
5 Termination Revisited

So far: Termination as a subordinate task for entailment checking.

TRS is generated by some saturation process; ordering must be chosen before the
saturation starts.

Now: Termination as a main task (e. g., for program analysis).

TRS is fixed and known in advance.

Literature:

Nao Hirokawa and Aart Middeldorp: Dependency Pairs Revisited, RTA 2004, pp. 249-
268 (in particular Sect. 1–4).

Thomas Arts and Jürgen Giesl: Termination of Term Rewriting Using Dependency Pairs,
Theoretical Computer Science, 236:133-178, 2000.

5.1 Dependency Pairs

Invented by T. Arts and J. Giesl in 1996, many refinements since then.

Given: finite TRS R over Σ = (Ω, ∅).

T0 := { t ∈ TΣ(X) | there is an infinite derivation t →R t1 →R t2 →R . . . }.

T∞ := { t ∈ T0 | ∀p > ε : t|p /∈ T0 } = minimal elements of T0 w. r. t. ⊲.

t ∈ T0 ⇒ there exists a t′ ∈ T∞ such that t D t′.

R is non-terminating iff T0 6= ∅ iff T∞ 6= ∅.

Assume that T∞ 6= ∅ and consider some non-terminating derivation starting from t ∈ T∞.
Since all subterms of t allow only finite derivations, at some point a rule l → r ∈ R must
be applied at the root of t (possibly preceded by rewrite steps below the root):

t = f(t1, . . . , tn)
>ε
−→∗

R f(s1, . . . , sn) = lσ
ε

−→R rσ.

In particular, root(t) = root(l), so we see that the root symbol of any term in T∞ must
be contained in D := { root(l) | l → r ∈ R }. D is called the set of defined symbols of R;
C := Ω \D is called the set of constructor symbols of R.

The term rσ is contained in T0, so there exists a v ∈ T∞ such that rσ D v.

If v occurred in rσ at or below a variable position of r, then xσ|p = v for some x ∈
var(r) ⊆ var(l), hence si D xσ and there would be an infinite derivation starting from
some ti. This contradicts t ∈ T∞, though.

132

Therefore, v = uσ for some non-variable subterm u of r. As v ∈ T∞, we see that
root(u) = root(v) ∈ D. Moreover, u cannot be a proper subterm of l, since otherwise
again there would be an infinite derivation starting from some ti.

Putting everything together, we obtain

t = f(t1, . . . , tn)
>ε
−→∗

R f(s1, . . . , sn) = lσ
ε

−→R rσ D uσ

where r D u, u is not a variable, root(u) ∈ D, l 6⊲ u.

Since uσ ∈ T∞, we can continue this process and obtain an infinite sequence.

If we define S := { l → u | l → r ∈ R, r D u, u /∈ X, root(u) ∈ D, l 6⊲ u }, we can
combine the rewrite step at the root and the subterm step and obtain

t
>ε
−→∗

R lσ
ε

−→S uσ.

To get rid of the superscripts ε and >ε, it turns out to be useful to introduce a new set
of function symbols f ♯ that are only used for the root symbols of this derivation:

Ω♯ := { f ♯/n | f/n ∈ Ω }.

For a term t = f(t1, . . . , tn) we define t♯ := f ♯(t1, . . . , tn); for a set of terms T we define
T ♯ := { t♯ | t ∈ T }.

The set of dependency pairs of a TRS R is then defined by

DP(R) := { l♯ → u♯ | l → r ∈ R, r D u, u /∈ X, root(u) ∈ D, l 6⊲ u }.

For t ∈ T∞, the sequence using the S-rule corresponds now to

t♯ →∗

R l♯σ →DP(R) u
♯σ

where t♯ ∈ T ♯
∞ and u♯σ ∈ T ♯

∞.

(Note that rules in R do not contain symbols from Ω♯, whereas all roots of terms in
DP(R) come from Ω♯, so rules from R can only be applied below the root and rules from
DP(R) can only be applied at the root.)

