. The (Huet/Oppen)

multiset extension of ≻ to multisets over M is defined by

S1 ≻
HO
mul S2 if and only if

S1 6= S2 and

∀m ∈ M :
(
S2(m) > S1(m)

⇒ ∃m′ ∈ M : m′ ≻ m and S1(m
′) > S2(m

′)
)

97

Multiset Orderings

A third way to characterize the multiset extension of a binary

relation ≻ is to define it as the transitive closure of the relation

≻1
mul given by

S1 ≻
1
mul S2 if and only if

there exists x ∈ S1 and a multiset Y over M such that

S2 = (S1 − {x}) ∪ Y ,

∀y ∈ Y : x ≻ y

98

Multiset Orderings

For strict partial orderings all three characterizations of ≻mul are

equivalent:

Theorem 1.11:

If ≻ is a strict partial ordering, then

(a) ≻mul = ≻
HO
mul,

(b) ≻mul = (≻1
mul)

+.

Note, however, that for an arbitrary binary relation ≻ all three

relations ≻mul, ≻
HO
mul, and (≻1

mul)
+ may be different.

99

1.5 Complexity Theory Prerequisites

A decision problem is a subset L ⊆ Σ∗ for some fixed finite

alphabet Σ.

The function chr(L, x) denotes the characteristic function for

some decision problem L and is defined by chr(L, u) = 1 if u ∈ L

and chr(L, u) = 0 otherwise.

100

P and NP

A decision problem is called solvable in polynomial time if its

characteristic function can be computed in polynomial time.

The class of all polynomial-time decision problems is denoted

by P.

We say that a decision problem L is in NP if there is a predicate

Q(x , y) and a polynomial p(n) such that for all u ∈ Σ∗ we have

(i) u ∈ L if and only if there is a v ∈ Σ∗ with |v | ≤ p(|u|) and

Q(u, v) holds, and

(ii) the predicate Q is in P.

101

Reducibility, NP-Hardness, NP-Completeness

A decision problem L is polynomial-time reducible to a decision

problem L′ if there is a function g computable in polynomial

time such that for all u ∈ Σ∗ we have u ∈ L iff g(u) ∈ L′.

For example, if L is polynomial-time reducible to L′ and L′ ∈ P

then L ∈ P.

A decision problem is NP-hard if every problem in NP is

polynomial-time reducible to it.

A decision problem is NP-complete if it is NP-hard and in NP.

102

Reducibility, NP-Hardness, NP-Completeness

The following properties are equivalent:

(i) There exists some NP-complete problem that is in P.

(ii) P = NP.

The question whether P equals NP or not is probably the most

famous unsolved problem in theoretical computer science.

All known algorithms for NP-complete problems have an

exponential time complexity in the worst case.

103

Part 2: Propositional Logic

Propositional logic

• logic of truth values,

• decidable (but NP-complete),

• can be used to describe functions over a finite domain,

• industry standard for many analysis/verification tasks

(e. g., model checking).

104

2.1 Syntax

When we define a logic, we must define

how formulas of the logic look like (syntax), and

what they mean (semantics).

We start with the syntax.

Propositional formulas are built from

• propositional variables,

• logical connectives (e. g., ∧, ∨).

105

Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R, S , to denote propositional variables.

106

Propositional Formulas

FΠ is the set of propositional formulas over Π defined inductively

as follows:

F ,G ::= ⊥ (falsum)

| ⊤ (verum)

| P , P ∈ Π (atomic formula)

| (¬F) (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

107

Propositional Formulas

Sometimes further connectives are used, for instance

(F ← G) (reverse implication)

(F ⊕ G) (exclusive or)

(if F then G1 else G0) (if-then-else)

108

Notational Conventions

As a notational convention we assume that ¬ binds strongest,

and we remove outermost parentheses, so ¬P ∨ Q is actually a

shorthand for ((¬P) ∨Q).

Instead of ((P ∧Q) ∧ R) we simply write P ∧ Q ∧ R

(and analogously for ∨).

For all other logical connectives we will use parentheses when

needed.

109

Formula Manipulation

Automated reasoning is very much formula manipulation.

In order to precisely describe the manipulation of a formula,

we introduce positions.

A position is a word over N.

The set of positions of a formula F is inductively defined by

pos(F) := {ε} if F ∈ {⊤,⊥} or F ∈ Π

pos(¬F) := {ε} ∪ { 1p | p ∈ pos(F) }

pos(F ◦ G) := {ε} ∪ { 1p | p ∈ pos(F) } ∪ { 2p | p ∈ pos(G) }

where ◦ ∈ {∧,∨,→,↔}.

110

Formula Manipulation

The prefix order ≤ on positions is defined by p ≤ q if there is

some p′ such that pp′ = q.

Note that the prefix order is partial, e. g., the positions 12 and

21 are not comparable, they are “parallel”, see below.

By < we denote the strict part of ≤, that is,

p < q if p ≤ q but not q ≤ p.

By ‖ we denote incomparable positions, that is,

p ‖ q if neither p ≤ q nor q ≤ p.

We say that p is above q if p ≤ q, p is strictly above q if p < q,

and p and q are parallel if p ‖ q.

111

Formula Manipulation

The size of a formula F is given by the cardinality of pos(F):

|F | := |pos(F)|.

The subformula of F at position p ∈ pos(F) is recursively

defined by

F |ε := F

(¬F)|1p := F |p

(F1 ◦ F2)|ip := Fi |p where i ∈ {1, 2}

and ◦ ∈ {∧,∨,→,↔}.

112

Formula Manipulation

Finally, the replacement of a subformula at position p ∈ pos(F)

by a formula G is recursively defined by

F [G]ε := G

(¬F)[G]1p := ¬(F [G]p)

(F1 ◦ F2)[G]1p := (F1[G]p ◦ F2)

(F1 ◦ F2)[G]2p := (F1 ◦ F2[G]p)

where ◦ ∈ {∧,∨,→,↔}.

113

Formula Manipulation

Example 2.1:

The set of positions for the formula F = (P → Q)→ (P ∧ ¬Q)

is pos(F) = {ε, 1, 11, 12, 2, 21, 22, 221}.

The subformula at position 22 is F |22 = ¬Q

and replacing this formula by P ↔ Q results in

F [P ↔ Q]22 = (P → Q)→ (P ∧ (P ↔ Q)).

114

Polarities

A further prerequisite for efficient formula manipulation is the

polarity of a subformula G of F .

The polarity determines the number of “negations” starting

from F down to G .

It is 1 for an even number, −1 for an odd number and 0 if there

is at least one equivalence connective along the path.

115

Polarities

The polarity of a subformula G = F |p at position p is pol(F , p),

where pol is recursively defined by

pol(F , ε) := 1

pol(¬F , 1p) := −pol(F , p)

pol(F1 ◦ F2, ip) := pol(Fi , p) if ◦ ∈ {∧,∨}

pol(F1 → F2, 1p) := −pol(F1, p)

pol(F1 → F2, 2p) := pol(F2, p)

pol(F1 ↔ F2, ip) := 0

116

Polarities

Example 2.2:

Let F = (P → Q)→ (P ∧ ¬Q).

Then pol(F , 1) = pol(F , 12) = pol(F , 221) = −1 and

pol(F , ε) = pol(F , 11) = pol(F , 2) = pol(F , 21) = pol(F , 22) = 1.

For the formula F ′ = (P ∧Q)↔ (P ∨Q) we get pol(F ′, ε) = 1

and pol(F ′, p) = 0 for all p ∈ pos(F ′) different from ε.

117

2.2 Semantics

In classical logic (dating back to Aristotle) there are “only”

two truth values “true” and “false” which we shall denote,

respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

118

Valuations

A propositional variable has no intrinsic meaning. The meaning

of a propositional variable has to be defined by a valuation.

A Π-valuation is a function

A : Π→ {0, 1}.

where {0, 1} is the set of truth values.

119

Truth Value of a Formula in A

Given a Π-valuation A : Π→ {0, 1}, its extension to formulas

A∗ : FΠ → {0, 1} is defined inductively as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F) = 1−A∗(F)

A∗(F ∧ G) = min(A∗(F),A∗(G))

A∗(F ∨ G) = max(A∗(F),A∗(G))

A∗(F → G) = max(1−A∗(F),A∗(G))

A∗(F ↔ G) = if A∗(F) = A∗(G) then 1 else 0

120

Truth Value of a Formula in A

For simplicity, the extension A∗ of A is usually also denoted

by A.

121

2.3 Models, Validity, and Satisfiability

Let F be a Π-formula.

We say that F is true under A (A is a model of F ;

F is valid in A; F holds under A), written A |= F , if A(F) = 1.

We say that F is valid or that F is a tautology, written |= F ,

if A |= F for all Π-valuations A.

F is called satisfiable if there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

122

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F),

written F |= G , if for all Π-valuations A we have

if A |= F then A |= G ,

or equivalently
A(F) ≤ A(G).

F and G are called equivalent, written F |=| G ,

if for all Π-valuations A we have

A |= F if and only if A |= G ,

or equivalently
A(F) = A(G).

123

Entailment and Equivalence

F and G are called equisatisfiable,

if either both F and G are satisfiable,

or both F and G are unsatisfiable.

124

Entailment and Equivalence

Proposition 2.3:

F |= G if and only if |= (F → G).

Proposition 2.4:

F |=| G if and only if |= (F ↔ G).

125

Entailment and Equivalence

Entailment is extended to sets of formulas N in the

“natural way”:

N |= F if for all Π-valuations A:

if A |= G for all G ∈ N, then A |= F .

Note: Formulas are always finite objects; but sets of formulas

may be infinite. Therefore, it is in general not possible to replace

a set of formulas by the conjunction of its elements.

126

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 2.5:

F is valid if and only if ¬F is unsatisfiable.

Hence in order to design a theorem prover (validity checker)

it is sufficient to design a checker for unsatisfiability.

127

Validity vs. Unsatisfiability

In a similar way, entailment can be reduced to unsatisfiability

and vice versa:

Proposition 2.6:

N |= F if and only if N ∪ {¬F} is unsatisfiable.

Proposition 2.7:

N |= ⊥ if and only if N is unsatisfiable.

128

Checking Unsatisfiability

Every formula F contains only finitely many propositional

variables. Obviously, A(F) depends only on the values of those

finitely many variables in F under A.

If F contains n distinct propositional variables, then it is

sufficient to check 2n valuations to see whether F is satisfiable

or not ⇒ truth table.

So the satisfiability problem is clearly decidable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than

truth tables to check the satisfiability of a formula.

129

Replacement Theorem

Proposition 2.8:

Let A be a valuation, let F and G be formulas, and let

H = H[F]p be a formula in which F occurs as a subformula at

position p.

If A(F) = A(G), then A(H[F]p) = A(H[G]p).

Theorem 2.9:

Let F and G be equivalent formulas, let H = H[F]p be a formula

in which F occurs as a subformula at position p.

Then H[F]p is equivalent to H[G]p.

130

Some Important Equivalences

Proposition 2.10:

The following equivalences hold for all formulas F ,G ,H:

(F ∧ F) |=| F

(F ∨ F) |=| F (Idempotency)

(F ∧ G) |=| (G ∧ F)

(F ∨ G) |=| (G ∨ F) (Commutativity)

(F ∧ (G ∧ H)) |=| ((F ∧ G) ∧ H)

(F ∨ (G ∨ H)) |=| ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) |=| ((F ∧ G) ∨ (F ∧ H))

(F ∨ (G ∧ H)) |=| ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

131

Some Important Equivalences

The following equivalences hold for all formulas F ,G ,H:

(F ∧ (F ∨ G)) |=| F

(F ∨ (F ∧ G)) |=| F (Absorption)

(¬¬F) |=| F (Double Negation)

¬(F ∧ G) |=| (¬F ∨ ¬G)

¬(F ∨ G) |=| (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) |=| F , if G is a tautology

(F ∨ G) |=| ⊤, if G is a tautology

(F ∧ G) |=| ⊥, if G is unsatisfiable

(F ∨ G) |=| F , if G is unsatisfiable (Tautology Laws)

132

Some Important Equivalences

The following equivalences hold for all formulas F ,G ,H:

(F ↔ G) |=| ((F → G) ∧ (G → F))

(F ↔ G) |=| ((F ∧ G) ∨ (¬F ∧ ¬G)) (Equivalence)

(F → G) |=| (¬F ∨ G) (Implication)

133

An Important Entailment

Proposition 2.11:

The following entailment holds for all formulas F ,G ,H:

(F ∨ H) ∧ (G ∨ ¬H) |= F ∨ G (Generalized Resolution)

134

2.4 Normal Forms

Many theorem proving calculi do not operate on arbitrary

formulas, but only on some restricted class of formulas.

135

Normal Forms

We define conjunctions of formulas as follows:
∧0

i=1 Fi = ⊤.
∧1

i=1 Fi = F1.
∧n+1

i=1 Fi =
∧n

i=1 Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1 Fi = ⊥.
∨1

i=1 Fi = F1.
∨n+1

i=1 Fi =
∨n

i=1 Fi ∨ Fn+1.

136

Literals and Clauses

A literal is either a propositional variable P or a negated

propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

137

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal

form), if it is a conjunction of disjunctions of literals (or in other

words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a

disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?

138

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of

DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary

literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas

or the validity of DNF formulas is known to be coNP-complete.

139

Conversion to CNF/DNF

Proposition 2.12:

For every formula there is an equivalent formula in CNF (and

also an equivalent formula in DNF).

Proof:

We describe a (naive) algorithm to convert a formula to CNF.

Apply the following rules as long as possible (modulo commuta-

tivity of ∧ and ∨):

Step 1: Eliminate equivalences:

H[F ↔ G]p ⇒CNF H[(F → G) ∧ (G → F)]p

140

Conversion to CNF/DNF

Step 2: Eliminate implications:

H[F → G]p ⇒CNF H[¬F ∨ G]p

Step 3: Push negations downward:

H[¬(F ∨ G)]p ⇒CNF H[¬F ∧ ¬G]p

H[¬(F ∧ G)]p ⇒CNF H[¬F ∨ ¬G]p

Step 4: Eliminate multiple negations:

H[¬¬F]p ⇒CNF H[F]p

141

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

H[(F ∧ F ′) ∨ G]p ⇒CNF H[(F ∨ G) ∧ (F ′ ∨ G)]p

Step 6: Eliminate ⊤ and ⊥:

H[F ∧ ⊤]p ⇒CNF H[F]p

H[F ∧ ⊥]p ⇒CNF H[⊥]p

H[F ∨ ⊤]p ⇒CNF H[⊤]p

H[F ∨ ⊥]p ⇒CNF H[F]p

H[¬⊥]p ⇒CNF H[⊤]p

H[¬⊤]p ⇒CNF H[⊥]p

142

Conversion to CNF/DNF

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and

5 are a bit more complicated.

The resulting formula is equivalent to the original one and in

CNF.

The conversion of a formula to DNF works in the same way,

except that conjunctions have to be pushed downward in step 5.

✷

143

Negation Normal Form (NNF)

The formula after application of Step 4 is said to be in Negation

Normal Form, i.e., it contains neither → nor ↔ and negation

symbols only occur in front of propositional variables (atoms).

144

Complexity

Conversion to CNF (or DNF) may produce a formula whose size

is exponential in the size of the original one.

145

2.5 Improving the CNF Transformation

The goal

“Given a formula F ,

find an equivalent formula G in CNF”

is unpractical.

But if we relax the requirement to

“Given a formula F ,

find an equisatisfiable formula G in CNF”

we can get an efficient transformation.

146

Improving the CNF Transformation

Literature:

Andreas Nonnengart and Christoph Weidenbach: Computing

small clause normal forms, in Handbook of Automated

Reasoning, pages 335-367. Elsevier, 2001.

Christoph Weidenbach: Automated Reasoning (Chapter

2). Textbook draft, available for registered participants in the

lecture Nextcloud (same link as for the online session recordings),

2021.

147

Tseitin Transformation

Proposition 2.13:

A formula H[F]p is satisfiable if and only if H[Q]p ∧ (Q ↔ F)

is satisfiable, where Q is a new propositional variable that works

as an abbreviation for F .

148

Tseitin Transformation

Satisfiability-preserving CNF transformation (Tseitin 1970):

Apply Prop. 2.13 recursively bottom-up to all subformulas F

in the original formula (except ⊥, ⊤, and atomic formulas).

This introduces a linear number of new propositional variables

Q and definitions Q ↔ F .

Convert the resulting conjunction to CNF.

This increases the size only by an additional factor, since each

formula Q ↔ F yields at most four clauses in the CNF.

149

Polarity-based CNF Transformation

A further improvement is possible by taking the polarity of the

subformula F into account (Plaisted and Greenbaum 1986):

Proposition 2.14:

Let A be a valuation, let F and G be formulas, and let

H = H[F]p be a formula in which F occurs as a subformula at

position p.

If pol(H, p)= 1 andA(F) ≤ A(G), thenA(H[F]p) ≤ A(H[G]p).

If pol(H, p)=−1 andA(F)≥A(G), thenA(H[F]p)≤A(H[G]p).

150

Polarity-based CNF Transformation

Let Q be a propositional variable not occurring in H[F]p.

Define the formula def(H, p,Q,F) by

• (Q → F), if pol(H, p) = 1,

• (F → Q), if pol(H, p) = −1,

• (Q ↔ F), if pol(H, p) = 0.

Proposition 2.15:

Let Q be a propositional variable not occurring in H[F]p.

Then H[F]p is satisfiable if and only if H[Q]p ∧ def(H, p,Q,F)

is satisfiable.

151

Optimized CNF

Not every introduction of a definition for a subformula leads to

a smaller CNF.

The number of potentially generated clauses is a good indicator

for useful CNF transformations.

The functions ν(F) and ν̄(F) on the next slide give us upper

bounds for the number of clauses in cnf(F) and cnf(¬F) using

a naive CNF transformation.

152

Optimized CNF

G ν(G) ν̄(G)

P ,⊤,⊥ 1 1

F1 ∧ F2 ν(F1) + ν(F2) ν̄(F1)ν̄(F2)

F1 ∨ F2 ν(F1)ν(F2) ν̄(F1) + ν̄(F2)

¬F1 ν̄(F1) ν(F1)

F1 → F2 ν̄(F1)ν(F2) ν(F1) + ν̄(F2)

F1 ↔ F2 ν(F1)ν̄(F2)+ν̄(F1)ν(F2) ν(F1)ν(F2)+ν̄(F1)ν̄(F2)

153

Optimized CNF

A better CNF transformation (Nonnengart and Weiden-

bach 2001):

Step 1: Exhaustively apply modulo commutativity of ↔ and

associativity/commutativity of ∧, ∨:

H[(F ∧ ⊤)]p ⇒OCNF H[F]p

H[(F ∨ ⊥)]p ⇒OCNF H[F]p

H[(F ↔ ⊥)]p ⇒OCNF H[¬F]p

H[(F ↔ ⊤)]p ⇒OCNF H[F]p

H[(F ∨ ⊤)]p ⇒OCNF H[⊤]p

H[(F ∧ ⊥)]p ⇒OCNF H[⊥]p

154

Optimized CNF

H[(F ∧ F)]p ⇒OCNF H[F]p

H[(F ∨ F)]p ⇒OCNF H[F]p

H[(F ∧ (F ∨ G))]p ⇒OCNF H[F]p

H[(F ∨ (F ∧ G))]p ⇒OCNF H[F]p

H[(F ∧ ¬F)]p ⇒OCNF H[⊥]p

H[(F ∨ ¬F)]p ⇒OCNF H[⊤]p

H[¬⊤]p ⇒OCNF H[⊥]p

H[¬⊥]p ⇒OCNF H[⊤]p

155

Optimized CNF

H[(F → ⊥)]p ⇒OCNF H[¬F]p

H[(F → ⊤)]p ⇒OCNF H[⊤]p

H[(⊥ → F)]p ⇒OCNF H[⊤]p

H[(⊤ → F)]p ⇒OCNF H[F]p

Note: Applying the absorption laws exhaustively modulo

associativity/commutativity of ∧ and ∨ is expensive. In practice,

it is sufficient to apply them only in those cases that are easy to

detect.