Since u♯σ is again in T ♯
∞, we can continue the process in the same way. We obtain: R is

non-terminating iff there is an infinite sequence

t1 →
∗

R t2 →DP(R) t3 →
∗

R t4 →DP(R) . . .

with ti ∈ T ♯
∞ for all i.

Moreover, if there exists such an infinite sequence, then there exists an infinite sequence
in which all DPs that are used are used infinitely often. (If some DP is used only finitely
often, we can cut off the initial part of the sequence up to the last occurrence of that
DP; the remainder is still an infinite sequence.)

133

Dependency Graphs

Such infinite sequences correspond to “cycles” in the “dependency graph”:

Dependency graph DG(R) of a TRS R:

directed graph

nodes: dependency pairs s → t ∈ DP(R)

edges: from s → t to u → v if there are σ, τ such that tσ →∗
R uτ .

Intuitively, we draw an edge between two dependency pairs, if these two dependency
pairs can be used after another in an infinite sequence (with some R-steps in between).
While this relation is undecidable in general, there are reasonable overapproximations:

The functions cap and ren are defined by:

cap(x) = x

cap(f(t1, . . . , tn)) =

{

y if f ∈ D

f(cap(t1), . . . , cap(tn)) if f ∈ C ∪D♯

ren(x) = y, y fresh
ren(f(t1, . . . , tn)) = f(ren(t1), . . . , ren(tn))

The overapproximated dependency graph contains an edge from s → t to u → v if
ren(cap(t)) and u are unifiable.

A cycle in the dependency graph is a non-empty subset K ⊆ DP(R) such that there is
a non-empty path in K from every DP in K to every DP in K (the two DPs may be
identical).

Let K ⊆ DP(R). An infinite rewrite sequence in R ∪K of the form

t1 →
∗

R t2 →K t3 →
∗

R t4 →K . . .

with ti ∈ T ♯
∞ is called K-minimal, if all rules in K are used infinitely often.

R is non-terminating iff there is a cycle K ⊆ DP(R) and a K-minimal infinite rewrite
sequence.

5.2 Subterm Criterion

Our task is to show that there are no K-minimal infinite rewrite sequences.

Suppose that every dependency pair symbol f ♯ in K has positive arity (i. e., no con-
stants). A simple projection π is a mapping π : Ω♯ → N such that π(f ♯) = i ∈
{1, . . . , arity(f ♯)}.

We define π(f ♯(t1, . . . , tn)) = tπ(f♯).

134

Theorem 5.1 (Hirokawa and Middeldorp) Let K be a cycle in DG(R). If there is

a simple projection π for K such that π(l) D π(r) for every l → r ∈ K and π(l) ⊲ π(r)
for some l → r ∈ K, then there are no K-minimal sequences.

Proof. Suppose that

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

is a K-minimal infinite rewrite sequence. Apply π to every ti and ui:

Case 1: ui →K ti+1. There is an l → r ∈ K such that ui = lσ, ti+1 = rσ. Then
π(ui) = π(l)σ and π(ti+1) = π(r)σ. By assumption, π(l) D π(r). If π(l) = π(r), then
π(ui) = π(ti+1). If π(l) ⊲ π(r), then π(ui) = π(l)σ ⊲ π(r)σ = π(ti+1). In particular,
π(ui) ⊲ π(ti+1) for infinitely many i (since every DP is used infinitely often).

Case 2: ti →
∗
R ui. Then π(ti) →

∗
R π(ui).

By applying π to every term in the K-minimal infinite rewrite sequence, we obtain an
infinite (→R ∪⊲)-sequence containing infinitely many ⊲-steps. Since ⊲ is well-founded,
there must also exist infinitely many →R-steps (otherwise the infinite sequence would
have an infinite tail consisting only of ⊲-steps, contradicting well-foundedness.)

Now note that ⊲ ◦ →R ⊆ →R ◦ ⊲. Therefore we can commute ⊲-steps and →R-steps
and move all →R-steps to the front. We obtain an infinite →R-sequence that starts with
π(t1). However t1 ⊲ π(t1) and t1 ∈ T ♯

∞, so there cannot be an infinite →R-sequence
starting from π(t1). ✷

Problem: The number of cycles in DG(R) can be exponential.

Better method: Analyze strongly connected components (SCCs).

SCC of a graph: maximal subgraph in which there is a non-empty path from every node
to every node. (The two nodes can be identical.)3

Important property: Every cycle is contained in some SCC.

Idea: Search for a simple projection π such that π(l) D π(r) for all DPs l → r in the
SCC. Delete all DPs in the SCC for which π(l) ⊲ π(r) (by the previous theorem, there
cannot be any K-minimal infinite rewrite sequences using these DPs). Then re-compute
SCCs for the remaining graph and re-start.

No SCCs left ⇒ no cycles left ⇒ R is terminating.

Example: See Ex. 13 from Hirokawa and Middeldorp.

3There are several definitions of SCCs that differ in the treatment of edges from a node to itself.

135

5.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite sequences

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

using well-founded orderings.

We observe that the requirements for the orderings used here are less restrictive than
for reduction orderings:

K-rules are only used at the top, so we need stability under substitutions, but com-
patibility with contexts is unnecessary.

While →K-steps should be decreasing, for →R-steps it would be sufficient to show
that they are not increasing.

This motivates the following definitions:

Rewrite quasi-ordering %:

reflexive and transitive binary relation, stable under substitutions, compatible with
contexts.

Reduction pair (%,≻):

% is a rewrite quasi-ordering.

≻ is a well-founded ordering that is stable under substitutions.

% and ≻ are compatible: % ◦ ≻ ⊆ ≻ or ≻ ◦% ⊆ ≻.

(In practice, ≻ is almost always the strict part of the quasi-ordering %.)

Clearly, for any reduction ordering ≻, (�,≻) is a reduction pair. More general reduction
pairs can be obtained using argument filterings:

Argument filtering π:

π : Ω ∪ Ω♯ → N ∪ list of N

π(f) =

{

i ∈ {1, . . . , arity(f)}, or

[i1, . . . , ik], where 1 ≤ i1 < · · · < ik ≤ arity(f), 0 ≤ k ≤ arity(f)

Extension to terms:

π(x) = x

π(f(t1, . . . , tn)) = π(ti), if π(f) = i

π(f(t1, . . . , tn)) = f ′(π(ti1), . . . , π(tik)), if π(f) = [i1, . . . , ik],
where f ′/k is a new function symbol.

136

Let≻ be a reduction ordering, let π be an argument filtering. Define s ≻π t iff π(s) ≻ π(t)
and s %π t iff π(s) � π(t).

Lemma 5.2 (%π,≻π) is a reduction pair.

Proof. Follows from the following two properties:

π(sσ) = π(s)σπ, where σπ is the substitution that maps x to π(σ(x)).

π(s[u]p) =

{

π(s), if p does not correspond to any position in π(s)

π(s)[π(u)]q, if p corresponds to q in π(s)
✷

For interpretation-based orderings (such as polynomial orderings) the idea of “cutting
out” certain subterms can be included directly in the definition of the ordering:

Reduction pairs by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Assume that all interpretations fA of function symbols are weakly monotone, i. e.,
ai � bi implies f(a1, . . . , , an) � f(b1, . . . , bn) for all ai, bi ∈ UA.

Define s %A t iff A(β)(s) � A(β)(t) for all assignments β : X → UA; define s ≻A t iff
A(β)(s) ≻ A(β)(t) for all assignments β : X → UA.

Then (%A,≻A) is a reduction pair.