156

Optimized CNF

Step 2: Introduce top-down fresh variables for beneficial

subformulas:

H[F]p ⇒OCNF H[Q]p ∧ def(H, p,Q,F)

where Q is new to H[F]p

and ν(H[F]p) > ν(H[Q]p ∧ def(H, p,Q,F)).

Remark: Although computing ν is not practical in general, the

test ν(H[F]p) > ν(H[Q]p ∧ def(H, p,Q,F)) can be computed

in constant time.

157

Optimized CNF

Step 3: Eliminate equivalences dependent on their polarity:

H[F ↔ G]p ⇒OCNF H[(F → G) ∧ (G → F)]p

if pol(F , p) = 1 or pol(F , p) = 0.

H[F ↔ G]p ⇒OCNF H[(F ∧ G) ∨ (¬F ∧ ¬G)]p

if pol(F , p) = −1.

158

Optimized CNF

Step 4: Apply steps 2, 3, 4, 5 of ⇒CNF

Remark: The ⇒OCNF algorithm is already close to a state of

the art algorithm, but some additional redundancy tests and

simplification mechanisms are missing.

159

2.6 The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite

set N of clauses), check whether it is satisfiable (and optionally:

output one solution, if it is satisfiable).

160

Preliminaries

Recall:

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .

161

Preliminaries

Assumptions:

Clauses contain neither duplicated literals nor

complementary literals.

The order of literals in a clause is irrelevant.

⇒ Clauses behave like sets of literals.

Notation:

We use the notation C ∨ L to denote a clause with some

literal L and a clause rest C . Here L need not be the last

literal of the clause and C may be empty.

L is the complementary literal of L, i. e., P = ¬P and ¬P = P .

162

Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations

(that is, partial mappings A : Π→ {0, 1}).

Every partial valuation A corresponds to a set M of literals that

does not contain complementary literals, and vice versa:

A(L) is true, if L ∈ M .

A(L) is false, if L ∈ M .

A(L) is undefined, if neither L ∈ M nor L ∈ M .

We will use A and M interchangeably.

163

Partial Valuations

A clause is true under a partial valuation A

(or under a set M of literals) if one of its literals is true;

it is false (or “conflicting”) if all its literals are false;

otherwise it is undefined (or “unresolved”).

164

Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C ,

such that all literals but one in C are false under A, then the

following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

165

Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in

the unresolved clauses in N, then the following properties are

equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns 1 (0) to P .

P is called a pure literal.

166

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true under M) return true;

elsif (some clause in N is false under M) return false;

elsif (N contains unit literal P) return DPLL(M ∪ {P}, N);

elsif (N contains unit literal ¬P) return DPLL(M ∪ {¬P}, N);

elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);

elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);

else {

let P be some undefined variable in N;

if (DPLL(M ∪ {¬P}, N)) return true;

else return DPLL(M ∪ {P}, N);

}

}

167

The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with an empty literal set and the clause

set N.

168

2.7 From DPLL to CDCL

The DPLL procedure can be improved significantly:

The pure literal check is only done while preprocessing

(otherwise is too expensive).

The algorithm is implemented iteratively ⇒ the backtrack

stack is managed explicitly (it may be possible and useful to

backtrack more than one level).

Information is reused by conflict analysis and learning.

The branching variable is not chosen randomly.

Under certain circumstances, the procedure is restarted.

169

From DPLL to CDCL

Literature:

Lintao Zhang and Sharad Malik: The Quest for Efficient Boolean

Satisfiability Solvers, Proc. CADE-18, LNAI 2392, pp. 295–312,

Springer, 2002.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT

and SAT Modulo Theories – From an abstract Davis-Putnam-

Logemann-Loveland procedure to DPLL(T), pp. 937–977,

Journal of the ACM, 53(6), 2006.

170

From DPLL to CDCL

Literature:

Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh

(eds.): Handbook of Satisfiability, IOS Press, 2009

Daniel Le Berre’s slides at VTSA’09:

http://www.mpi-inf.mpg.de/vtsa09/.

171

Conflict Analysis and Learning

Conflict analysis serves a dual purpose:

Backjumping (non-chronological backtracking): If we detect

that the conflict is independent of some earlier branch, we

can skip over that backtrack level.

Learning: By deriving a new clause from the conflict that is

added to the current set of clauses, we can reuse information

that is obtained in one branch in further branches.

(Note: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them

afterwards to save space.)

172

Conflict Analysis and Learning

These ideas are implemented in all modern SAT solvers.

Because of the importance of clause learning the algorithm is

now called CDCL: Conflict Driven Clause Learning.

173

Formalizing CDCL

We model the improved DPLL procedure by a transition relation

⇒CDCL on a set of states.

States:

• fail

• M ‖ N,

where M is a list of annotated literals (“trail”) and N is a set of

clauses.

Annotated literal:

• L: deduced literal, due to unit propagation.

• Ld: decision literal (guessed literal).

174

Formalizing CDCL

Unit Propagate:

M ‖ N ∪ {C ∨ L} ⇒CDCL M L ‖ N ∪ {C ∨ L}

if C is false under M and L is undefined under M .

Decide:

M ‖ N ⇒CDCL M Ld ‖ N

if L is undefined under M and contained in N.

Fail:

M ‖ N ∪ {C} ⇒CDCL fail

if C is false under M and M contains no decision literals.

175

Formalizing CDCL

Backjump:

M ′ Ld M ′′ ‖ N ⇒CDCL M ′ L′ ‖ N

if there is some “backjump clause” C ∨ L′ such that

N |= C ∨ L′,

C is false under M ′, and

L′ is undefined under M ′.

176

Formalizing CDCL

We will see later that the Backjump rule is always applicable,

if the list of literals M contains at least one decision literal and

some clause in N is false under M .

There are many possible backjump clauses.

One candidate: L1 ∨ . . . ∨ Ln,

where the Li are all the decision literals in M ′ Ld M ′′.

(But usually there are better choices.)

177

Formalizing CDCL

Lemma 2.16:

If we reach a state M ‖ N starting from ε ‖ N, then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from N and decision

literals occurring before L in M .

178

Formalizing CDCL

Lemma 2.17:

Every derivation starting from ε ‖ N terminates.

179

Formalizing CDCL

Lemma 2.18:

Suppose that we reach a state M ‖ N starting from ε ‖ N

such that some clause D ∈ N is false under M . Then:

(1) If M does not contain any decision literal,

then “Fail” is applicable.

(2) Otherwise, “Backjump” is applicable.

180

Formalizing CDCL

Theorem 2.19:

Suppose that we reach a final state starting from ε ‖ N.

(1) If the final state is M ‖ N, then N is satisfiable and M is a

model of N.

(2) If the final state is fail , then N is unsatisfiable.

181

Getting Better Backjump Clauses

Suppose that we have reached a state M ‖ N such that some

clause C ∈ N (or entailed by N) is false under M .

Consequently, every literal of C is the complement of some

literal in M .

(1) If every literal in C is the complement of a decision literal

of M , then C is either a backjump clause or ⊥.

(2) Otherwise, C = C ′ ∨ L, such that L is a deduced literal.

For every deduced literal L, there is a clause D ∨ L, such

that N |= D ∨ L and D is false under M .

Then N |= D ∨ C ′ and D ∨ C ′ is also false under M .

(D ∨ C ′ is a resolvent of C ′ ∨ L and D ∨ L.)

182

Getting Better Backjump Clauses

As long as we are in case (2), we can repeat this transformation

with the new clause D ∨ C ′.

This process must terminate:

Define an ordering ≻ on literals so that L2 ≻ L1 if L2 occurs

right of L1 on the trail.

The trail is finite

⇒ ≻ is well-founded

⇒ ≻mul is well-founded.

Then the multiset of literals in C ′ ∨ L is larger than

the multiset of literals in D ∨ C ′ with respect to ≻mul.

183

Getting Better Backjump Clauses

So we must eventually reach case (1):

We obtain a backjump clause or the empty clause.

In practice, it is not necessary to continue until case (1) is

reached. Usually, one resolves the literals in the reverse order in

which they were added to M and stops as soon as one obtains

a clause in which all literals but one are complements of literals

occurring in M before the last decision literal.

(This is a backjump clause.)

⇒ 1UIP (first unique implication point) strategy.

184

Learning Clauses

Backjump clauses are good candidates for learning.

To model learning, the CDCL system is extended by the following

two rules:

Learn:

M ‖ N ⇒CDCL M ‖ N ∪ {C}

if N |= C .

Forget:

M ‖ N ∪ {C} ⇒CDCL M ‖ N

if N |= C .

185

Learning Clauses

If we ensure that no clause is learned infinitely often, then

termination is guaranteed.

The other properties of the basic CDCL system hold also for the

extended system.

186

Restart

Runtimes of CDCL-style procedures depend extremely on the

choice of branching variables.

If no solution is found within a certain time limit, it can be

useful to restart from scratch with an adapted variable selection

heuristics. Learned clauses, however, are kept.

In addition, it is useful to restart after a unit clause has been

learned.

187

Restart

The restart rule is typically applied after a certain number of

clauses have been learned or a unit is derived:

Restart:

M ‖ N ⇒CDCL ε ‖ N

If Restart is only applied finitely often, termination is guaranteed.

188

2.8 Implementing CDCL

The formalization of CDCL that we have seen so far leaves many

aspects unspecified.

To get a fast solver, we must use good heuristics, for instance

to choose the next undefined variable, and we must implement

basic operations efficiently.

189

Variable Order Heuristic

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: Use branching heuristics that need not be

recomputed too frequently.

In general: Choose variables that occur frequently; after a restart

prefer variables from recent conflicts.

190

Variable Order Heuristic

The VSIDS (Variable State Independent Decaying Sum)

heuristic:

• We associate a positive score to every propositional variable

Pi . At the start, ki is the number of occurrences of Pi in N.

• The variable order is then the descending ordering of the Pi

according to the ki .

191

Variable Order Heuristic

The scores ki are adjusted during a CDCL run.

• Every time a learned clause is computed after a conflict, the

propositional variables in the learned clause obtain a bonus

b, i.e., ki := ki + b.

• Periodically, the scores are leveled: ki := ki/l for some l .

• After each restart, the variable order is recomputed, using

the new scores.

The purpose of these mechanisms is to keep the search focused.

The parameter b directs the search around the conflict,

192

Variable Order Heuristic

Further refinements:

• Add the bonus to all literals in the clauses that occur in the

resolution steps to generate a backjump clause.

• If the score of a variable reaches a certain limit, all scores

are rescaled by a constant.

• Occasionally (with low probability) choose a variable at

random, otherwise choose the undefined variable with the

highest score.

193

Implementing Unit Propagation Efficiently

For applying the unit rule, we need to know the number of

literals in a clause that are not false.

Maintaining this number is expensive, however.

194

Implementing Unit Propagation Efficiently

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P , keep a list of all clauses in which P is

watched and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses

in which P (or ¬P) is watched and watch another literal (that

is true or undefined) in this clause if possible.

Watched literal information need not be restored upon

backtracking.

195

2.9 Preprocessing and Inprocessing

Some operations are only needed once at the beginning of the

CDCL run.

(i) Deletion of tautologies

(ii) Deletion of duplicated literals

196

Preprocessing and Inprocessing

Some operations are useful, but expensive.

They are performed only initially and after restarts

(before computation of the variable order heuristics),

possibly with time limits.

Note: Some of these operations are only satisfiability-preserving;

they do not yield equivalent clause sets.

197

Preprocessing and Inprocessing

Literature:

Matti Järvisalo, Marijn J. H. Heule, and Armin Biere: Inpro-

cessing Rules, Proc. IJCAR 2012, LNAI 7364, pp. 355–370,

Springer, 2012

198

Preprocessing and Inprocessing

Examples:

(i) Subsumption

N ∪ {C} ∪ {D} ⇒ N ∪ {C}

if C ⊆ D considering C , D as multisets of literals.

199

Preprocessing and Inprocessing

(ii) Purity deletion

Delete all clauses containing a literal L where L does not

occur in the clause set.

(iii) Merging replacement resolution

N ∪ {C ∨ L} ∪ {D ∨ L} ⇒ N ∪ {C ∨ L} ∪ {D}

if C ⊆ D considering C , D as multisets of literals.

200

Preprocessing and Inprocessing

(iv) Bounded variable elimination

Compute all possible resolution steps

C ∨ L D ∨ L

C ∨ D

on a literal L with premises in N;

add all non-tautological conclusions to N;

then throw away all clauses containing L or L;

repeat this as long as |N| does not grow.

201

Preprocessing and Inprocessing

(v) RAT (“Resolution asymmetric tautologies”)

C is called an asymmetric tautology w. r. t. N, if its negation

can be refuted by unit propagation using clauses in N.

C has the RAT property w. r. t. N, if it is an asymmetric

tautology w. r. t. N, or if there is a literal L in C such that

C = C ′ ∨ L and all clauses D′ ∨ C ′ for D′ ∨ L ∈ N are

asymmetric tautologies w. r. t. N.

RAT elimination:

N ∪ {C} ⇒ N

if C has the RAT property w. r. t. N.

202

2.10 OBDDs

Goal:

Efficient manipulation of (equivalence classes of) propositional

formulas.

Method: Minimized graph representation of decision trees,

based on a fixed ordering on propositional variables.

⇒ Canonical representation of formulas.

⇒ Satisfiability checking as a side effect.

203

OBDDs

Literature:

Randal E. Bryant: Graph-Based Algorithms for Boolean Function

Manipulation, IEEE Transactions on Computers, 35(8):677-691,

1986.

Randal E. Bryant: Symbolic Boolean Manipulation with Ordered

Binary Decision Diagrams, ACM Computing Surveys, 24(3),

September 1992, pp. 293-318.

Michael Huth and Mark Ryan: Logic in Computer Science:

Modelling and Reasoning about Systems, Chapter 6.1/6.2;

Cambridge Univ. Press, 2000.

204

BDDs

BDD (Binary decision diagram):

Labelled DAG (directed acyclic graph).

Leaf nodes:

labelled with a truth value (0 or 1).

Non-leaf nodes (interior nodes):

labelled with a propositional variable,

exactly two outgoing edges,

labelled with 0 () and 1 ()

205

BDDs

P

Q

1 0

1

0

1
0

⇔

P

Q

1 0

206

BDDs

Every BDD node can be interpreted as a mapping from

valuations to truth values:

Traverse the BDD from the given node to a leaf node;

for any node labelled with P take the 0-edge or 1-edge

depending on whether A(P) is 0 or 1.

⇒ Compact representation of truth tables.

207

OBDDs

OBDD (Ordered BDD):

Let < be a total ordering of the propositional variables.

An OBDD w. r. t. < is a BDD where every edge from a

non-leaf node leads either to a leaf node or to a non-leaf node

with a strictly larger label w. r. t. <.

208

OBDDs

OBDDs and formulas:

A leaf node 0 represents ⊥ (or any unsatisfiable formula).

A leaf node 1 represents ⊤ (or any valid formula).

If a non-leaf node v has the label P ,

and its 0-edge leads to a node representing the formula F0,

and its 1-edge leads to a node representing the formula F1,

then v represents the formula

F |=| if P then F1 else F0

|=| (P ∧ F1) ∨ (¬P ∧ F0)

|=| (P → F1) ∧ (¬P → F0)

209

OBDDs

Conversely:

Define F{P 7→ H} as the formula obtained from F by

replacing every occurrence of P in F by H.

For every formula F and propositional variable P :

F |=| (P ∧ F{P 7→ ⊤}) ∨ (¬P ∧ F{P 7→ ⊥})

(Shannon expansion of F , originally due to Boole).

Consequence: Every formula F can be represented by an

OBDD.

210

Reduced OBDDs

An OBDD is called reduced, if it has

• no duplicated leaf nodes 0 0

• no duplicated interior nodes P P

• no redundant tests P

211

Reduced OBDDs

Theorem 2.20 (Bryant 1986):

Every OBDD can be converted into an equivalent reduced

OBDD.

Assumptions from now on:

One fixed ordering >.

We consider only reduced OBDDs.

All OBDDs are sub-OBDDs of a single OBDD.

212

Reduced OBDDs

Implementation:

Bottom-up construction of reduced OBDDs is possible using

a hash table.

Keys and values are triples (PropVar ,Ptr0,Ptr1),

where Ptr0 and Ptr1 are pointers to the 0-successor and

1-successor hash table entry.

213

Reduced OBDDs

Theorem 2.21 (Bryant 1986):

If v and v ′ are two different nodes in a reduced OBDD, then

they represent non-equivalent formulas.

214

Reduced OBDDs

Corollary 2.22:

F is valid, if and only if it is represented by 1 .

F is unsatisfiable, if and only if it is represented by 0 .

215

Operations on OBDDs

Example:

Let ◦ be a binary connective. Let P be the smallest

propositional variable that occurs in F or G or both.

F ◦ G |=| (P ∧ (F ◦ G){P 7→ ⊤}) ∨ (¬P ∧ (F ◦ G){P 7→ ⊥})

|=| (P ∧ (F{P 7→ ⊤} ◦ G{P 7→ ⊤})

∨ (¬P ∧ (F{P 7→ ⊥} ◦ G{P 7→ ⊥})))

Note: F{P 7→ ⊤} is either represented by the same node as F

(if P does not occur in F), or by its 1-successor (otherwise).

⇒ Obvious recursive function on OBDD nodes

(needs memoizing for efficient implementation).

216

Operations on OBDDs

OBDD operations are not restricted to the connectives of

propositional logic.

We can also compute operations of quantified boolean formulas

∀P .F |=| (F{P 7→ ⊤}) ∧ (F{P 7→ ⊥})

∃P .F |=| (F{P 7→ ⊤}) ∨ (F{P 7→ ⊥})

and images or preimages of propositional formulas w. r. t. boolean

relations (needed for typical verification tasks).

217

Operations on OBDDs

The size of the OBDD for F ◦ G is bounded by mn,

where F has size m and G has size n.

(Size = number of nodes)

With memoization, the time for computing F ◦ G is also

at most O(mn).

218

Operations on OBDDs

The size of an OBDD for a given formula depends crucially on

the chosen ordering of the propositional variables:

Let F = (P1 ∧ P2) ∨ (P3 ∧ P4) ∨ · · · ∨ (P2n−1 ∧ P2n).

P1 < P2 < P3 < P4 < · · · < P2n−1 < P2n: 2n + 2 nodes.

P1 < P3 < · · · < P2n−1 < P2 < P4 < · · · < P2n: 2n+1 nodes.

219

Operations on OBDDs

Even worse: There are (practically relevant!) formulas for which

the OBDD has exponential size for every ordering of the

propositional variables.

Example: middle bit of binary multiplication.

220

2.11 FRAIGs

Goal:

Efficient manipulation of (equivalence classes of) propositional

formulas.

Smaller representation than OBDDs.

Method: Minimized graph representation of boolean circuits.

221

FRAIGs

FRAIG (Functionally Reduced And-Inverter Graph):

Labelled DAG (directed acyclic graph).

Leaf nodes:

labelled with propositional variables.

Non-leaf nodes (interior nodes):

labelled with ∧ (two outgoing edges)

or ¬ (one outgoing edge).

222

FRAIGs

Reducedness (i. e., no two different nodes represent equivalent

formulas) must be established explicitly, using

structural hashing,

simulation vectors,

CDCL,

OBDDs.

⇒ Semi-canonical representation of formulas.

223

FRAIGs

Literature:

A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton:

FRAIGs: A unifying representation for logic synthesis and

verification, ERL Technical Report, EECS Dept., UC Berkeley,

March 2005.