For polynomial orderings, this definition permits interpretations of function symbols
where some variable does not occur at all (e. g., Pf (X1, X2) = 2X1 + 1 for a binary

function symbol). It is no longer required that every variable must occur with some
positive coefficient.

Theorem 5.3 (Arts and Giesl) Let K be a cycle in the dependency graph of the

TRS R. If there is a reduction pair (%,≻) such that

• l % r for all l → r ∈ R,

• l % r or l ≻ r for all l → r ∈ K,

• l ≻ r for at least one l → r ∈ K,

then there is no K-minimal infinite sequence.

137

Proof. Assume that

t1 →
∗

R u1 →K t2 →
∗

R u2 →K . . .

is a K-minimal infinite rewrite sequence.

As l % r for all l → r ∈ R, we obtain ti % ui by stability under substitutions, compati-
bility with contexts, reflexivity and transitivity.

As l % r or l ≻ r for all l → r ∈ K, we obtain ui (% ∪ ≻) ti+1 by stability under
substitutions.

So we get an infinite (% ∪ ≻)-sequence containing infinitely many ≻-steps (since every
DP in K, in particular the one for which l ≻ r holds, is used infinitely often).

By compatibility of % and ≻, we can transform this into an infinite ≻-sequence, contra-
dicting well-foundedness. ✷

The idea can be extended to SCCs in the same way as for the subterm criterion:

Search for a reduction pair (%,≻) such that l % r for all l → r ∈ R and l % r or l ≻ r for
all DPs l → r in the SCC. Delete all DPs in the SCC for which l ≻ r. Then re-compute
SCCs for the remaining graph and re-start.

Example: Consider the following TRS R from [Arts and Giesl]:

minus(x, 0) → x (1)

minus(s(x), s(y)) → minus(x, y) (2)

quot(0, s(y)) → 0 (3)

quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) (4)

(R is not contained in any simplification ordering, since the left-hand side of rule (4) is
embedded in the right-hand side after instantiating y by s(x).)

R has three dependency pairs:

minus♯(s(x), s(y)) → minus♯(x, y) (5)

quot ♯(s(x), s(y)) → quot ♯(minus(x, y), s(y)) (6)

quot ♯(s(x), s(y)) → minus♯(x, y) (7)

The dependency graph of R is

(5) (7) (6)

138

There are exactly two SCCs (and also two cycles). The cycle at (5) can be handled using
the subterm criterion with π(minus♯) = 1. For the cycle at (6) we can use an argument
filtering π that maps minus to 1 and leaves all other function symbols unchanged (that
is, π(g) = [1, . . . , arity(g)] for every g different fromminus .) After applying the argument
filtering, we compare left and right-hand sides using an LPO with precedence quot > s
(the precedence of other symbols is irrelevant). We obtain l ≻ r for (6) and l % r for
(1), (2), (3), (4), so the previous theorem can be applied.

DP Processors

The methods described so far are particular cases of DP processors:

A DP processor

(G,R)

(G1, R1), . . . , (Gn, Rn)

takes a graph G and a TRS R as input and produces a set of pairs consisting of a graph
and a TRS.

It is sound and complete if there are K-minimal infinite sequences for G and R if and
only if there are K-minimal infinite sequences for at least one of the pairs (Gi, Ri).

Examples:

(G,R)

(SCC 1, R), . . . , (SCC n, R)

where SCC 1, . . . , SCC n are the strongly connected components of G.

(G,R)

(G \N,R)

if there is an SCC of G and a simple projection π such that π(l) D π(r) for all DPs
l → r in the SCC, and N is the set of DPs of the SCC for which π(l) ⊲ π(r).

(and analogously for reduction pairs)

Innermost Termination

The dependency method can also be used for proving termination of innermost rewriting:

s
i

−→R t if s →R t at position p and no rule of R can be applied at a position strictly
below p. (DP processors for innermost termination are more powerful than for ordinary
termination, and for program analysis, innermost termination is usually sufficient.)

139