224

2.12 Other Calculi

Ordered resolution

Tableau calculus

Hilbert calculus

Sequent calculus

Natural deduction

see next chapter

225

Part 3: First-Order Logic

→First-order logic

• is expressive:

can be used to formalize mathematical concepts,

can be used to encode Turing machines,

but cannot axiomatize natural numbers or uncountable sets,

• has important decidable fragments,

• has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

226

3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical connectives (domain-independent)

⇒ Boolean combinations, quantifiers

227

Signatures

A signature Σ = (Ω,Π) fixes an alphabet of non-logical symbols,

where

• Ω is a set of function symbols f with arity n ≥ 0,

written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0,

written arity(P) = m.

Function symbols are also called operator symbols.

If n = 0 then f is also called a constant (symbol).

If m = 0 then P is also called a propositional variable.

228

Signatures

We will usually use

b, c , d for constant symbols,

f , g , h for non-constant function symbols,

P , Q, R, S for predicate symbols.

Convention: We will usually write f /n ∈ Ω instead of

f ∈ Ω, arity(f) = n (analogously for predicate symbols).

229

Signatures

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in

programming languages);

no big change from a logical point of view.

230

Variables

Predicate logic admits the formulation of abstract, schematic

assertions.

(Object) variables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols

which we use to denote variables.

231

Terms

Terms over Σ and X (Σ-terms) are formed according to these

syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

232

Atoms

Atoms (also called atomic formulas) over Σ are formed according

to this syntax:

A,B ::= P(s1, . . . , sm) , P/m ∈ Π (non-equational atom)[
| (s ≈ t) (equation)

]

Whenever we admit equations as atomic formulas we are in the

realm of first-order logic with equality. Admitting equality does

not really increase the expressiveness of first-order logic (see

next chapter). But deductive systems where equality is treated

specifically are much more efficient.

233

Literals

L ::= A (positive literal)

| ¬A (negative literal)

234

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

235

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀x F (universal quantification)

| ∃x F (existential quantification)

236

Notational Conventions

We omit parentheses according to the conventions for proposi-

tional logic.

∀x1, . . . , xn F and ∃x1, . . . , xn F abbreviate

∀x1 . . . ∀xn F and ∃x1 . . . ∃xn F .

237

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual

operator precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u),+(t, v))

−s for −(s)

s! for !(s)

|s| for | |(s)

0 for 0()

238

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {</2}

Examples of formulas over this signature are:

∀x , y ((x < y ∨ x ≈ y)↔ ∃z (x + z ≈ y))

∃x∀y (x + y ≈ y)

∀x , y (x ∗ s(y) ≈ x ∗ y + x)

∀x , y (s(x) ≈ s(y)→ x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

239

Positions in Terms and Formulas

The set of positions is extended from propositional logic to

first-order logic:

The positions of a term s (formula F):

pos(x) = {ε},

pos(f (s1, . . . , sn)) = {ε} ∪
⋃n

i=1{ i p | p ∈ pos(si) },

pos(P(t1, . . . , tn)) = {ε} ∪
⋃n

i=1{ i p | p ∈ pos(ti) },

pos(∀x F) = {ε} ∪ { 1p | p ∈ pos(F) },

pos(∃x F) = {ε} ∪ { 1p | p ∈ pos(F) }.

240

Positions in Terms and Formulas

The prefix order ≤, the subformula (subterm) operator, the

formula (term) replacement operator and the size operator are

extended accordingly.

See the definitions in Sect. 2.

241

Variables

The set of variables occurring in a term t is denoted by var(t)

(and analogously for atoms, literals, clauses, and formulas).

242

Bound and Free Variables

In Qx F , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the

scope of a quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas

or sentential forms.

Formulas without variables are called ground.

243

Bound and Free Variables

Example:

∀y

scope of y︷ ︸︸ ︷

((∀x

scope of x︷ ︸︸ ︷
P(x)) → R(x , y))

The occurrence of y is bound, as is the first occurrence of x .

The second occurrence of x is a free occurrence.

244

Substitutions

Substitution is a fundamental operation on terms and formulas

that occurs in all inference systems for first-order logic.

Substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = { x ∈ X | σ(x) 6= x },

is finite. The set of variables introduced by σ, that is, the set of

variables occurring in one of the terms σ(x), with x ∈ dom(σ),

is denoted by codom(σ).

245

Substitutions

Substitutions are often written as {x1 7→ s1, . . . , xn 7→ sn}, with

xi pairwise distinct, and then denote the mapping

{x1 7→ s1, . . . , xn 7→ sn}(y) =




si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =




t, if y = x

σ(y), otherwise

246

Why Substitution is Complicated

We define the application of a substitution σ to a term t or

formula F by structural induction over the syntactic structure of

t or F by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain

of σ are not captured upon placing them into the scope of a

quantifier Qy , hence the bound variable must be renamed into

a “fresh”, that is, previously unused, variable z .

247

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P(s1, . . . , sn)σ = P(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(F ◦ G)σ = (Fσ ◦ Gσ) for each binary connective ◦

(Qx F)σ = Qz (F σ[x 7→ z]) with z a fresh variable

248

Application of a Substitution

If s = tσ for some subsitution σ,

we call the term s an instance of the term t,

and we call t a generalization of s (analogously for formulas).

249

3.2 Semantics

To give semantics to a logical system means to define a notion

of truth for the formulas. The concept of truth that we will now

define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with

truth values “true” and “false” denoted by 1 and 0, respectively.

250

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a

triple

A = (UA, (fA : Un
A → UA)f /n∈Ω, (PA ⊆ Um

A)P/m∈Π)

where UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Σ-algebras generalize the valuations from propositional logic.

251

Assignments

A variable has no intrinsic meaning. The meaning of a variable

has to be defined externally (explicitly or implicitly in a given

context) by an assignment.

A (variable) assignment (over a given Σ-algebra A), is a function

β : X → UA.

Variable assignments are the semantic counterparts of substitu-

tions.

252

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X)→ UA

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

253

Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect

to modified assignments. To that end, let β[x 7→ a] : X → UA,

for x ∈ X and a ∈ UA, denote the assignment

β[x 7→ a](y) =




a if x = y

β(y) otherwise

254

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X)→ {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P(s1, . . . , sn)) = if (A(β)(s1), . . . ,A(β)(sn)) ∈ PA

then 1 else 0

A(β)(s ≈ t) = if A(β)(s) = A(β)(t) then 1 else 0

255

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X)→ {0, 1} is defined inductively as follows:

A(β)(¬F) = 1−A(β)(F)

A(β)(F ∧ G) = min(A(β)(F),A(β)(G))

A(β)(F ∨ G) = max(A(β)(F),A(β)(G))

A(β)(F → G) = max(1−A(β)(F),A(β)(G))

A(β)(F ↔ G) = if A(β)(F) = A(β)(G) then 1 else 0

A(β)(∀x F) = min
a∈UA

{A(β[x 7→ a])(F)}

A(β)(∃x F) = max
a∈UA

{A(β[x 7→ a])(F)}

256

Example

The “Standard” interpretation for Peano arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

<N = { (n,m) | n less than m }

Note that N is just one out of many possible ΣPA-interpretations.

257

Example

Values over N for sample terms and formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y (x + y ≈ y + x)) = 1

N(β)(∀z (z < y)) = 0

N(β)(∀x∃y (x < y)) = 1

258

Ground Terms and Closed Formulas

If t is a ground term, then A(β)(t) does not depend on β:

A(β)(t) = A(β′)(t)

for every β and β′.

Analogously, if F is a closed formula, then A(β)(F) does not

depend on β:

A(β)(F) = A(β′)(F)

for every β and β′.

259

Ground Terms and Closed Formulas

An element a ∈ UA is called term-generated, if a = A(β)(t) for

some ground term t.

In general, not every element of an algebra is term-generated.

260

3.3 Models, Validity, and Satisfiability

F is true in A under assignment β:

A,β |= F :⇔ A(β)(F) = 1

F is true in A (A is a model of F ; F is valid in A):

A |= F :⇔ A,β |= F for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

261

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written

F |= G , if for all A ∈ Σ-Alg and β ∈ X → UA,

whenever A,β |= F , then A,β |= G .

F and G are called equivalent, written F |=| G , if for all

A ∈ Σ-Alg and β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .

262

Entailment and Equivalence

Proposition 3.1:

F |= G iff (F → G) is valid

Proposition 3.2:

F |=| G iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e. g.,

N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA:

if A,β |= G , for all G ∈ N, then A,β |= F .

263

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 3.3:

Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it

is sufficient to design a checker for unsatisfiability.

264

Substitution Lemma

Lemma 3.4:

Let A be a Σ-algebra, let β be an assignment, let σ be a

substitution. Then for any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → UA is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 3.5:

Let A be a Σ-algebra, let β be an assignment, let σ be a

substitution. Then for every Σ-formula F

A(β)(Fσ) = A(β ◦ σ)(F) .

265

Substitution Lemma

Corollary 3.6:

A,β |= Fσ ⇔ A,β ◦ σ |= F

These theorems basically express that the syntactic concept

of substitution corresponds to the semantic concept of an

assignment.

266

Two Lemmas

Lemma 3.7:

Let A be a Σ-algebra and

let F be a Σ-formula with free variables x1, . . . , xn. Then

A |= ∀x1, . . . , xn F if and only if A |= F .

Note that it is not possible to replace A |= . . . by A,β |= . . .

in Lemma 3.7.

267

Two Lemmas

Lemma 3.8:

Let A be a Σ-algebra,

let F be a Σ-formula with free variables x1, . . . , xn,

let σ be a substitution,

and let y1, . . . , ym be the free variables of Fσ. Then

A |= ∀x1, . . . , xn F implies A |= ∀y1, . . . , ym Fσ .

268

3.4 Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A,β |= F .

Solve(F): find a substitution σ such that |= Fσ.

Abduce(F): find G with “certain properties” such that G |= F .

269

Theory of an Algebra

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G }

Problem of axiomatizability:

Given an algebra A (or a class of algebras) can one axiomatize

Th(A), that is, can one write down a formula F (or a recursively

enumerable set F of formulas) such that

Th(A) = {G | F |= G }?

270

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, {<}) and N+ = (N, 0, s, +,<)

its standard interpretation on the natural numbers.

Th(N+) is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of N,

considers the integer numbers Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen,

JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using

automata-theoretic methods (and there is a constant c ≥ 0 such

that Th(Z+) 6∈ NTIME(22
cn

)).

271

Two Interesting Theories

However, N∗ = (N, 0, s, +, ∗,<), the standard interpretation of

ΣPA = ({0/0, s/1,+/2, ∗/2}, {<}), has as theory the so-called

Peano arithmetic which is undecidable and not even recursively

enumerable.

272

(Non-)Computability Results

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(One can easily encode Turing machines in most signatures.)

2. Gödel’s completeness theorem:

For each signature Σ, the set of valid Σ-formulas is

recursively enumerable.

(We will prove this by giving complete deduction systems.)

3. Gödel’s incompleteness theorem:

For Σ = ΣPA and N∗ = (N, 0, s, +, ∗,<), the theory Th(N∗)

is not recursively enumerable.

These complexity results motivate the study of subclasses of

formulas (fragments) of first-order logic

273

Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary;

validity is NEXPTIME-complete.

• Variable-free formulas without equality:

satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

• Finite model checking is decidable in exponential time and

PSPACE-complete.

274

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of

quantifiers. The subsequent normal form transformations are

intended to eliminate many of them.

275

Prenex Normal Form (Traditional)

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀,∃};

we call Q1x1 . . .Qnxn the quantifier prefix and F the matrix of

the formula.

276

Prenex Normal Form (Traditional)

Computing prenex normal form by the reduction system ⇒P :

H[(F ↔ G)]p ⇒P H[(F → G) ∧ (G → F)]p

H[¬Qx F]p ⇒P H[Qx ¬F]p

H[((Qx F) ◦ G)]p ⇒P H[Qy (F{x 7→ y} ◦ G)]p,

◦ ∈ {∧,∨}

H[((Qx F)→ G)]p ⇒P H[Qy (F{x 7→ y} → G)]p,

H[(F ◦ (Qx G))]p ⇒P H[Qy (F ◦ G{x 7→ y})]p,

◦ ∈ {∧,∨,→}

Here y is always assumed to be some fresh variable and Q

denotes the quantifier dual to Q, i. e., ∀ = ∃ and ∃ = ∀.
277

Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S

(to be applied outermost, not in subformulas):

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F{y 7→ f (x1, . . . , xn)}

where f /n is a new function symbol (Skolem function).

278

Skolemization

Together: F ⇒∗
P G︸︷︷︸
prenex

⇒∗
S H︸︷︷︸
prenex, no ∃

Theorem 3.9:

Let F , G , and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (w. r. t. Σ-Alg)⇔ H satisfiable (w. r. t. Σ′-Alg)

where Σ′ = (Ω ∪ SKF , Π) if Σ = (Ω,Π).

279

The Complete Picture

F ⇒∗
P Q1y1 . . .Qnyn G (G quantifier-free)

⇒∗
S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

⇒∗
CNF ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F .

Note: The variables in the clauses are implicitly universally

quantified.

280

The Complete Picture

Theorem 3.10:

Let F be closed. Then F ′ |= F .

(The converse is not true in general.)

Theorem 3.11:

Let F be closed. Then F is satisfiable iff F ′ is satisfiable

iff N is satisfiable

281

Optimization

The normal form algorithm described so far leaves lots of room

for optimization. Note that we only can preserve satisfiability

anyway due to Skolemization.

• the size of the CNF is exponential when done naively;

the transformations we introduced already for

propositional logic avoid this exponential growth;

• we want to preserve the original formula structure;

• we want small arity of Skolem functions

(see next section).

282

3.6 Getting Skolem Functions with Small Arity

A clause set that is better suited for automated theorem proving

can be obtained using the following steps:

• eliminate trivial subformulas

• replace beneficial subformulas

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• Skolemize

• push quantifiers upward

• apply distributivity

We start with a closed formula.

283

Elimination of Trivial Subformulas

Eliminate subformulas ⊤ and ⊥ essentially as in the propositional

case modulo associativity/commutativity of ∧, ∨:

H[(F ∧ ⊤)]p ⇒OCNF H[F]p

H[(F ∨ ⊥)]p ⇒OCNF H[F]p

H[(F ↔ ⊥)]p ⇒OCNF H[¬F]p

H[(F ↔ ⊤)]p ⇒OCNF H[F]p

H[(F ∨ ⊤)]p ⇒OCNF H[⊤]p

H[(F ∧ ⊥)]p ⇒OCNF H[⊥]p

H[¬⊤]p ⇒OCNF H[⊥]p

H[¬⊥]p ⇒OCNF H[⊤]p
284

Elimination of Trivial Subformulas

Eliminate subformulas ⊤ and ⊥ essentially as in the propositional

case modulo associativity/commutativity of ∧, ∨:

H[(F → ⊥)]p ⇒OCNF H[¬F]p

H[(F → ⊤)]p ⇒OCNF H[⊤]p

H[(⊥ → F)]p ⇒OCNF H[⊤]p

H[(⊤ → F)]p ⇒OCNF H[F]p

H[Qx ⊤]p ⇒OCNF H[⊤]p

H[Qx ⊥]p ⇒OCNF H[⊥]p

285

Replacement of Beneficial Subformulas

The functions ν and ν̄ that give us an overapproximation for

the number of clauses generated by a formula are extended to

quantified formulas by

ν(∀x F) = ν(∃x F) = ν(F),

ν̄(∀x F) = ν̄(∃x F) = ν̄(F).

The other cases are defined as for propositional formulas.

286

Replacement of Beneficial Subformulas

Introduce top-down fresh predicates for beneficial subformulas:

H[F]p ⇒OCNF H[P(x1, . . . , xn)]p ∧ def(H, p,P ,F)

if ν(H[F]p) > ν(H[P(. . .)]p ∧ def(H, p,P ,F)),

where {x1, . . . , xn} are the free variables in F ,

P/n is a predicate new to H[F]p,

def(H, p,P ,F) is defined by

∀x1, . . . , xn (P(x1, . . . , xn)→ F), if pol(H, p) = 1,

∀x1, . . . , xn (F → P(x1, . . . , xn)), if pol(H, p) = −1,
∀x1, . . . , xn (P(x1, . . . , xn)↔ F), if pol(H, p) = 0.

287

Replacement of Beneficial Subformulas

As in the propositional case, one can test ν(H[F]p) >

ν(H[P]p ∧ def(H, p,P ,F)) in constant time without actually

computing ν.

288

Negation Normal Form (NNF)

Apply the reduction system ⇒NNF:

H[F ↔ G]p ⇒NNF H[(F → G) ∧ (G → F)]p

if pol(H, p) = 1 or pol(H, p) = 0.

H[F ↔ G]p ⇒NNF H[(F ∧ G) ∨ (¬G ∧ ¬F)]p

if pol(H, p) = −1.

H[F → G]p ⇒NNF H[¬F ∨ G]p

289

Negation Normal Form (NNF)

H[¬¬F]p ⇒NNF H[F]p

H[¬(F ∨ G)]p ⇒NNF H[¬F ∧ ¬G]p

H[¬(F ∧ G)]p ⇒NNF H[¬F ∨ ¬G]p

H[¬Qx F]p ⇒NNF H[Qx ¬F]p

290

Miniscoping

Apply the reduction system ⇒MS modulo associativity and

commutativity of ∧, ∨. For the rules below we assume that x

occurs freely in F , F ′, but x does not occur freely in G :

H[Qx (F ∧ G)]p ⇒MS H[(Qx F) ∧ G]p

H[Qx (F ∨ G)]p ⇒MS H[(Qx F) ∨ G]p

H[∀x (F ∧ F ′)]p ⇒MS H[(∀x F) ∧ (∀x F ′)]p

H[∃x (F ∨ F ′)]p ⇒MS H[(∃x F) ∨ (∃x F ′)]p

H[Qx G]p ⇒MS H[G]p

291

Variable Renaming

Rename all variables in H such that there are no two different

positions p, q with H|p = Qx F and H|q = Q′x G .

292

Standard Skolemization

Apply the reduction system:

H[∃x F]p ⇒SK H[F{x 7→ f (y1, . . . , yn)}]p

where p has minimal length,

{y1, . . . , yn} are the free variables in ∃x F ,

and f /n is a new function symbol to H.

293

Final Steps

Apply the reduction system modulo commutativity of ∧, ∨ to

push ∀ upward:

H[(∀x F) ∧ G]p ⇒OCNF H[∀x (F ∧ G)]p

H[(∀x F) ∨ G]p ⇒OCNF H[∀x (F ∨ G)]p

Note that variable renaming ensures that x does not occur in G .

294

Final Steps

Apply the reduction system modulo commutativity of ∧, ∨ to

push disjunctions downward:

H[(F ∧ F ′) ∨ G]p ⇒CNF H[(F ∨ G) ∧ (F ′ ∨ G)]p

295

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality.

We assume that Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

P/m ∈ Π may be freely interpreted as relations PA ⊆ Tm
Σ .

296

Herbrand Interpretations

Proposition 3.12:

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ PA iff P(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.

297

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 3.13 (Herbrand):

Let N be a set of (universally quantified) Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | (∀~x C) ∈ N, σ : X →

TΣ } is the set of ground instances of N.

[The proof will be given below in the context of the completeness

proof for general resolution.]

298

3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn,Fn+1), n ≥ 0,

called inferences, and written

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses.

One also considers inference systems over other data structures.

299

Inference Systems

Inference systems Γ are shorthands for reduction systems over

sets of formulas. If N is a set of formulas, then

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

side condition

is a shorthand for

N ∪ {F1, . . . ,Fn} ⇒Γ N ∪ {F1, . . . ,Fn} ∪ {Fn+1}

if side condition

300

Proofs

A proof in Γ of a formula F from a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k : Fi ∈ N or there exists an inference

Fm1 . . . Fmn

Fi

in Γ, such that 0 ≤ mj < i , for 1 ≤ j ≤ n.

301

Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F if there exists a proof in Γ of F from N.

Γ is called sound, if

F1 . . . Fn

F
∈ Γ implies F1, . . . ,Fn |= F

Γ is called complete, if

N |= F implies N ⊢Γ F

Γ is called refutationally complete, if

N |= ⊥ implies N ⊢Γ ⊥

302

Soundness and Completeness

Proposition 3.14:

(i) Let Γ be sound. Then N ⊢Γ F ⇒ N |= F

(ii) If N ⊢Γ F then there exist finitely many F1, . . . ,Fn ∈ N

such that F1, . . . ,Fn ⊢Γ F

303

Reduced Proofs

The definition of a proof of F given above admits sequences

F1, . . . ,Fk of formulas where some Fi are not ancestors of

Fk = F (i. e., some Fi are not actually used to derive F).

A proof is called reduced, if every Fi with i < k is an ancestor

of Fk .

We obtain a reduced proof from a proof by marking first Fk

and then recursively all the premises used to derive a marked

conclusion, and by deleting all non-marked formulas in the end.

304

Reduced Proofs as Trees

markings =̂ formulas

leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ parent node

premises =̂ child nodes

P(f (c))

P(f (c)) ∨ Q(b)

P(f (c)) ∨ Q(b) ¬P(f (c)) ∨ ¬P(f (c)) ∨ Q(b)

¬P(f (c)) ∨ Q(b) ∨ Q(b)

¬P(f (c)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P(f (c)) ∨ ¬Q(b)

¬P(f (c))

⊥

305

3.9 Ground (or propositional) Resolution

We observe that propositional clauses and ground clauses are

essentially the same, as long as we do not consider equational

atoms.

In this section we only deal with ground clauses.

Unlike in Section 2 we admit duplicated literals in clauses,

i. e., we treat clauses like multisets of literals, not like sets.

306

The Resolution Calculus Res

Resolution inference rule:

D ∨ A C ∨ ¬A

D ∨ C

Terminology: D ∨ C : resolvent; A: resolved atom

(Positive) factorization inference rule:

C ∨ A ∨ A

C ∨ A

307

The Resolution Calculus Res

These are schematic inference rules; for each substitution

of the schematic variables C , D, and A, by ground clauses

and ground atoms, respectively, we obtain an inference.

We treat “∨” as associative and commutative,

hence A and ¬A can occur anywhere in the clauses;

moreover, when we write C ∨ A, etc., this includes

unit clauses, that is, C = ⊥.

308

Sample Refutation

1. ¬P(f (c)) ∨ ¬P(f (c)) ∨ Q(b) (given)

2. P(f (c)) ∨ Q(b) (given)

3. ¬P(g(b, c)) ∨ ¬Q(b) (given)

4. P(g(b, c)) (given)

5. ¬P(f (c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)

6. ¬P(f (c)) ∨Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, c)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

309

Soundness of Resolution

Theorem 3.15:

Propositional resolution is sound.

Note: In ground first-order logic we have (like in propositional

logic):

1. B |= L1 ∨ . . . ∨ Ln if and only if there exists i : B |= Li .

2. B |= A or B |= ¬A.

This does not hold for formulas with variables!

310

3.10 Refutational Completeness of Resolution

How to show refutational completeness of ground resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥,

or equivalently: If N 6⊢Res ⊥, then N has a model.

• Idea: Suppose that we have computed sufficiently many

inferences (and not derived ⊥).

• Now order the clauses in N according to some appropriate

ordering, inspect the clauses in ascending order, and

construct a series of Herbrand interpretations.

• The limit interpretation can be shown to be a model of N.

311

Clause Orderings

1. We assume that ≻ is any fixed ordering on ground atoms

that is total and well-founded. (There exist many such

orderings, e. g., the lenght-based ordering on atoms when

these are viewed as words over a suitable alphabet.)

2. Extend ≻ to an ordering ≻L on ground literals:

[¬]A ≻L [¬]B , if A ≻ B

¬A ≻L A

3. Extend ≻L to an ordering ≻C on ground clauses:

≻C = (≻L)mul, the multiset extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

312

Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0. Then:

A1 ∨ ¬A5

≻ A3 ∨ ¬A4

≻ ¬A1 ∨ A3 ∨ A4

≻ A1 ∨ ¬A2

≻ ¬A1 ∨ A2

≻ A1 ∨ A1 ∨ A2

≻ A0 ∨ A1

313

Properties of the Clause Ordering

Proposition 3.16:

1. The orderings on literals and clauses are total and well-

founded.

2. Let C and D be clauses with

A = maxatom(C), B = maxatom(D),

where maxatom(C) denotes the maximal atom in C .

(i) If A ≻ B then C ≻ D.

(ii) If A = B , A occurs negatively in C but only positively

in D, then C ≻ D.

314

Stratified Structure of Clause Sets

Let A ≻ B . Clause sets are then stratified in this form:

¬A∨ . . .

A















. . . ∨A ∨ A all clauses C with maxatom(C) = A

. . . ∨A≻ ...
¬B ∨ . . .

B















. . . ∨B ∨ B all clauses D with maxatom(D) = B

. . . ∨B

315

Closure of Clause Sets under Res

Res(N) = {C | C is conclusion of an inference in Res

with premises in N }

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
⋃

n≥0 Res
n(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N.

316

Closure of Clause Sets under Res

Proposition 3.17:

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ implies ⊥ ∈ Res∗(N)

317

Construction of Interpretations

Given: set N of ground clauses, atom ordering ≻.

Wanted: Herbrand interpretation I such that

I |= N if N is saturated and ⊥ 6∈ N

Construction according to ≻, starting with the smallest clause.

318

Main Ideas of the Construction

• Clauses are considered in the order given by ≻.

• When considering C , one already has an interpretation so

far available (IC). Initially IC = ∅.

• If C is true in this interpretation, nothing needs to to be

changed.

• Otherwise, one would like to change the interpretation such

that C becomes true.

319

Main Ideas of the Construction

• Changes should, however, be monotone. One never deletes

atoms from the interpretation, and the truth value of clauses

smaller than C should not change from true to false.

• Hence, one adds ∆C = {A}, if and only if C is false in IC ,

if A occurs positively in C (adding A will make C become

true) and if this occurrence in C is strictly maximal in the

ordering on literals (changing the truth value of A has no

effect on smaller clauses). Otherwise, ∆C = ∅.

320

Main Ideas of the Construction

• We say that the construction fails for a clause C , if C is

false in IC and ∆C = ∅.

• We will show: If there are clauses for which the construction

fails, then some inference with the smallest such clause

(the so-called “minimal counterexample”) has not been

computed. Otherwise, the limit interpretation is a model of

all clauses.

321

Construction of Candidate Interpretations

Let N,≻ be given. We define sets IC and ∆C for all ground

clauses C over the given signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=




{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

Note that the definitions satisfy the conditions of Thm. 1.8;

so they are well-defined even if {D | C ≻ D } is infinite.

322

Construction of Candidate Interpretations

The candidate interpretation for N (w. r. t. ≻) is given as

I≻N :=
⋃

C ∆C . (We also simply write IN or I for I≻N if ≻ is either

irrelevant or known from the context.)

323

Example

Let A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0 (max. literals in red)

clauses C IC ∆C Remarks

7 ¬A1 ∨ A5 {A1,A2,A4} {A5}

6 ¬A1 ∨ A3 ∨ ¬A4 {A1,A2,A4} ∅ max. lit. ¬A4 neg.;

min. counter-ex.

5 A0 ∨ ¬A1 ∨ A3 ∨ A4 {A1,A2} {A4} A4 maximal

4 ¬A1 ∨ A2 {A1} {A2} A2 maximal

3 A1 ∨ A2 {A1} ∅ true in IC

2 A0 ∨ A1 ∅ {A1} A1 maximal

1 ¬A0 ∅ ∅ true in IC
I = {A1,A2,A4,A5} is not a model of the clause set

⇒ there exists a counterexample.

324

Structure of N ,≻

Let A ≻ B . Note that producing a new atom does not change

the truth value of smaller clauses.

possibly productive

¬A∨ . . .

A















. . . ∨A ∨ A all clauses C with maxatom(C) = A

. . . ∨A≻ ...
¬B ∨ . . .

B















. . . ∨B ∨ B all clauses D with maxatom(D) = B

. . . ∨B

325

Some Properties of the Construction

Proposition 3.18:

(i) If D = D′ ∨ ¬A, then no C � D produces A.

(ii) If ID |= D, then IC |= D for every C � D and I≻N |= D.

(iii) If D = D′ ∨ A produces A,

then IC |= D for every C ≻ D and I≻N |= D.

326

Some Properties of the Construction

(iv) If D = D′ ∨ A produces A,

then IC 6|= D′ for every C � D and I≻N 6|= D′.

(v) If for every clause C ∈ N, C is productive or IC |= C ,

then I≻N |= N.

327

Model Existence Theorem

Proposition 3.19:

Let ≻ be a clause ordering.

If N is saturated w. r. t. Res and ⊥ 6∈ N,

then for every clause C ∈ N, C is productive or IC |= C .

Theorem 3.20 (Bachmair & Ganzinger 1990):

Let ≻ be a clause ordering.

If N is saturated w. r. t. Res and ⊥ 6∈ N, then I≻N |= N.

Corollary 3.21:

Let N be saturated w. r. t. Res.

Then N |= ⊥ if and only if ⊥ ∈ N.

328

Compactness of Propositional Logic

Lemma 3.22:

Let N be a set of propositional (or first-order ground) clauses.

Then N is unsatisfiable, if and only if some finite subset N′ ⊆ N

is unsatisfiable.

Theorem 3.23 (Compactness for Propositional Formulas):

Let S be a set of propositional (or first-order ground) formulas.

Then S is unsatisfiable, if and only if some finite subset S ′ ⊆ S

is unsatisfiable.

329

3.11 General Resolution

Propositional (ground) resolution:

refutationally complete,

in its most naive version:

not guaranteed to terminate for satisfiable sets of clauses,

(improved versions do terminate, however)

inferior to the CDCL procedure.

But: in contrast to the CDCL procedure, resolution can be easily

extended to non-ground clauses.

330

Observation

If A is a model of an (implicitly universally quantified) clause C ,

then by Lemma 3.8 it is also a model of all

(implicitly universally quantified) instances Cσ of C .

Consequently, if we show that some instances of clauses

in a set N are unsatisfiable, then we have also shown that

N itself is unsatisfiable.

331

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(f (a, b)) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, b))

¬Q(f (a, b)) Q(f (a, b))

⊥

{z′ 7→ a,
z 7→ f (a, b)}

{y 7→ a} {y 7→ b} {x′ 7→ a,
x 7→ b}

332

General Resolution through Instantiation

Early approaches (Gilmore 1960, Davis and Putnam 1960):

Generate ground instances of clauses.

Try to refute the set of ground instances by resolution.

If no contradiction is found, generate more ground instances.

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

333

General Resolution through Instantiation

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

334

General Resolution through Instantiation

Idea (Robinson 1965):

Do not instantiate more than necessary to get complementary

literals

⇒ most general unifiers (mgu).

Calculus works with non-ground clauses;

inferences with non-ground clauses represent infinite sets of

ground inferences which are computed simultaneously

⇒ lifting principle.

Computation of instances becomes a by-product of boolean

reasoning.

335

General Resolution through Instantiation

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

{z ′ 7→ a} {y 7→ a} {y 7→ b} {x ′ 7→ a}

{z 7→ f (a, x)}

336

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) be a

multiset of equality problems. A substitution σ is called a unifier

of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

337

Unification

A substitution σ is called more general than a substitution τ ,

denoted by σ ≤ τ , if there exists a substitution ρ such that

ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the composition of σ

and ρ as mappings.

(Note that ρ ◦ σ has a finite domain as required for a

substitution.)

If a unifier of E is more general than any other unifier of E , then

we speak of a most general unifier of E , denoted by mgu(E).

338

Unification

Proposition 3.24:

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ

and xτ are equal up to (bijective) variable renaming, for

any x in X .

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 3.25:

σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

339

Rule-Based Naive Standard Unification

t
.
= t,E ⇒SU E

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒SU s1

.
= t1, . . . , sn

.
= tn,E

f (. . .)
.
= g(. . .),E ⇒SU ⊥

if f 6= g

x
.
= t,E ⇒SU x

.
= t,E{x 7→ t}

if x ∈ var(E), x 6∈ var(t)

x
.
= t,E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒SU x

.
= t,E

if t 6∈ X

340

SU: Main Properties

If E = {x1
.
= u1, . . . , xk

.
= uk}, with xi pairwise distinct,

xi 6∈ var(uj), then E is called an (equational problem in)

solved form representing the solution

σE = {x1 7→ u1, . . . , xk 7→ uk}.

Proposition 3.26:

If E is a solved form then σE is an mgu of E .

341

SU: Main Properties

Theorem 3.27:

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒SU ⊥ then E is not unifiable.

3. If E
∗
⇒SU E ′ with E ′ in solved form, then σE ′ is an mgu of E .

342

Main Unification Theorem

Theorem 3.28:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

343

Rule-Based Polynomial Unification

Problem: using⇒SU , an exponential growth of terms is possible.

The following unification algorithm avoids this problem, at least

if the final solved form is represented as a DAG.

344

Rule-Based Polynomial Unification

t
.
= t,E ⇒PU E

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒PU s1

.
= t1, . . . , sn

.
= tn,E

f (. . .)
.
= g(. . .),E ⇒PU ⊥

if f 6= g

x
.
= y ,E ⇒PU x

.
= y ,E{x 7→ y}

if x ∈ var(E), x 6= y

x1
.
= t1, . . . , xn

.
= tn,E ⇒PU ⊥

if there are positions pi with

ti |pi = xi+1, tn|pn = x1
and some pi 6= ε

345

Rule-Based Polynomial Unification

x
.
= t,E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒PU x

.
= t,E

if t 6∈ X

x
.
= t, x

.
= s,E ⇒PU x

.
= t, t

.
= s,E

if t, s 6∈ X and |t| ≤ |s|

346

Properties of PU

Theorem 3.29:

1. If E ⇒PU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒PU ⊥ then E is not unifiable.

3. If E
∗
⇒PU E ′ with E ′ in solved form, then σE ′ is an mgu of E .

Note: The solved form of ⇒PU is different from the solved form

obtained from ⇒SU . In order to obtain the unifier σE ′ , we have

to sort the list of equality problems xi
.
= ti in such a way that xi

does not occur in tj for j < i , and then we have to compose the

substitutions {x1 7→ t1} ◦ · · · ◦ {xk 7→ tk}.

347

Resolution for General Clauses

We obtain the resolution inference rules for non-ground clauses

from the inference rules for ground clauses by replacing equality

by unifiabilty:

General resolution Res:

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

348

Resolution for General Clauses

For inferences with more than one premise, we assume that the

variables in the premises are (bijectively) renamed such that

they become different to any variable in the other premises.

We do not formalize this. Which names one uses for variables is

otherwise irrelevant.

349

Lifting Lemma

Lemma 3.30:

Let C and D be variable-disjoint clauses. If

D




y
θ1

Dθ1

C




y
θ2

Cθ2

C
′

[ground resolution]

then there exists a substitution ρ such that

D C

C ′′





y
ρ

C ′ = C ′′ρ

[general resolution]

350

Lifting Lemma

An analogous lifting lemma holds for factorization.

351

Saturation of Sets of General Clauses

Corollary 3.31:

Let N be a set of general clauses saturated under Res, i. e.,

Res(N) ⊆ N. Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

352

Soundness for General Clauses

Proposition 3.32:

The general resolution calculus is sound.

353

Herbrand’s Theorem

Lemma 3.33:

Let N be a set of Σ-clauses, let A be an interpretation.

Then A |= N implies A |= GΣ(N).

Lemma 3.34:

Let N be a set of Σ-clauses, let A be a Herbrand interpretation.

Then A |= GΣ(N) implies A |= N.

354

Herbrand’s Theorem

Theorem 3.35 (Herbrand):

A set N of Σ-clauses is satisfiable if and only if it has a Herbrand

model over Σ.

Corollary 3.36:

A set N of Σ-clauses is satisfiable if and only if its set of ground

instances GΣ(N) is satisfiable.

355

Refutational Completeness of General Resolution

Theorem 3.37:

Let N be a set of general clauses that is saturated w. r. t. Res.

Then N |= ⊥ if and only if ⊥ ∈ N.

356

3.12 Theoretical Consequences

We get some classical results on properties of first-order logic as

easy corollaries.

357

The Theorem of Löwenheim-Skolem

Theorem 3.38 (Löwenheim–Skolem):

Let Σ be a countable signature and let S be a set of closed

Σ-formulas. Then S is satisfiable iff S has a model over a

countable universe.

There exist more refined versions of this theorem. For instance,

one can show that, if S has some infinite model, then S has a

model with a universe of cardinality κ for every κ that is larger

than or equal to the cardinalty of the signature Σ.

358

Compactness of Predicate Logic

Theorem 3.39 (Compactness Theorem for First-Order Logic):

Let S be a set of closed first-order formulas.

S is unsatisfiable ⇔ some finite subset S ′ ⊆ S is unsatisfiable.

359

3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.20)

one only needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving

maximal atoms, the proof remains correct

⇒ ordering restrictions

2. In the proof, it does not really matter with which negative

literal an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection

360

Ordering Restrictions

In the completeness proof one only needs to resolve and factor

maximal atoms ⇒ If we impose ordering restrictions on ground

inferences, the proof remains correct:

(Ground) Ordered Resolution:

D ∨ A C ∨ ¬A

D ∨ C

if A ≻ L for all L in D and ¬A � L for all L in C .

(Ground) Ordered Factorization:

C ∨ A ∨ A

C ∨ A

if A � L for all L in C .

361

Ordering Restrictions

Problem: How to extend this to non-ground inferences?

In the completeness proof, we talk about (strictly) maximal

literals of ground clauses.

In the non-ground calculus, we have to consider those literals that

correspond to (strictly) maximal literals of ground instances.

362

Ordering Restrictions

An ordering ≻ on atoms (or terms) is called stable under

substitutions, if A ≻ B implies Aσ ≻ Bσ.

Note:

• We can not require that A ≻ B iff Aσ ≻ Bσ.

• We can not require that ≻ is total on non-ground atoms.

Consequence:

In the ordering restrictions for non-ground inferences, we have

to replace ≻ by 6� and � by 6≺.

363

Ordering Restrictions

Ordered Resolution:

D ∨ B C ∨ ¬A

(D ∨ C)σ

if σ = mgu(A,B) and Bσ 6� Lσ for all L in D

and ¬Aσ 6≺ Lσ for all L in C .

Ordered Factorization:

C ∨ A ∨ B

(C ∨ A)σ

if σ = mgu(A,B) and Aσ 6≺ Lσ for all L in C .

364

Selection Functions

Selection functions can be used to override ordering restrictions

for individual clauses.

A selection function is a mapping

sel : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

365

Selection Functions

Intuition:

• If a clause has at least one selected literal, compute only

inferences that involve a selected literal.

• If a clause has no selected literals, compute only inferences

that involve a maximal literal.

366

Resolution Calculus Res
≻
sel

The resolution calculus Res≻sel is parameterized by

• a selection function sel

• and a well-founded ordering ≻ on atoms that is total on

ground atoms and stable under substitutions.

367

Resolution Calculus Res
≻
sel

(Ground) Ordered Resolution with Selection:

D ∨ A C ∨ ¬A

D ∨ C

if the following conditions are satisfied:

(i) A ≻ L for all L in D;

(ii) nothing is selected in D ∨ A by sel;

(iii) ¬A is selected in C ∨ ¬A,

or nothing is selected in C ∨ ¬A and

¬A � L for all L in C .

368

Resolution Calculus Res
≻
sel

(Ground) Ordered Factorization with Selection:

C ∨ A ∨ A

C ∨ A

if the following conditions are satisfied:

(i) A � L for all L in C ;

(ii) nothing is selected in C ∨ A ∨ A by sel.

369

Resolution Calculus Res
≻
sel

The extension from ground inferences to non-ground inferences

is analogous to ordered resolution (replace ≻ by 6� and � by

6≺). Again we assume that ≻ is stable under substitutions.

370

Resolution Calculus Res
≻
sel

Ordered Resolution with Selection:

D ∨ B C ∨ ¬A

(D ∨ C)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Bσ 6� Lσ for all L in D;

(iii) nothing is selected in D ∨ B by sel;

(iv) ¬A is selected in C ∨ ¬A,

or nothing is selected in C ∨ ¬A and

¬Aσ 6≺ Lσ for all L in C .

371

Resolution Calculus Res
≻
sel

Ordered Factorization with Selection:

C ∨ A ∨ B

(C ∨ A)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Aσ 6≺ Lσ for all L in C .

(iii) nothing is selected in C ∨ A ∨ B by sel.

372

Lifting Lemma for Res≻sel

Lemma 3.40:

Let C and D be variable-disjoint clauses. If

D




y
θ1

Dθ1

C




y
θ2

Cθ2

C ′
[ground inference in Res≻sel]

and if sel(Dθ1) ≃ sel(D), sel(Cθ2) ≃ sel(C) (that is, “corresponding”

literals are selected), then there exists a substitution ρ such that

D C

C ′′





y
ρ

C ′ = C ′′ρ

[inference in Res≻sel]

373

Lifting Lemma for Res≻sel

An analogous lifting lemma holds for factorization.

374

Saturation of Sets of General Clauses

Corollary 3.41:

Let N be a set of general clauses saturated under Res≻sel, i. e.,

Res≻sel(N) ⊆ N. Then there exists a selection function sel′ such

that sel|N = sel′|N and GΣ(N) is also saturated, i. e.,

Res≻sel′(GΣ(N)) ⊆ GΣ(N).

375

Soundness and Refutational Completeness

Theorem 3.42:

Let ≻ be an atom ordering and sel a selection function such that

Res≻sel(N) ⊆ N. Then N |= ⊥ ⇔ ⊥ ∈ N

Proof:

(⇐): trivial.

(⇒): Consider first the propositional level:

Construct a candidate interpretation IN as for unrestricted

resolution, except that clauses C in N that have selected literals

are never productive (even if they are false in IC

and if their maximal atom occurs only once and is positive).

The result for general clauses follows using Corollary 3.41. ✷

376

What Do We Gain?

Search spaces become smaller:

1 P ∨ Q

2 P ∨ ¬Q

3 ¬P ∨ Q

4 ¬P ∨ ¬Q

5 Q ∨ Q Res 1, 3

6 Q Fact 5

7 ¬P Res 6, 4

8 P Res 6, 2

9 ⊥ Res 8, 7

we assume P ≻ Q and sel as

indicated by X . The maxi-

mal literal in a clause is de-

picted in red.

In this example, the ordering and selection function even ensure

that the refutation proceeds strictly deterministically.

377

What Do We Gain?

Rotation redundancy can be avoided:

From
C1 ∨ A C2 ∨ ¬A ∨ B

C1 ∨ C2 ∨ B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A

C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations

are possible. However, if A ≻ B , then the second proof does not

fulfill the ordering restrictions.

378

Craig-Interpolation

Theorem 3.43 (Craig 1957):

Let F and G be two propositional formulas such that F |= G .

Then there exists a formula H (called the interpolant for

F |= G), such that H contains only propositional variables

occurring both in F and in G , and such that F |= H and

H |= G .

The theorem also holds for first-order formulas, but in the general

case, a proof based on resolution technology is complicated

because of Skolemization.

379

3.14 Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary?

(e. g., if they are tautologies)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.

380

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not

necessarily in N). C is called redundant w. r. t. N, if there exist

C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w. r. t. N, if all ground instances Cσ of C

are redundant w. r. t. GΣ(N).

Intuition: If a ground clause C is redundant and all clauses

smaller than C hold in IC , then C holds in IC

(so C is neither a minimal counterexample nor productive).

381

A Formal Notion of Redundancy

Note: The same ordering ≻ is used for ordering restrictions and

for redundancy (and for the completeness proof).

382

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations

are sufficient for us, however.

Proposition 3.44:

Some redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N.

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

(Under certain conditions one may also use non-strict subsump-

tion, but this requires a slightly more complicated definition of

redundancy.)

383

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Res≻sel) if

Res≻sel(N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 3.45:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

384

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation,

we have to ensure that redundant clauses remain redundant in

the rest of the derivation.

Theorem 3.46:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N)⇒ Red(N) ⊆ Red(N \M)

Recall that Red(N) may include clauses that are not in N.

385

Computing Saturated Sets

Redundancy is preserved when, during a theorem proving

derivation one adds new clauses or deletes redundant clauses.

This motivates the following definitions:

A run of the resolution calculus is a sequence

N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that

(i) Ni |= Ni+1, and

(ii) all clauses in Ni \ Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it

follows from the old ones, and we may delete a clause, if it is

redundant w. r. t. the remaining ones.

386

Computing Saturated Sets

For a run, we define N∞ =
⋃

i≥0 Ni and N∗ =
⋃

i≥0

⋂
j≥i Nj .

The set N∗ of all persistent clauses is called the limit of the run.

387

Computing Saturated Sets

Lemma 3.47:

Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run.

Then Red(Ni) ⊆ Red(N∞) and Red(Ni) ⊆ Red(N∗) for every i .

Proof:

Exercise. ✷

388

Computing Saturated Sets

Corollary 3.48:

Ni ⊆ N∗ ∪ Red(N∗) for every i .

Proof:

If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1,

so C must be redundant w. r. t. Nk+1.

Consequently, C is redundant w. r. t. N∗. ✷

389

Computing Saturated Sets

Even if a set N is inconsistent, it could happen that ⊥ is never

derived, because some required inference is never computed.

The following definition rules out such runs:

A run is called fair, if the conclusion of every inference from

clauses in N∗ \ Red(N∗) is contained in some Ni ∪ Red(Ni).

Lemma 3.49:

If a run is fair, then its limit is saturated up to redundancy.

390

Computing Saturated Sets

Theorem 3.50 (Refutational Completeness: Dynamic View):

Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a fair run, let N∗ be its limit.

Then N0 has a model if and only if ⊥ /∈ N∗.

Proof:

(⇐): By fairness, N∗ is saturated up to redundancy.

If ⊥ /∈ N∗, then it has a Herbrand model.

Since every clause in N0 is contained in N∗ or redundant

w. r. t. N∗, this model is also a model of GΣ(N0)

and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. ✷

391

Simplifications

In theory, the definition of a run permits to add arbitrary clauses

that are entailed by the current ones.

392

Simplifications

In practice, we restrict to two cases:

• We add conclusions of Res≻sel-inferences from non-redundant

premises.

❀ necessary to guarantee fairness

• We add clauses that are entailed by the current ones if this

makes other clauses redundant:

N ∪ {C} ⊢ N ∪ {C ,D} ⊢ N ∪ {D}

if N ∪ {C} |= D and C ∈ Red(N ∪ {D}).

Net effect: C is simplified to D

❀ useful to get easier/smaller clause sets

393

Simplifications

Examples of simplification techniques:

• Deletion of duplicated literals:

N ∪ {C ∨ L ∨ L} ⊢ N ∪ {C ∨ L}

• Subsumption resolution:

N ∪ {D ∨ L, C ∨ Dσ ∨ Lσ} ⊢ N ∪ {D ∨ L, C ∨ Dσ}

394

3.15 Hyperresolution

There are many variants of resolution.

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C .

If we perform an inference with C , then one of the selected

literals is eliminated.

Suppose that the remaining selected literals of C are again

selected in the conclusion. Then we must eliminate the

remaining selected literals one by one by further resolution

steps.

395

Hyperresolution

Hyperresolution replaces these successive steps by a single

inference.

As for Res≻sel, the calculus is parameterized by an atom ordering

≻ and a selection function sel.

396

Hyperresolution

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨ Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . ,An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di ;

(iii) the indicated occurrences of the ¬Ai are exactly the ones

selected by sel, or nothing is selected in the right premise

and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented

by a factorization inference.

397

Hyperresolution

As we have seen, hyperresolution can be simulated by iterated

binary resolution.

However this yields intermediate clauses which HR might not

derive, and many of them might not be extendable into a full

HR inference.

398

3.16 Implementing Resolution: The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences

together with the “given clause” using an appropriate index

data structure.

Compute the conclusions of these inferences; add them to the

set of clauses.

399

Implementing Resolution: The Main Loop

The set of clauses is split into two subsets:

• WO = “Worked-off” (or “active”) clauses:

Have already been selected as “given clause”.

• U = “Usable” (or “passive”) clauses:

Have not yet been selected as “given clause”.

400

Implementing Resolution: The Main Loop

During each iteration of the main loop:

Select a new given clause C from U;

U := U \ {C}.

Find partner clauses Di from WO;

New := Conclusions of inferences from {Di | i ∈ I } ∪ C

where one premise is C ;

U := U ∪ New ;

WO := WO ∪ {C}

⇒ At any time, all inferences between clauses in WO have been

computed.

⇒ The procedure is fair, if no clause remains in U forever.

401

Implementing Resolution: The Main Loop

Additionally:

Try to simplify C using WO.

(Skip the remainder of the iteration, if C can be eliminated.)

Try to simplify (or even eliminate) clauses from WO using C .

402

Implementing Resolution: The Main Loop

Design decision: should one also simplify U using C ?

yes ❀ “Otter loop”:

Advantage: simplifications of U may be useful to derive the

empty clause.

no ❀ “Discount loop”:

Advantage: clauses in U are really passive;

only clauses in WO have to be kept in index data structure.

(Hence: can use index data structure for which retrieval is

faster, even if update is slower and space consumption is

higher.)

403

3.17 Summary: Resolution Theorem Proving

• Resolution is a machine calculus.

• Subtle interleaving of enumerating instances and proving

inconsistency through the use of unification.

• Parameters: atom ordering ≻ and selection function sel.

On the non-ground level, ordering constraints can (only) be

solved approximatively.

• Completeness proof by constructing candidate interpreta-

tions from productive clauses C ∨ A, A ≻ C .

404

Summary: Resolution Theorem Proving

• Local restrictions of inferences via ≻ and sel

⇒ fewer proof variants.

• Global restrictions of the search space via elimination of

redundancy

⇒ computing with “smaller”/“easier” clause sets;

⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings,

equality and more specific algebraic theories (lattices,

abelian groups, rings, fields)

⇒ further specialization of inference systems required.

405

3.18 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem

Proving, Springer-Verlag, New York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York,

1968, revised 1995.

Like resolution, semantic tableaux were developed in the sixties,

independently by Zbigniew Lis and Raymond Smullyan on the

basis of work by Gentzen in the 30s and of Beth in the 50s.

406

Idea

Idea (for the propositional case):

A set {F ∧ G} ∪ N of formulas has a model if and only if

{F ∧ G , F , G} ∪ N has a model.

A set {F ∨ G} ∪ N of formulas has a model if and only if

{F ∨ G , F} ∪ N or {F ∨ G , G} ∪ N has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are

found ⇒ inconsistency detected.

407

A Tableau for {P ∧ ¬(Q ∨ ¬R), ¬Q ∨ ¬R}

1. P ∧ ¬(Q ∨ ¬R)

2. ¬Q ∨ ¬R

3. ¬Q

5. P

6. ¬(Q ∨ ¬R)

7. ¬Q

8. ¬¬R

9. R

4. ¬R

10. P

11. ¬(Q ∨ ¬R)

This tableau is not

“maximal”, however

the first “path” is.

This path is not

“closed”, hence the

set {1, 2} is satisfiable.

(These notions will all

be defined below.)

408

Properties

Properties of tableau calculi:

analytic: inferences correspond closely to the logical meaning

of the symbols.

goal oriented: inferences operate directly on the goal to be

proved.

global: some inferences affect the entire proof state (set of

formulas), as we will see later.

409

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and

expand the tableau at a leaf. We append the conclusions of a

rule (horizontally or vertically) at a leaf, whenever the premise

of the expansion rule matches a formula appearing anywhere on

the path from the root to that leaf.

Negation Elimination

¬¬F
F

¬⊤
⊥

¬⊥
⊤

410

Propositional Expansion Rules

α-Expansion

(for formulas that are essentially conjunctions: append

subformulas α1 and α2 one on top of the other)

α

α1

α2

β-Expansion

(for formulas that are essentially disjunctions:

append β1 and β2 horizontally, i. e., branch into β1 and β2)

β

β1 | β2

411

Classification of Formulas

conjunctive disjunctive

α α1 α2 β β1 β2

F ∧ G F G ¬(F ∧ G) ¬F ¬G

¬(F ∨ G) ¬F ¬G F ∨ G F G

¬(F → G) F ¬G F → G ¬F G

We assume that the binary connective ↔ has been eliminated in

advance.

412

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered

tree and inductively defined as follows: Let {F1, . . . ,Fn} be a set

of formulas.

(i) The tree consisting of a single path

F1

...

Fn

is a tableau for {F1, . . . ,Fn}.

(We do not draw edges if nodes have only one successor.)

413

Tableaux: Notions

(ii) If T is a tableau for {F1, . . . ,Fn} and if T ′ results from T

by applying an expansion rule then T ′ is also a tableau for

{F1, . . . ,Fn}.

Note: We may also consider the limit tableau of a tableau

expansion; this can be an infinite tree.

414

Tableaux: Notions

A path (from the root to a leaf) in a tableau is called closed,

if it either contains ⊥, or else it contains both some formula F

and its negation ¬F . Otherwise the path is called open.

A tableau is called closed, if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.

415

Tableaux: Notions

A path π in a tableau is called maximal, if for each formula F

on π that is neither a literal nor ⊥ nor ⊤ there exists a node in

π at which the expansion rule for F has been applied.

In that case, if F is a formula on π, π also contains:

(i) α1 and α2, if F is a α-formula,

(ii) β1 or β2, if F is a β-formula, and

(iii) F ′, if F is a negation formula, and F ′ the conclusion of the

corresponding elimination rule.

A tableau is called maximal, if each path is closed or maximal.

416

Tableaux: Notions

A tableau is called strict, if for each formula the corresponding

expansion rule has been applied at most once on each path

containing that formula.

A tableau is called clausal, if each of its formulas is a clause.

417

A Sample Proof

One starts out from the negation of the formula to be proved.

1. ¬
(

(P → (Q → R)) → ((P ∨ S) → ((Q → R) ∨ S))
)

2. (P → (Q → R)) [11]

3. ¬((P ∨ S) → ((Q → R) ∨ S)) [12]

4. P ∨ S [31]

5. ¬((Q → R) ∨ S)) [32]

6. ¬(Q → R) [51]

7. ¬S [52]

8. ¬P [21] 9. Q → R [22]

10. P [41] 11. S [42]

There are three paths, each of them closed.

418

Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . ,Fn}.

Theorem 3.51:

{F1, . . . ,Fn} satisfiable ⇔ some path (i. e., the set of its

formulas) in T is satisfiable.

Proof:

(⇐) Trivial, since every path contains in particular F1, . . . ,Fn.

(⇒) By induction over the structure of T . ✷

Corollary 3.52:

T closed ⇒ {F1, . . . ,Fn} unsatisfiable

419

Properties of Propositional Tableaux

Theorem 3.53:

Every strict propositional tableau expansion is finite.

Proof:

New formulas resulting from expansion are either ⊥, ⊤ or

subformulas of the expanded formula (modulo de Morgan’s

law), so the number of formulas that can occur is finite. By

strictness, on each path a formula can be expanded at most

once. Therefore, each path is finite, and a finitely branching tree

with finite paths is finite by Lemma 1.9. ✷

Conclusion: Strict and maximal tableaux can be effectively

constructed.

420

Refutational Completeness

A set H of propositional formulas is called a Hintikka set, if

(1) there is no P ∈ Π with P ∈ H and ¬P ∈ H;

(2) ⊥ /∈ H, ¬⊤ /∈ H;

(3) if ¬¬F ∈ H, then F ∈ H;

(4) if α ∈ H, then α1 ∈ H and α2 ∈ H;

(5) if β ∈ H, then β1 ∈ H or β2 ∈ H.

421

Refutational Completeness

Lemma 3.54 (Hintikka’s Lemma):

Every Hintikka set is satisfiable.

Proof:

Let H be a Hintikka set. Define a valuation A by A(P) = 1 if

P ∈ H and A(P) = 0 otherwise. Then show that A(F) = 1 for

all F ∈ H by induction over the size of formulas. ✷

422

Refutational Completeness

Theorem 3.55:

Let π be a maximal open path in a tableau. Then the set of

formulas on π is satisfiable.

Proof:

We show that set of formulas on π is a Hintikka set: Conditions

(3), (4), (5) follow from the fact that π is maximal; conditions

(1) and (2) follow from the fact that π is open and from

maximality for the second negation elimination rule. ✷

Note: The theorem holds also for infinite trees that are obtained

as the limit of a tableau expansion.

423

Refutational Completeness

Theorem 3.56:

{F1, . . . ,Fn} satisfiable ⇔ there exists no closed strict tableau

for {F1, . . . ,Fn}.

Proof:

(⇒) Clear by Cor. 3.52.

(⇐) Let T be a strict maximal tableau for {F1, . . . ,Fn} and let

π be an open path in T . By the previous theorem, the set of

formulas on π is satisfiable, and hence by Theorem 3.51 the set

{F1, . . . ,Fn}, is satisfiable. ✷

424

Consequences

The validity of a propositional formula F can be established by

constructing a strict maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths w. r. t. atomic

formulas (cf. reasoning in the proof of Theorem 3.55).

• Which of the potentially many strict maximal tableaux one

computes does not matter. In other words, tableau expansion

rules can be applied don’t-care non-deterministically (“proof

confluence”).

• The expansion strategy, however, can have a dramatic

impact on the tableau size.

425

A Variant of the β-Rule

Since F ∨ G |=| F ∨ (G ∧ ¬F), the β expansion rule

β

β1 | β2

can be replaced by the following variant:

β

β1

∣∣∣∣∣
β2

¬β1

426

A Variant of the β-Rule

The variant β-rule can lead to much shorter proofs, but it is not

always beneficial.

In general, it is most helpful if ¬β1 can be at most (iteratively)

α-expanded.

427

3.19 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified

formulas:

• using ground instantiation,

• using free variables.

428

Tableaux with Ground Instantiation

Classification of quantified formulas:

universal existential

γ γ(t) δ δ(t)

∀xF F{x 7→ t} ∃xF F{x 7→ t}

¬∃xF ¬F{x 7→ t} ¬∀xF ¬F{x 7→ t}

429

Tableaux with Ground Instantiation

Idea:

Replace universally quantified formulas by appropriate ground

instances.

γ-expansion

γ

γ(t)
where t is some ground term

δ-expansion

δ

δ(c)
where c is a new Skolem constant

430

Tableaux with Ground Instantiation

Skolemization becomes part of the calculus and needs not

necessarily be applied in a preprocessing step. Of course, one

could do Skolemization beforehand, and then the δ-rule would

not be needed.

Note:

Skolem constants are sufficient:

In a δ-formula ∃x F , ∃ is the outermost quantifier

and x is the only free variable in F .

431

Tableaux with Ground Instantiation

Problems:

Having to guess ground terms is impractical.

Even worse, we may have to guess several ground instances,

as strictness for γ is incomplete. For instance, constructing a

closed tableau for

{∀x (P(x)→ P(f (x))), P(b), ¬P(f (f (b)))}

is impossible without applying γ-expansion twice on one path.

432

Free-Variable Tableaux

An alternative approach:

Delay the instantiation of universally quantified variables.

Replace universally quantified variables by new free variables.

Intuitively, the free variables are universally quantified outside

of the entire tableau.

433

Free-Variable Tableaux

γ-expansion

γ

γ(x)
where x is a new free variable

δ-expansion
δ

δ(f (x1, . . . , xn))

where f is a new Skolem function, and the xi are the free

variables in δ

434

Free-Variable Tableaux

Application of expansion rules has to be supplemented by a

substitution rule:

(iii) If T is a tableau for {F1, . . . ,Fn} and if σ is a substitution,

then Tσ is also a tableau for {F1, . . . ,Fn}.

The substitution rule may, potentially, modify all the formulas

of a tableau. This feature is what makes the tableau method

a global proof method. (Resolution, by comparison, is a local

method.)

435

Free-Variable Tableaux

One can show that it is sufficient to consider substitutions σ for

which there is a path in T containing two literals ¬A and B

such that σ = mgu(A,B).

Such tableaux are called AMGU-Tableaux.

436

Example

1. ¬
(

∃w∀x P(x ,w , f (x ,w)) → ∃w∀x∃y P(x ,w , y)
)

2. ∃w∀x P(x ,w , f (x ,w)) 11 [α]

3. ¬∃w∀x∃y P(x ,w , y) 12 [α]

4. ∀x P(x , c , f (x , c)) 2(c) [δ]

5. ¬∀x∃y P(x , v1, y) 3(v1) [γ]

6. ¬∃y P(b(v1), v1, y) 5(b(v1)) [δ]

7. P(v2, c, f (v2, c)) 4(v2) [γ]

8. ¬P(b(v1), v1, v3) 6(v3) [γ]

7. and 8. are complementary (modulo unification):

{v2
.
= b(v1), c

.
= v1, f (v2, c)

.
= v3}

is solvable with an mgu σ = {v1 7→ c, v2 7→ b(c), v3 7→ f (b(c), c)},

and hence, Tσ is a closed (linear) tableau for the formula in 1.

437

Example

Problem:

Strictness for γ is still incomplete.

For instance, constructing a closed tableau for

{∀x (P(x)→ P(f (x))), P(b), ¬P(f (f (b)))}

is impossible without applying γ-expansion twice on one path.

438

Semantic Tableaux vs. Resolution

• Tableaux: global, goal-oriented, “backward”.

• Resolution: local, “forward”.

• Goal-orientation is a clear advantage if only a small subset

of a large set of formulas is necessary for a proof.

(Note that resolution provers saturate also those parts of

the clause set that are irrelevant for proving the goal.)

439

Semantic Tableaux vs. Resolution

• Resolution can be combined with more powerful redundancy

elimination methods; because of its global nature this is

more difficult for the tableau method.

• Resolution can be refined to work well with equality; for

tableaux this seems to be impossible.

• On the other hand tableau calculi can be easily extended to

other logics; in particular tableau provers are very successful

in modal and description logics.

440

3.20 Other Deductive Systems

• Instantiation-based methods

Resolution-based instance generation

Disconnection calculus

. . .

• Natural deduction

• Sequent calculus/Gentzen calculus

• Hilbert calculus

441

Instantiation-Based Methods for FOL

Idea:

Overlaps of complementary literals produce instantiations

(as in resolution);

However, contrary to resolution, clauses are not recombined.

Instead: treat remaining variables as constant and use efficient

propositional proof methods, such as CDCL.

442

Instantiation-Based Methods for FOL

There are both saturation-based variants, such as partial

instantiation (Hooker et al. 2002) or resolution-based instance

generation (Inst-Gen) (Ganzinger and Korovin 2003),

and tableau-style variants, such as the disconnection calculus

(Billon 1996; Letz and Stenz 2001).

Successful in practice for problems that are “almost proposi-

tional” (i. e., no non-constant function symbols, no equality).

443

Natural Deduction

Idea:

Model the concept of proofs from assumptions as humans

do it.

To prove F → G , assume F and try to derive G .

Initial ideas: Jaśkowski (1934), Gentzen (1934); extended by

Prawitz (1965).

Popular in interactive proof systems.

444

Sequent Calculus

Idea:

Assumptions internalized into the data structure of sequents

F1, . . . ,Fm ⊢ G1, . . . ,Gk

meaning

F1 ∧ · · · ∧ Fm → G1 ∨ · · · ∨ Gk

445

Sequent Calculus

Inferences rules, e. g.:

Γ ⊢ ∆

Γ,F ⊢ ∆
(WL)

Γ,F ⊢ ∆ Σ,G ⊢ Π

Γ,Σ,F ∨ G ⊢ ∆,Π
(∨L)

Γ ⊢ ∆

Γ ⊢ F ,∆
(WR)

Γ ⊢ F ,∆ Σ ⊢ G , Π

Γ,Σ ⊢ F ∧ G ,∆,Π
(∧R)

446

Sequent Calculus

Initial idea: Gentzen 1934.

Perfect symmetry between the handling of assumptions and

their consequences; interesting for proof theory.

Can be used both backwards and forwards.

Allows to simulate both natural deduction and semantic

tableaux.

447

Hilbert Calculus

Idea:

Direct proof method (proves a theorem from axioms, rather

than refuting its negation)

Axiom schemes, e. g.,

F → (G → F)

(F → (G → H))→ ((F → G)→ (F → H))

plus Modus ponens:

F F → G

G

448

Hilbert Calculus

Unsuitable for finding or reading proofs,

but sometimes used for specifying (e. g., modal) logics.

449

Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and

functional programming.

In principle, problems in first-order logic with equality can be

handled by any prover for first-order logic without equality:

450

4.1 Handling Equality Naively

Proposition 4.1:

Let F be a closed first-order formula with equality. Let ∼ /∈ Π be

a new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)

∀x , y (x ∼ y → y ∼ x)

∀x , y , z (x ∼ y ∧ y ∼ z → x ∼ z)

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f (x1, . . . , xn) ∼ f (y1, . . . , yn))

∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P(x1, . . . , xm)→ P(y1, . . . , ym))

for every f /n ∈ Ω and P/m ∈ Π. Let F̃ be the formula that one

obtains from F if every occurrence of ≈ is replaced by ∼. Then

F is satisfiable if and only if Eq(Σ) ∪ {F̃} is satisfiable.

451

Handling Equality Naively

An analogous proposition holds for sets of closed first-order

formulas with equality.

By giving the equality axioms explicitly, first-order problems with

equality can in principle be solved by a standard resolution or

tableaux prover.

But this is unfortunately not efficient

(mainly due to the transitivity and congruence axioms).

452

Handling Equality Naively

Equality is theoretically difficult:

First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve

equational problems that are intuitively easy.

Consequence: to handle equality efficiently,

knowledge must be integrated into the theorem prover.

453

Roadmap

How to proceed:

• This semester: Equations (unit clauses with equality)

Term rewrite systems

Expressing semantic consequence syntactically

Knuth-Bendix-Completion

Entailment for equations

• Next semester: Equational clauses

Combining resolution and KB-completion

→ Superposition

Entailment for clauses with equality

454

4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s →E t iff there exist (l ≈ r) ∈ E , p ∈ pos(s),

and σ : X → TΣ(X),

such that s|p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a

redex (reducible expression).

Contracting a redex means replacing it with the corresponding

instance of the rhs (right-hand side) of the rule.

455

Rewrite Systems

An equation l ≈ r is also called a rewrite rule, if l is not a

variable and var(l) ⊇ var(r).

Notation: l → r .

A set of rewrite rules is called a term rewrite system (TRS).

456

Rewrite Systems

We say that a set of equations E or a TRS R is terminating,

if the rewrite relation →E or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

457

E-Algebras

Let E be a set of universally quantified equations.

A model of E is also called an E -algebra.

If E |= ∀~x(s ≈ t), i. e., ∀~x(s ≈ t) is valid in all E -algebras,

we write this also as s ≈E t.

Goal:

Use the rewrite relation→E to express the semantic consequence

relation syntactically:

s ≈E t if and only if s ↔∗
E t.

458

E-Algebras

Let E be a set of equations over TΣ(X). The following inference

system allows to derive consequences of E :

459

E-Algebras

E ⊢ t ≈ t (Reflexivity)

for every t ∈ TΣ(X)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′1 . . . E ⊢ tn ≈ t′n
E ⊢ f (t1, . . . , tn) ≈ f (t′1, . . . , t

′

n)
(Congruence)

E ⊢ tσ ≈ t′σ (Instance)

if (t ≈ t′) ∈ E and σ : X → TΣ(X)
460

E-Algebras

Lemma 4.2:

The following properties are equivalent:

(i) s ↔∗
E t

(ii) E ⊢ s ≈ t is derivable.

461

E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ⊢ t ≈ t′ } be the

congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f (t1, . . . , tn)] for f /n ∈ Ω.

462

E-Algebras

Lemma 4.3:

fT is well-defined:

If [ti] = [t′i], then [f (t1, . . . , tn)] = [f (t′1, . . . , t
′

n)].

Lemma 4.4:

T = TΣ(X)/E is an E -algebra.

Lemma 4.5:

Let X be a countably infinite set of variables; let s, t ∈ TΣ(Y).

If TΣ(X)/E |= ∀~x(s ≈ t), then E ⊢ s ≈ t is derivable.

463

E-Algebras

Theorem 4.6 (“Birkhoff’s Theorem”):

Let X be a countably infinite set of variables, let E be a set of

(universally quantified) equations. Then the following properties

are equivalent for all s, t ∈ TΣ(X):

(i) s ↔∗
E t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

464

Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗
E is called the

free E -algebra with generating set X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E -algebra B can be

extended to a homomorphism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔
∗
E is called the

initial E -algebra.

465

Universal Algebra

≈E = { (s, t) | E |= s ≈ t }

is called the equational theory of E .

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t }

is called the inductive theory of E .

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}.

Then x + y ≈I
E y + x , but x + y 6≈E y + x .

466

4.3 Confluence

Let (A,→) be an abstract reduction system.

b and c ∈ A are joinable, if there is a a such that b →∗ a←∗ c .

Notation: b ↓ c .

The relation → is called

Church-Rosser, if b ↔∗ c implies b ↓ c .

confluent, if b ←∗ a→∗ c implies b ↓ c .

locally confluent, if b ← a→ c implies b ↓ c .

convergent, if it is confluent and terminating.

467

Confluence

Theorem 4.7:

The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

468

Confluence

Lemma 4.8:

If → is confluent, then every element has at most one

normal form.

Corollary 4.9:

If → is normalizing and confluent, then every element b

has a unique normal form.

Proposition 4.10:

If → is normalizing and confluent, then b ↔∗ c if and only if

b↓ = c↓.

469

Confluence and Local Confluence

Theorem 4.11 (“Newman’s Lemma”):

If a terminating relation → is locally confluent, then it is

confluent.

470

Rewrite Relations

Corollary 4.12:

If E is convergent (i. e., terminating and confluent),

then s ≈E t if and only if s ↔∗
E t if and only if s↓E = t↓E .

Corollary 4.13:

If E is finite and convergent, then ≈E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if

it is locally confluent.

471

Rewrite Relations

Problems:

Show local confluence of E .

Show termination of E .

Transform E into an equivalent set of equations that is

locally confluent and terminating.

472

4.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such

that t1 →
∗
E s ←∗

E t2 ?

If the two rewrite steps happen in different subtrees (disjoint

redexes): yes.

If the two rewrite steps happen below each other (overlap at

or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable

position: needs further investigation.

473

Critical Pairs

Showing local confluence (Sketch):

Question:

Are there rewrite rules l1 → r1 and l2 → r2 such that some

subterm l1|p and l2 have a common instance (l1|p)σ1 = l2σ2 ?

Observation:

If we assume w.l.o.g. that the two rewrite rules do not have

common variables, then only a single substitution is necessary:

(l1|p)σ = l2σ.

Further observation:

The mgu of l1|p and l2 subsumes all unifiers σ of l1|p and l2.

474

Critical Pairs

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R

whose variables have been renamed such that var(l1) ∩ var(l2) = ∅.

(Remember that var(li) ⊇ var(ri).)

Let p ∈ pos(l1) be a position such that l1|p is not a variable and

σ is an mgu of l1|p and l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

475

Critical Pairs

Theorem 4.14 (“Critical Pair Theorem”):

A TRS R is locally confluent if and only if all its critical pairs

are joinable.

Proof:

“only if”: obvious, since joinability of a critical pair is a special

case of local confluence.

476

Critical Pairs

“if”: Suppose s rewrites to t1 and t2 using rewrite rules

li → ri ∈ R at positions pi ∈ pos(s), where i = 1, 2.

Without loss of generality, we can assume that the two rules are

variable disjoint, hence s|pi = liθ and ti = s[riθ]pi .

We distinguish between two cases: Either p1 and p2 are in

disjoint subtrees (p1 ‖ p2), or one is a prefix of the other

(w.l.o.g., p1 ≤ p2).

477

Critical Pairs

Case 1: p1 ‖ p2.

Then s = s[l1θ]p1 [l2θ]p2 ,

and therefore t1 = s[r1θ]p1 [l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1 [r2θ]p2 .

Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using l1 → r1.

478

Critical Pairs

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x .

In other words, the second rewrite step takes place at or below

a variable in the first rule. Suppose that x occurs m times in l1
and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2,

where q′ is a position of x in r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions

p1qq2, where q is a position of x in l1 different from q1, and

by applying l1 → r1 at p1 with the substitution θ′, where

θ′ = θ[x 7→ (xθ)[r2θ]q2].

479

Critical Pairs

Case 2.2: p2 = p1p, where p is a non-variable position of l1.

Then s|p2 = l2θ and s|p2 = (s|p1)|p = (l1θ)|p = (l1|p)θ,

so θ is a unifier of l2 and l1|p.

Let σ be the mgu of l2 and l1|p,

then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ]p1 →
∗
R s[vτ]p1 and

t2 = s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 = s[(l1στ)[r2στ]p]p1 =

s[((l1σ)[r2σ]p)τ]p1 →
∗
R s[vτ]p1 .

This completes the proof of the Critical Pair Theorem. ✷

480

Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)

itself must be considered – except if the overlap is at the root

(i. e., p = ε).

481

Critical Pairs

Corollary 4.15:

A terminating TRS R is confluent if and only if all its critical

pairs are joinable.

Corollary 4.16:

For a finite terminating TRS, confluence is decidable.

482

4.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions

starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

483

Termination

Proposition 4.17:

Both termination problems for TRSs are undecidable in general.

Proof:

Encode Turing machines using rewrite rules and reduce the

(uniform) halting problems for TMs to the termination problems

for TRSs. ✷

Consequence:

Decidable criteria for termination are not complete.

484

Two Different Scenarios

Depending on the application, the TRS whose termination we

want to show can be

(i) fixed and known in advance, or

(ii) evolving (e. g., generated by some saturation process).

Methods for case (ii) are also usable for case (i).

Many methods for case (i) are not usable for case (ii).

We will first consider case (ii);

additional techniques for case (i) will be considered later.

485

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at

finitely many rules l → r ∈ R, rather than at infinitely many

possible replacement steps s →R s′.

486

Reduction Orderings

A binary relation ⊐ over TΣ(X) is called

compatible with Σ-operations,

if s ⊐ s′ implies f (t1, . . . , s , . . . , tn) ⊐ f (t1, . . . , s
′, . . . , tn)

for all f ∈ Ω and s, s′, ti ∈ TΣ(X).

Lemma 4.18:

The relation ⊐ is compatible with Σ-operations, if and only if

s ⊐ s′ implies t[s]p ⊐ t[s′]p

for all s, s′, t ∈ TΣ(X) and p ∈ pos(t).

Note: compatible with Σ-operations = compatible with contexts.

487

Reduction Orderings

A binary relation ⊐ over TΣ(X) is called stable under

substitutions, if s ⊐ s′ implies sσ ⊐ s′σ

for all s, s′ ∈ TΣ(X) and substitutions σ.

488

Reduction Orderings

A binary relation ⊐ is called a rewrite relation, if it is compatible

with Σ-operations and stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X) that is a rewrite relation is

called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

489

Reduction Orderings

Theorem 4.19:

A TRS R terminates if and only if there exists a reduction

ordering ≻ such that l ≻ r for every rule l → r ∈ R.

490

The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra;

let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering ≻A over TΣ(X) by s ≻A t iff

A(β)(s) ≻ A(β)(t) for all assignments β : X → UA.

Is ≻A a reduction ordering?

491

The Interpretation Method

Lemma 4.20:

≻A is stable under substitutions.

492

The Interpretation Method

A function φ : Un
A → UA is called monotone (w. r. t. ≻),

if a ≻ a′ implies φ(b1, . . . , a, . . . , bn) ≻ φ(b1, . . . , a
′, . . . , bn)

for all a, a′, bi ∈ UA.

Lemma 4.21:

If the interpretation fA of every function symbol f is monotone

w. r. t. ≻, then ≻A is compatible with Σ-operations.

Theorem 4.22:

If the interpretation fA of every function symbol f is monotone

w. r. t. ≻, then ≻A is a reduction ordering.

493

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is N or some subset of N.

To every function symbol f /n we associate a

polynomial Pf (X1, . . . ,Xn) ∈ N[X1, . . . ,Xn]

with coefficients in N and indeterminates X1, . . . ,Xn.

Then we define fA(a1, . . . , an) = Pf (a1, . . . , an) for ai ∈ UA.

494

Polynomial Orderings

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA.

(Otherwise, A would not be a Σ-algebra.)

495

Polynomial Orderings

Requirement 2:

fA must be monotone (w. r. t. ≻).

From now on:

UA = { n ∈ N | n ≥ 1 }.

If arity(f) = 0, then Pf is a constant ≥ 1.

If arity(f) = n ≥ 1, then Pf is a polynomial P(X1, . . . ,Xn),

such that every Xi occurs in some monomial m · X j1
1 · · ·X

jk
k

with exponent at least 1 and non-zero coefficient m ∈ N.

⇒ Requirements 1 and 2 are satisfied.

496

Polynomial Orderings

The mapping from function symbols to polynomials can be

extended to terms:

A term t containing the variables x1, . . . , xn

yields a polynomial Pt with indeterminates X1, . . . ,Xn

(where Xi corresponds to β(xi)).

Example:

Ω = {b/0, f /1, g/3}

Pb = 3, Pf (X1) = X 2
1 , Pg (X1,X2,X3) = X1 + X2X3.

Let t = g(f (b), f (x), y), then Pt(X ,Y) = 9 + X 2Y .

497

Polynomial Orderings

If P ,Q are polynomials in N[X1, . . . ,Xn], we write P > Q

if P(a1, . . . , an) > Q(a1, . . . , an) for all a1, . . . , an ∈ UA.

Clearly, s ≻A t iff Ps > Pt iff Ps − Pt > 0.

Question: Can we check Ps − Pt > 0 automatically?

498

Polynomial Orderings

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . ,Xn] with integer

coefficients, is P = 0 for some n-tuple of natural numbers?

Theorem 4.23:

Hilbert’s 10th Problem is undecidable.

Proposition 4.24:

Given a polynomial interpretation and two terms s, t, it is

undecidable whether Ps > Pt .

Proof:

By reduction of Hilbert’s 10th Problem. ✷

499

Polynomial Orderings

One easy case:

If we restrict to linear polynomials, deciding whether

Ps − Pt > 0 is trivial:
∑

kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if

ki ≥ 0 for all i ∈ {1, . . . , n},

and
∑

ki + k > 0

500

Polynomial Orderings

Another possible solution:

Test whether Ps(a1, . . . , an) > Pt(a1, . . . , an)

for all a1, . . . , an ∈ { x ∈ R | x ≥ 1 }.

This is decidable (but hard).

Since UA ⊆ { x ∈ R | x ≥ 1 }, it implies Ps > Pt .

Alternatively:

Use fast overapproximations.

501

Simplification Orderings

The proper subterm ordering ⊲ is defined by s ⊲ t if and only if

s|p = t for some position p 6= ε of s.

502

Simplification Orderings

A rewrite ordering ≻ over TΣ(X) is called simplification ordering,

if it has the subterm property:

s ⊲ t implies s ≻ t for all s, t ∈ TΣ(X).

Example:

Let Remb be the rewrite system

Remb = { f (x1, . . . , xn)→ xi | f /n ∈ Ω, 1 ≤ i ≤ n }.

Define ⊲emb =→
+
Remb

and Demb =→
∗
Remb

(“homeomorphic embedding relation”).

⊲emb is a simplification ordering.

503

Simplification Orderings

Lemma 4.25:

If ≻ is a simplification ordering, then s ⊲emb t implies s ≻ t and

s Demb t implies s � t.

504

Simplification Orderings

Goal:

Show that every simplification ordering is well-founded

(and therefore a reduction ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification

orderings and the definition of embedding have to be modified.

505

Simplification Orderings

Theorem 4.26 (“Kruskal’s Theorem”):

Let Σ be a finite signature, let X be a finite set of variables.

Then for every infinite sequence t1, t2, t3, . . . there are indices

j > i such that tj Demb ti .

(Demb is called a well-partial-ordering (wpo).)

Proof:

See Baader and Nipkow, page 113–115. ✷

506

Simplification Orderings

Theorem 4.27 (Dershowitz):

If Σ is a finite signature, then every simplification ordering ≻ on

TΣ(X) is well-founded (and therefore a reduction ordering).

507

Simplification Orderings

There are reduction orderings that are not simplification

orderings and terminating TRSs that are not contained in any

simplification ordering.

Example:

Let R = {f (f (x))→ f (g(f (x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that→R were contained in a simplification ordering ≻.

Then f (f (x)) →R f (g(f (x))) implies f (f (x)) ≻ f (g(f (x))),

and f (g(f (x))) Demb f (f (x)) implies f (g(f (x))) � f (f (x)),

hence f (f (x)) ≻ f (f (x)).

508

Path Orderings

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial

ordering (“precedence”) on Ω.

The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is

defined by: s ≻lpo t iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i , or

(b) f ≻ g and s ≻lpo tj for all j , or

(c) f = g , s ≻lpo tj for all j , and

(s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

509

Path Orderings

Lemma 4.28:

s ≻lpo t implies var(s) ⊇ var(t).

Theorem 4.29:

≻lpo is a simplification ordering on TΣ(X).

Theorem 4.30:

If the precedence ≻ is total, then the lexicographic path ordering

≻lpo is total on ground terms, i. e., for all s, t ∈ TΣ(∅):

s ≻lpo t ∨ t ≻lpo s ∨ s = t.

510

Path Orderings

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial

ordering (“precedence”) on Ω. The lexicographic path ordering

≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i , or

(b) f ≻ g and s ≻lpo tj for all j , or

(c) f = g , s ≻lpo tj for all j , and

(s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

511

Path Orderings

There are several possibilities to compare subterms in (2)(c):

• compare list of subterms lexicographically left-to-right

(“lexicographic path ordering (lpo)”, Kamin and Lévy)

• compare list of subterms lexicographically right-to-left

(or according to some permutation π)

• compare multiset of subterms using the multiset extension

(“multiset path ordering (mpo)”, Dershowitz)

• to each function symbol f /n ∈ Ω with n ≥ 1 associate a

status ∈ {mul } ∪ { lexπ | π : {1, . . . , n} → {1, . . . , n} }

and compare according to that status

(“recursive path ordering (rpo) with status”)

512

The Knuth-Bendix Ordering

Let Σ = (Ω,Π) be a finite signature,

let ≻ be a strict partial ordering (“precedence”) on Ω,

let w : Ω ∪ X → R+
0 be a weight function,

such that the following admissibility conditions are satisfied:

w(x) = w0 ∈ R+ for all variables x ∈ X ;

w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f /1 ∈ Ω, then f ≻ g for all g/n ∈ Ω

with f 6= g .

513

The Knuth-Bendix Ordering

The weight function w can be extended to terms recursively:

w(f (t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively

w(t) =
∑

x∈var(t)

w(x) ·#(x , t) +
∑

f∈Ω

w(f) ·#(f , t).

where #(a, t) is the number of occurrences of a in t.

514

The Knuth-Bendix Ordering

The Knuth-Bendix ordering ≻kbo on TΣ(X) induced by ≻ and

w is defined by: s ≻kbo t iff

(1) #(x , s) ≥ #(x , t) for all variables x and w(s) > w(t), or

(2) #(x , s) ≥ #(x , t) for all variables x , w(s) = w(t), and

(a) t = x , s = f n(x) for some n ≥ 1, or

(b) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g , or

(c) s = f (s1, . . . , sm), t = f (t1, . . . , tm), and

(s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

515

The Knuth-Bendix Ordering

Theorem 4.31:

The Knuth-Bendix ordering induced by ≻ and w is a

simplification ordering on TΣ(X).

Proof:

Baader and Nipkow, pages 125–129. ✷

516

Remark

If Π 6= ∅, then all the term orderings described in this section

can also be used to compare non-equational atoms by treating

predicate symbols like function symbols.

517

4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an

equivalent convergent set R of rewrite rules.

(If R is finite: decision procedure for E .)

518

Knuth-Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way

that →R ⊆ ≻ (i. e., l ≻ r for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair 〈s, t〉 can be made joinable by adding

s → t or t → s to R.

(Actually, we first add s ≈ t to E and later try to turn it into

a rule that is contained in ≻; this gives us some additional

degree of freedom.)

519

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules

working on a set of equations E and a set of rules R:

E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ . . .

At the beginning, E = E0 is the input set and R = R0 is empty.

At the end, E should be empty; then R is the result.

For each step E ,R ⊢ E ′,R′, the equational theories of E ∪ R

and E ′ ∪ R′ agree: ≈E∪R = ≈E ′∪R′ .

520

Knuth-Bendix Completion: Inference Rules

Notations:

The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

521

Knuth-Bendix Completion: Inference Rules

Orient:

E ∪ {s
.
≈ t}, R

E , R ∪ {s → t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented,

i. e., neither s ≻ t nor t ≻ s.

522

Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented – but we don’t need them

anyway:

Delete:

E ∪ {s ≈ s}, R

E , R

523

Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional

equations:

Deduce:

E , R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R) then s ←R u →R t and hence

R |= s ≈ t.

524

Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary,

but very useful (e. g., to get rid of joinable critical pairs and

to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.
≈ t}, R

E ∪ {u ≈ t}, R
if s →R u.

525

Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

E , R ∪ {s → t}

E , R ∪ {s → u}
if t →R u.

Simplification of the left-hand side may influence orientability

and orientation. Therefore, it yields an equation:

L-Simplify-Rule:

E , R ∪ {s → t}

E ∪ {u ≈ t}, R
if s →R u using a rule l → r ∈ R

such that s ⊐ l (see next slide).

526

Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of s → t may only be simplified

using a rule l → r , if l → r cannot be simplified using s → t,

that is, if s ⊐ l , where the encompassment quasi-ordering ⊐
∼ is

defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.32:

⊐ is a well-founded strict partial ordering.

527

Knuth-Bendix Completion: Inference Rules

Lemma 4.33:

If E ,R ⊢ E ′,R′, then ≈E∪R = ≈E ′∪R′ .

Lemma 4.34:

If E ,R ⊢ E ′,R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

528

Knuth-Bendix Completion: Inference Rules

Note: Like in ordered resolution, simplification should be

preferred to deduction:

• Simplify/delete whenever possible.

• Otherwise, orient an equation, if possible.

• Last resort: compute critical pairs.

529

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations,

different things can happen:

(1) We reach a state where no more inference rules are

applicable and E is not empty.

⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs

between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some

definitions.

530

Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ . . .

with R0 = ∅ is called a run of the completion procedure

with input E0 and ≻.

For a run, E∞ =
⋃

i≥0 Ei and R∞ =
⋃

i≥0 Ri .

The sets of persistent equations or rules of the run are

E∗ =
⋃

i≥0

⋂
j≥i Ej and R∗ =

⋃
i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En,Rn,

then E∗ = En and R∗ = Rn.

531

Knuth-Bendix Completion: Correctness Proof

A run is called fair, if CP(R∗) ⊆ E∞

(i. e., if every critical pair between persisting rules is computed

at some step of the derivation).

Goal:

Show: If a run is fair and E∗ is empty,

then R∗ is convergent and equivalent to E0.

In particular: If a run is fair and E∗ is empty,

then ≈E0
= ≈E∞∪R∞

=↔∗
E∞∪R∞

= ↓R∗
.

532

Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:

E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ . . . is a fair run.

R0 and E∗ are empty.

533

Knuth-Bendix Completion: Correctness Proof

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn)

such that s = s0, t = sn, and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∞
si , or

(2) si−1 →R∞
si , or

(3) si−1 ←R∞
si .

The pairs (si−1, si) are called proof steps.

A proof is called a rewrite proof in R∗,

if there is a k ∈ {0, . . . , n} such that si−1 →R∗
si for 1 ≤ i ≤ k

and si−1 ←R∗
si for k + 1 ≤ i ≤ n

534

Knuth-Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every

proof that is not a rewrite proof in R∗ there is an equivalent

smaller proof.

Consequence: For every proof there is an equivalent rewrite

proof in R∗.

535

Knuth-Bendix Completion: Correctness Proof

We associate a cost c(si−1, si) with every proof step as follows:

(1) If si−1 ↔E∞
si , then c(si−1, si) = ({si−1, si},−,−),

where the first component is a multiset of terms and −

denotes an arbitrary (irrelevant) term.

(2) If si−1 →R∞
si using l → r , then c(si−1, si) = ({si−1}, l , si).

(3) If si−1 ←R∞
si using l → r , then c(si−1, si) = ({si}, l , si−1).

Proof steps are compared using the lexicographic combination

of the multiset extension of the reduction ordering ≻,

the encompassment ordering ⊐, and the reduction ordering ≻.

536

Knuth-Bendix Completion: Correctness Proof

The cost c(P) of a proof P is the multiset of the costs of its

proof steps.

The proof ordering ≻C compares the costs of proofs using the

multiset extension of the proof step ordering.

Lemma 4.35:

≻C is a well-founded ordering.

537

Knuth-Bendix Completion: Correctness Proof

Lemma 4.36:

Let P be a proof in E∞ ∪ R∞. If P is not a rewrite proof in R∗,

then there exists an equivalent proof P ′ in E∞ ∪ R∞ such that

P ≻C P ′.

Proof:

If P is not a rewrite proof in R∗, then it contains

(a) a proof step that is in E∞, or

(b) a proof step that is in R∞ \ R∗, or

(c) a subproof si−1 ←R∗
si →R∗

si+1 (peak).

We show that in all three cases the proof step or subproof can

be replaced by a smaller subproof:

538

Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation s
.
≈ t is in E∞.

This equation must be deleted during the run.

If s
.
≈ t is deleted using Orient:

. . . si−1 ↔E∞
si . . . =⇒ . . . si−1 →R∞

si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∞
si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq:

. . . si−1 ↔E∞
si . . . =⇒ . . . si−1 →R∞

s′ ↔E∞
si . . .

539

Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule s → t is in R∞ \ R∗.

This rule must be deleted during the run.

If s → t is deleted using R-Simplify-Rule:

. . . si−1 →R∞
si . . . =⇒ . . . si−1 →R∞

s′ ←R∞
si . . .

If s → t is deleted using L-Simplify-Rule:

. . . si−1 →R∞
si . . . =⇒ . . . si−1 →R∞

s′ ↔E∞
si . . .

540

Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form si−1 ←R∗
si →R∗

si+1.

If there is no overlap or a non-critical overlap:

. . . si−1 ←R∗
si →R∗

si+1 . . . =⇒ . . . si−1 →
∗
R∗

s′ ←∗
R∗

si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 ←R∗
si →R∗

si+1 . . . =⇒ . . . si−1 ↔E∞
si+1 . . .

In all cases, checking that the replacement subproof is smaller

than the replaced subproof is routine. ✷

541

Knuth-Bendix Completion: Correctness Proof

Theorem 4.37:

Let E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ . . . be a fair run and let R0 and

E∗ be empty. Then

(1) every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

(2) R∗ is equivalent to E0, and

(3) R∗ is convergent.

542

Knuth-Bendix Completion: Correctness Proof

Proof:

(1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∞∪R∞
= ≈E0 .

Since R∗ ⊆ R∞, we get ≈R∗
⊆ ≈E∞∪R∞

.

On the other hand, by (1), ≈E∞∪R∞
⊆ ≈R∗

.

(3) Since →R∗
⊆ ≻, R∗ is terminating.

By (1), R∗ is confluent. ✷

543

4.7 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent

convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use

orientable instances for rewriting.

Note: If ≻ is total on ground terms, then every

ground instance of an equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

544

Unfailing Completion

Let E be a set of equations, let ≻ be a reduction ordering.

We define the relation →E≻ by

s →E≻ t iff there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E ,

p ∈ pos(s), and σ : X → TΣ(X),

such that s|p = uσ and t = s[vσ]p

and uσ ≻ vσ.

Note: →E≻ is terminating by construction.

545

Unfailing Completion

From now on let ≻ be a reduction ordering that is total on

ground terms.

E is called ground convergent w. r. t. ≻, if for all ground terms

s and t with s ↔∗
E t there exists a ground term v such that

s →∗
E≻ v ←∗

E≻ t.

(Analogously for E ∪ R.)

546

Unfailing Completion

As for standard completion, we establish ground convergence by

computing critical pairs.

However, the ordering ≻ is not total on non-ground terms.

Since sθ ≻ tθ implies s 6� t, we approximate ≻ on ground terms

by 6� on arbitrary terms.

547

Unfailing Completion

Let ui
.
≈ vi (i = 1, 2) be equations in E whose variables have

been renamed such that var(u1
.
≈ v1) ∩ var(u2

.
≈ v2) = ∅.

Let p ∈ pos(u1) be a position such that u1|p is not a variable, σ

is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2).

Then 〈v1σ, (u1σ)[v2σ]p〉 is called a semi-critical pair of E with

respect to ≻.

The set of all semi-critical pairs of E is denoted by SP≻(E).

Semi-critical pairs of E ∪ R are defined analogously.

If →R ⊆ ≻, then CP(R) and SP≻(R) agree.

548

Unfailing Completion

Note: In contrast to critical pairs, it may be necessary to consider

overlaps of an equation with itself at the top.

For instance, if E = {f (x) ≈ g(y)}, then 〈g(y), g(y ′)〉 is a

non-trivial semi-critical pair.

549

Unfailing Completion

The Deduce rule takes now the following form:

Deduce:

E , R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ SP≻(E ∪ R).

Moreover, the fairness criterion for runs is replaced by

SP≻(E∗ ∪ R∗) ⊆ E∞

(i. e., if every semi-critical pair between persisting rules or

equations is computed at some step of the derivation).

550

Unfailing Completion

Analogously to Thm. 4.37 we obtain now the following theorem:

Theorem 4.38:

Let E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ . . . be a fair run; let R0 = ∅.

Then

(1) E∗ ∪ R∗ is equivalent to E0, and

(2) E∗ ∪ R∗ is ground convergent.

551

Unfailing Completion

Moreover one can show that, whenever there exists a reduced

convergent R such that ≈E0
= ↓R and →R ∈ ≻, then for every

fair and simplifying run E∗ = ∅ and R∗ = R up to variable

renaming.

Here R is called reduced, if for every l → r ∈ R, both l and r

are irreducible w. r. t. R \ {l → r}.

A run is called simplifying, if R∗ is reduced, and for all equations

u ≈ v ∈ E∗, u and v are incomparable w. r. t. ≻ and irreducible

w. r. t. R∗.

552

Unfailing Completion

Unfailing completion is refutationally complete for equational

theories:

Theorem 4.39:

Let E be a set of equations, let ≻ be a reduction ordering that

is total on ground terms.

For any two terms s and t, let ŝ and t̂ be the terms obtained

from s and t by replacing all variables by Skolem constants.

Let eq/2, true/0 and false/0 be new operator symbols,

such that true and false are smaller than all other terms.

Let E0 = E ∪ {eq(ŝ, t̂) ≈ true, eq(x , x) ≈ false}.

If E0, ∅ ⊢ E1,R1 ⊢ E2,R2 ⊢ . . . be a fair run of unfailing

completion, then s ≈E t iff some Ei ∪ Ri contains true ≈ false.

553

Unfailing Completion

Outlook:

Combine ordered resolution and unfailing completion

to get a calculus for equational clauses:

compute inferences between (strictly) maximal literals

as in ordered resolution,

compute overlaps between maximal sides of equations

as in unfailing completion

⇒ Superposition calculus.

554

Part 5: Termination Revisited

So far: Termination as a subordinate task for entailment

checking.

TRS is generated by some saturation process; ordering must

be chosen before the saturation starts.

Now: Termination as a main task (e. g., for program analysis).

TRS is fixed and known in advance.

555

Termination Revisited

Literature:

Nao Hirokawa and Aart Middeldorp: Dependency Pairs Revisited,

RTA 2004, pp. 249-268 (in particular Sect. 1–4).

Thomas Arts and Jürgen Giesl: Termination of Term Rewriting

Using Dependency Pairs, Theoretical Computer Science,

236:133-178, 2000.

556

5.1 Dependency Pairs

Invented by T. Arts and J. Giesl in 1996,

many refinements since then.

Given: finite TRS R over Σ = (Ω, ∅).

T0 := { t ∈ TΣ(X) | ∃ infinite deriv. t →R t1 →R t2 →R . . . }.

T∞ := { t ∈ T0 | ∀p > ε : t|p /∈ T0 }

= minimal elements of T0 w. r. t. ⊲.

t ∈ T0 ⇒ there exists a t′ ∈ T∞ such that t D t′.

R is non-terminating iff T0 6= ∅ iff T∞ 6= ∅.

557

Dependency Pairs

Assume that T∞ 6= ∅ and consider some non-terminating

derivation starting from t ∈ T∞.

Since all subterms of t allow only finite derivations, at some

point a rule l → r ∈ R must be applied at the root of t (possibly

preceded by rewrite steps below the root):

t = f (t1, . . . , tn)
>ε
−→∗

R f (s1, . . . , sn) = lσ
ε
−→R rσ.

In particular, root(t) = root(l), so we see that the

root symbol of any term in T∞ must be contained in

D := { root(l) | l → r ∈ R }.

D is called the set of defined symbols of R;

C := Ω \ D is called the set of constructor symbols of R.

558

Dependency Pairs

The term rσ is contained in T0, so there exists a v ∈ T∞ such

that rσ D v .

If v occurred in rσ at or below a variable position of r , then

xσ|p = v for some x ∈ var(r) ⊆ var(l), hence si D xσ and there

would be an infinite derivation starting from some ti .

This contradicts t ∈ T∞, though.

Therefore, v = uσ for some non-variable subterm u of r .

As v ∈ T∞, we see that root(u) = root(v) ∈ D.

Moreover, u cannot be a proper subterm of l , since otherwise

again there would be an infinite derivation starting from some ti .

559

Dependency Pairs

Putting everything together, we obtain

t = f (t1, . . . , tn)
>ε
−→∗

R f (s1, . . . , sn) = lσ
ε
−→R rσ D uσ

where r D u, u is not a variable, root(u) ∈ D, l 6⊲ u.

Since uσ ∈ T∞, we can continue this process and obtain an

infinite sequence.

560

Dependency Pairs

If we define

S := { l → u | l → r ∈ R, r D u, u /∈ X , root(u) ∈ D, l 6⊲ u },

we can combine the rewrite step at the root and the subterm

step and obtain

t
>ε
−→∗

R lσ
ε
−→S uσ.

561

Dependency Pairs

To get rid of the superscripts ε and >ε, it turns out to be useful

to introduce a new set of function symbols f ♯ that are only used

for the root symbols of this derivation:

Ω♯ := { f ♯/n | f /n ∈ Ω }.

For a term t = f (t1, . . . , tn) we define t♯ := f ♯(t1, . . . , tn);

for a set of terms T we define T ♯ := { t♯ | t ∈ T }.

The set of dependency pairs of a TRS R is then defined by

DP(R) := { l♯ → u♯ | l → r ∈ R, r D u, u /∈ X , root(u) ∈ D, l 6⊲ u }.

562

Dependency Pairs

For t ∈ T∞, the sequence using the S-rule corresponds now to

t♯ →∗
R l♯σ →DP(R) u

♯σ

where t♯ ∈ T ♯
∞ and u♯σ ∈ T ♯

∞.

(Note that rules in R do not contain symbols from Ω♯, whereas

all roots of terms in DP(R) come from Ω♯, so rules from R can

only be applied below the root and rules from DP(R) can only

be applied at the root.)

563

Dependency Pairs

Since u♯σ is again in T ♯
∞, we can continue the process in the

same way. We obtain: R is non-terminating iff there is an infinite

sequence

t1 →
∗
R t2 →DP(R) t3 →

∗
R t4 →DP(R) . . .

with ti ∈ T ♯
∞ for all i .

Moreover, if there exists such an infinite sequence, then there

exists an infinite sequence in which all DPs that are used are used

infinitely often. (If some DP is used only finitely often, we can

cut off the initial part of the sequence up to the last occurrence

of that DP; the remainder is still an infinite sequence.)

564

Dependency Graphs

Such infinite sequences correspond to “cycles” in the “depen-

dency graph”:

Dependency graph DG(R) of a TRS R:

directed graph

nodes: dependency pairs s → t ∈ DP(R)

edges: from s → t to u → v if there are σ, τ

such that tσ →∗
R uτ .

565

Dependency Graphs

Intuitively, we draw an edge between two dependency pairs,

if these two dependency pairs can be used after another in

an infinite sequence (with some R-steps in between). While

this relation is undecidable in general, there are reasonable

overapproximations:

566

Dependency Graphs

The functions cap and ren are defined by:

cap(x) = x

cap(f (t1, . . . , tn)) =




y if f ∈ D

f (cap(t1), . . . , cap(tn)) if f ∈ C ∪ D♯

ren(x) = y , y fresh

ren(f (t1, . . . , tn)) = f (ren(t1), . . . , ren(tn))

The overapproximated dependency graph contains an edge from

s → t to u → v if ren(cap(t)) and u are unifiable.

567

Dependency Graphs

A cycle in the dependency graph is a non-empty subset

K ⊆ DP(R) such that there is a non-empty path in K from

every DP in K to every DP in K (the two DPs may be identical).

Let K ⊆ DP(R). An infinite rewrite sequence in R ∪ K of the

form

t1 →
∗
R t2 →K t3 →

∗
R t4 →K . . .

with ti ∈ T ♯
∞ is called K -minimal, if all rules in K are used

infinitely often.

R is non-terminating iff there is a cycle K ⊆ DP(R) and a

K -minimal infinite rewrite sequence.

568

5.2 Subterm Criterion

Our task is to show that there are no K -minimal infinite rewrite

sequences.

Suppose that every dependency pair symbol f ♯ in K has positive

arity (i. e., no constants). A simple projection π is a mapping

π : Ω♯ → N such that π(f ♯) = i ∈ {1, . . . , arity(f ♯)}.

We define π(f ♯(t1, . . . , tn)) = tπ(f ♯).

569

Subterm Criterion

Theorem 5.1 (Hirokawa and Middeldorp):

Let K be a cycle in DG(R). If there is a simple projection π for

K such that π(l) D π(r) for every l → r ∈ K and π(l) ⊲ π(r)

for some l → r ∈ K , then there are no K -minimal sequences.

570

Subterm Criterion

Problem: The number of cycles in DG(R) can be exponential.

Better method: Analyze strongly connected components (SCCs).

SCC of a graph: maximal subgraph in which there is a non-empty

path from every node to every node. (The two nodes can be

identical.)a

Important property: Every cycle is contained in some SCC.

aThere are several definitions of SCCs that differ in the treatment of

edges from a node to itself.

571

Subterm Criterion

Idea: Search for a simple projection π such that π(l) D π(r) for

all DPs l → r in the SCC. Delete all DPs in the SCC for which

π(l) ⊲ π(r) (by the previous theorem, there cannot be any

K -minimal infinite rewrite sequences using these DPs). Then

re-compute SCCs for the remaining graph and re-start.

No SCCs left ⇒ no cycles left ⇒ R is terminating.

Example: See Ex. 13 from Hirokawa and Middeldorp.

572

5.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K -minimal infinite rewrite

sequences

t1 →
∗
R u1 →K t2 →

∗
R u2 →K . . .

using well-founded orderings.

We observe that the requirements for the orderings used here

are less restrictive than for reduction orderings:

K -rules are only used at the top, so we need stability under

substitutions, but compatibility with contexts is unnecessary.

While →K -steps should be decreasing, for →R -steps it would

be sufficient to show that they are not increasing.

573

Reduction Pairs and Argument Filterings

This motivates the following definitions:

Rewrite quasi-ordering %:

reflexive and transitive binary relation, stable under

substitutions, compatible with contexts.

Reduction pair (%,≻):

% is a rewrite quasi-ordering.

≻ is a well-founded ordering that is stable under substitutions.

% and ≻ are compatible: % ◦ ≻ ⊆ ≻ or ≻ ◦% ⊆ ≻.

(In practice, ≻ is almost always the strict part of the

quasi-ordering %.)

574

Reduction Pairs and Argument Filterings

Clearly, for any reduction ordering ≻, (�,≻) is a reduction pair.

More general reduction pairs can be obtained using argument

filterings:

Argument filtering π:

π : Ω ∪ Ω♯ → N ∪ list of N

π(f) =





i ∈ {1, . . . , arity(f)}, or

[i1, . . . , ik], where 1 ≤ i1 < · · · < ik ≤ arity(f),

0 ≤ k ≤ arity(f)

575

Reduction Pairs and Argument Filterings

Extension to terms:

π(x) = x

π(f (t1, . . . , tn)) = π(ti), if π(f) = i

π(f (t1, . . . , tn)) = f ′(π(ti1), . . . ,π(tik)), if π(f) = [i1, . . . , ik],

where f ′/k is a new function symbol.

576

Reduction Pairs and Argument Filterings

Let ≻ be a reduction ordering, let π be an argument filtering.

Define s ≻π t iff π(s) ≻ π(t) and s %π t iff π(s) � π(t).

Lemma 5.2:

(%π,≻π) is a reduction pair.

577

Reduction Pairs and Argument Filterings

For interpretation-based orderings (such as polynomial orderings)

the idea of “cutting out” certain subterms can be included

directly in the definition of the ordering:

578

Reduction Pairs and Argument Filterings

Reduction pairs by interpretation:

Let A be a Σ-algebra;

let ≻ be a well-founded strict partial ordering on its universe.

Assume that all interpretations fA of function symbols are

weakly monotone, i. e., ai � bi implies f (a1, . . . , , an) �

f (b1, . . . , bn) for all ai , bi ∈ UA.

Define s %A t iff A(β)(s) � A(β)(t) for all assignments

β : X → UA; define s ≻A t iff A(β)(s) ≻ A(β)(t) for all

assignments β : X → UA.

Then (%A,≻A) is a reduction pair.

579

Reduction Pairs and Argument Filterings

For polynomial orderings, this definition permits interpretations

of function symbols where some variable does not occur at all

(e. g., Pf (X1,X2) = 2X1 + 1 for a binary function symbol).

It is no longer required that every variable must occur with some

positive coefficient.

580

Reduction Pairs and Argument Filterings

Theorem 5.3 (Arts and Giesl):

Let K be a cycle in the dependency graph of the TRS R. If there

is a reduction pair (%,≻) such that

• l % r for all l → r ∈ R,

• l % r or l ≻ r for all l → r ∈ K ,

• l ≻ r for at least one l → r ∈ K ,

then there is no K -minimal infinite sequence.

581

Reduction Pairs and Argument Filterings

The idea can be extended to SCCs in the same way as for the

subterm criterion:

Search for a reduction pair (%,≻) such that l % r for all

l → r ∈ R and l % r or l ≻ r for all DPs l → r in the SCC.

Delete all DPs in the SCC for which l ≻ r .

Then re-compute SCCs for the remaining graph and re-start.

582

Reduction Pairs and Argument Filterings

Example: Consider the following TRS R from [Arts and Giesl]:

minus(x , 0)→ x (1)

minus(s(x), s(y))→ minus(x , y) (2)

quot(0, s(y))→ 0 (3)

quot(s(x), s(y))→ s(quot(minus(x , y), s(y))) (4)

(R is not contained in any simplification ordering, since the

left-hand side of rule (4) is embedded in the right-hand side

after instantiating y by s(x).)

583

Reduction Pairs and Argument Filterings

R has three dependency pairs:

minus♯(s(x), s(y))→ minus♯(x , y) (5)

quot♯(s(x), s(y))→ quot♯(minus(x , y), s(y)) (6)

quot♯(s(x), s(y))→ minus♯(x , y) (7)

The dependency graph of R is

(5) (7) (6)

584

Reduction Pairs and Argument Filterings

There are exactly two SCCs (and also two cycles).

The cycle at (5) can be handled using the subterm criterion with

π(minus♯) = 1.

For the cycle at (6) we can use an argument filtering π that maps

minus to 1 and leaves all other function symbols unchanged

(that is, π(g) = [1, . . . , arity(g)] for every g different from

minus.) After applying the argument filtering, we compare left

and right-hand sides using an LPO with precedence quot > s

(the precedence of other symbols is irrelevant).

We obtain l ≻ r for (6) and l % r for (1), (2), (3), (4), so the

previous theorem can be applied.

585

DP Processors

The methods described so far are particular cases of DP

processors:

A DP processor

(G ,R)

(G1,R1), . . . , (Gn,Rn)

takes a graph G and a TRS R as input and produces a set of

pairs consisting of a graph and a TRS.

It is sound and complete if there are K -minimal infinite sequences

for G and R if and only if there are K -minimal infinite sequences

for at least one of the pairs (Gi ,Ri).

586

DP Processors

Examples:

(G ,R)

(SCC 1,R), . . . , (SCC n,R)

where SCC 1, . . . ,SCC n are the strongly conn. components of G .

(G ,R)

(G \ N,R)

if there is an SCC of G and a simple projection π such that

π(l) D π(r) for all DPs l → r in the SCC, and N is the set of

DPs of the SCC for which π(l) ⊲ π(r).

(and analogously for reduction pairs)

587

Innermost Termination

The dependency method can also be used for proving termination

of innermost rewriting: s
i
−→R t if s →R t at position p and no

rule of R can be applied at a position strictly below p.

(DP processors for innermost termination are more powerful than

for ordinary termination, and for program analysis, innermost

termination is usually sufficient.)

588

Part 6: Implementing Saturation Procedures

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually,

not that they will be found quickly.

Even though orderings and selection functions reduce the

number of possible inferences, the search space problem is

enormous.

First-order provers “look for a needle in a haystack”:

It may be necessary to make some millions of inferences to

find a proof that is only a few dozens of steps long.

589

Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can

be used as partners in an inference.

• We must simplify/eliminate as many formulas as possible.

• We must use efficient techniques to check whether a formula

can be simplified/eliminated.

590

Coping with Large Sets of Formulas

Note:

Often there are several competing implementation techniques.

Design decisions are not independent of each other.

Design decisions are not independent of the particular class of

problems we want to solve.

(FOL without equality/FOL with equality/unit equations,

size of the signature,

special algebraic properties like AC, etc.)

591

6.1 Term Representations

The obvious data structure for terms: Trees

f (g(x1), f (g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

592

Term Representations

An alternative: Flatterms

f (g(x1), f (g(x1), x2))

f g x1 f g x1 x2

need more memory;

but: better suited for preorder term traversal

and easier memory management.

593

6.2 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

594

Index Data Structures

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the

requirements are different (insertion and deletion are much less

important).

595

Index Data Structures

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

596

Index Data Structures

Perfect filtering:

The indexing technique returns exactly those terms satisfying

the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all

terms satisfying the query.

Retrieval operations must be followed by an additional check,

but the index can often be implemented more efficiently.

Frequently: All occurrences of variables are treated as different

variables.

597

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f (g(∗, b), ∗): f .1.g .1.∗

f .1.g .2.b

f .2.∗

Each leaf of the trie contains the set of (pointers to) all terms

that contain the respective path.

598

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

599

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1}1 2

d

{1}

∗

{1}

600

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

601

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1, 3}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

602

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1, 3}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4}

g

1 2

c

{4}

b

{4}

603

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1, 3}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4, 5}

g

1 2

c

{4}

b

{4, 5}

∗

{5}

604

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1, 3, 6}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4, 5}

g

1 2

c

{4}

b

{4, 5}

∗

{5}

∗

{6}

605

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1, 3, 6}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4, 5}

g

1 2

c

{4, 7}

b

{4, 5, 7}

∗

{5}

∗

{6, 7}

606

Path Indexing

Example: Path index for {f (g(d , ∗), c), g(b, h(c)), f (g(∗, c), c),

f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

1 2

g c

{1, 3, 6}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4, 5}

g

1 2

c

{4, 7}

b

{4, 5, 7}

∗

{5}

∗

{6, 7}

607

Path Indexing

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances,

also usable for finding generalizations.

Disadvantages:

Retrieval requires combining intermediate results for all paths.

608

Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f (g(∗, b), ∗): f .g .∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is

represented by the path.

609

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

610

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

611

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

612

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

613

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

614

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

∗

b

{5}

615

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

∗

b

{5}

∗

c

{6}

616

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

∗

b

{5}

∗

c

{6}

g

c

b

{7}

617

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), g(b, h(c)),

f (g(∗, c), c), f (b, g(c , b)), f (b, g(∗, b)), f (∗, c), f (∗, g(c , b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

∗

b

{5}

∗

c

{6}

g

c

b

{7}

618

Discrimination Trees

Advantages:

Each leaf yields one term, hence retrieval does not require

intersections of intermediate results for all paths.

Good for finding generalizations,

not so good for finding instances.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed

up the search for instances or unifiable terms.

619

Feature Vector Indexing

Goal:

C ′ is subsumed by C if C ′ = Cσ ∨ D.

Find all clauses C ′ for a given C or vice versa.

620

Feature Vector Indexing

If C ′ is subsumed by C , then

• C ′ contains at least as many literals as C .

• C ′ contains at least as many positive literals as C .

• C ′ contains at least as many negative literals as C .

• C ′ contains at least as many function symbols as C .

• C ′ contains at least as many occurrences of f as C .

• C ′ contains at least as many occurrences of f

in negative literals as C .

• the deepest occurrence of f in C ′ is at least as deep as in C .

• . . .
621

Feature Vector Indexing

Idea:

Select a list of these “features”.

Compute the “feature vector” (a list of natural numbers)

for each clause and store it in a trie.

When searching for a subsuming clause:

Traverse the trie, check all clauses for which all features are

smaller or equal. (Stop if a subsuming clause is found.)

When searching for subsumed clauses:

Traverse the trie, check all clauses for which all features are

larger or equal.

622

Feature Vector Indexing

Advantages:

Works on the clause level, rather than on the term level.

Specialized for subsumption testing.

Disadvantages:

Needs to be complemented by other index structure

for other operations.

623

Literature

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov:

Term Indexing, Ch. 26 in Robinson and Voronkov (eds.),

Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

Stephan Schulz:

Simple and Efficient Clause Subsumption with Feature Vector

Indexing, in Bonacina and Stickel (eds.), Automated Reasoning

and Mathematics, LNCS 7788, Springer, 2013.

Christoph Weidenbach:

Combining Superposition, Sorts and Splitting, Ch. 27 in

Robinson and Voronkov (eds.), Handbook of Automated

Reasoning, Vol. II, Elsevier, 2001.

624

Part 7: Outlook

Further topics in automated reasoning.

625

7.1 Satisfiability Modulo Theories (SMT)

CDCL checks satisfiability of propositional formulas.

CDCL can also be used for ground first-order formulas without

equality:

Ground first-order atoms are treated like propositional

variables.

Truth values of P(a),Q(a),Q(f (a)) are independent.

626

Satisfiability Modulo Theories (SMT)

For ground formulas with equality, independence is lost:

If b ≈ c is true, then f (b) ≈ f (c) must also be true.

Similarly for other theories, e. g. linear arithmetic:

b > 5 implies b > 3.

We can still use CDCL, but we must combine it with a

decision procedure for the theory part T :

M |=T C : M and the theory axioms T entail C .

627

Satisfiability Modulo Theories (SMT)

New CDCL rules:

T -Propagate:

M ‖ N ⇒CDCL(T) M L ‖ N

if M |=T L

where L is undefined in M and L or L occurs in N.

T -Learn:

M ‖ N ⇒CDCL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

628

Satisfiability Modulo Theories (SMT)

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒CDCL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C

and there is some “backjump clause” C ′ ∨ L′ such that

N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′,

L′ is undefined under M , and

L′ or L′ occurs in N or in M Ld M ′.

629

7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:

read/2 becomes read : array × nat → data.

write/3 becomes write : array × nat × data→ array .

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

630

Sorted Logics

Algebras:

Instead of universe UA, one set per sort: arrayA, natA.

Interpretations of function and predicate symbols correspond

to their declarations:

readA : arrayA × natA → dataA

631

Sorted Logics

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

More difficult:

Subsorts

Overloading

632

7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint

(positive) disjunctions:

N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

if var(C1) ∩ var(C2) = ∅.

Split clauses are smaller and more likely to be usable for

simplification.

Splitting tree is explored using intelligent backtracking.

633

Splitting

Improvement:

Use a CDCL solver to manage the selection of split clauses.

⇒ AVATAR.

634

7.4 Integrating Theories into Resolution

Certain kinds of axioms are

important in practice,

but difficult for theorem provers.

Most important case: equality

but also: orderings, (associativity and) commutativity, . . .

635

Integrating Theories into Resolution

Idea: Combine ordered resolution and critical pair computation.

Superposition (ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Superposition (non-ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and u is not a variable.

636

Integrating Theories into Resolution

Advantages:

No variable overlaps (as in KB-completion).

Stronger ordering restrictions:

Only overlaps of (strictly) maximal sides of (strictly) maximal

literals are required.

Stronger redundancy criteria.

637

Integrating Theories into Resolution

Similarly for orderings:

Ordered chaining:

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

638

Integrating Theories into Resolution

Integrating other theories:

Black box:

Use external decision procedure.

Easy, but works only under certain restrictions.

White box:

Integrate using specialized inference rules and theory

unification.

Hard work.

Often: integrating more theory axioms is better.

639

7.5 Higher-Order Logics

What’s new if we switch to higher-order logics?

Applied variables: x b.

Partially applied functions: times z .

Lambda-expressions with αβη-conversion:

(λx . f (x b) c) (λy . d) = f d c .

Embedded booleans: (λx . if x then b else c) (p ∨ q)

640

Higher-Order Logics

Problems:

Orderings cannot have all desired compatibility properties.

⇒ additional inferences.

Most general unifiers need not exist anymore.

⇒ interleave enumeration of unifiers and computation

of inferences.

CNF transformation by preprocessing is no longer sufficient.

⇒ need calculus with embedded clausification.

641

The End

642

643

Advertisement

Next semester:

Automated Reasoning II

Lecture + Tutorials: Mon 14–16, Tue 14–16.

644

