4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.

(If R is finite: decision procedure for E.)

Knuth-Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering \succ and construct R in such a way that $\rightarrow_R \subseteq \succ$ (i. e., $l \succ r$ for every $l \rightarrow r \in R$).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair $\langle s, t \rangle$ can be made joinable by adding $s \to t$ or $t \to s$ to R.

(Actually, we first add $s \approx t$ to E and later try to turn it into a rule that is contained in \succ ; this gives us some additional degree of freedom.)

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R: $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$

At the beginning, $E = E_0$ is the input set and $R = R_0$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E', R'$, the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Notations:

The formula $s \approx t$ denotes either $s \approx t$ or $t \approx s$.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

$$\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \rightarrow t\}} \quad \text{if } s \succ t$$

Note: There are equations $s \approx t$ that cannot be oriented, i.e., neither $s \succ t$ nor $t \succ s$.

Trivial equations cannot be oriented – but we don't need them anyway:

Delete:

$$\frac{E \cup \{s \approx s\}, \quad R}{E, \quad R}$$

Critical pairs between rules in R are turned into additional equations:

Deduce:

$$\frac{E, R}{E \cup \{s \approx t\}, R} \quad \text{if } \langle s, t \rangle \in \operatorname{CP}(R).$$

Note: If $\langle s, t \rangle \in CP(R)$ then $s \leftarrow_R u \rightarrow_R t$ and hence $R \models s \approx t$.

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$\frac{E \cup \{s \approx t\}, \quad R}{E \cup \{u \approx t\}, \quad R} \qquad \text{if } s \to_R u.$$

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

$$\frac{E, \quad R \cup \{s \to t\}}{E, \quad R \cup \{s \to u\}} \qquad \text{if } t \to_R u.$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an *equation*:

L-Simplify-Rule:

$$\frac{E, \quad R \cup \{s \to t\}}{E \cup \{u \approx t\}, \quad R} \qquad \text{if } s \to_R u \text{ using a rule } l \to r \in R \\ \text{ such that } s \sqsupset l \text{ (see below).}$$

For technical reasons, the lhs of $s \to t$ may only be simplified using a rule $l \to r$, if $l \to r$ cannot be simplified using $s \to t$, that is, if $s \sqsupset l$, where the encompassment quasi-ordering \sqsupset is defined by

 $s \supseteq l$ if $s|_p = l\sigma$ for some p and σ

and $\Box = \Box \setminus \Box$ is the strict part of \Box .

Lemma 4.32 \square is a well-founded strict partial ordering.

Lemma 4.33 If $E, R \vdash E', R'$, then $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Lemma 4.34 If $E, R \vdash E', R'$ and $\rightarrow_R \subseteq \succ$, then $\rightarrow_{R'} \subseteq \succ$.

Note: Like in ordered resolution, simplification should be preferred to deduction:

- Simplify/delete whenever possible.
- Otherwise, orient an equation, if possible.
- Last resort: compute critical pairs.

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can happen:

- (1) We reach a state where no more inference rules are applicable and E is not empty. \Rightarrow Failure (try again with another ordering?)
- (2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
- (3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$ with $R_0 = \emptyset$ is called a run of the completion procedure with input E_0 and \succ .

For a run, $E_{\infty} = \bigcup_{i \ge 0} E_i$ and $R_{\infty} = \bigcup_{i \ge 0} R_i$.

The sets of persistent equations or rules of the run are $E_* = \bigcup_{i\geq 0} \bigcap_{j\geq i} E_j$ and $R_* = \bigcup_{i\geq 0} \bigcap_{j\geq i} R_j$.

Note: If the run is finite and ends with E_n, R_n , then $E_* = E_n$ and $R_* = R_n$.

A run is called *fair*, if $CP(R_*) \subseteq E_{\infty}$ (i. e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:

Show: If a run is fair and E_* is empty, then R_* is convergent and equivalent to E_0 .

In particular: If a run is fair and E_* is empty, then $\approx_{E_0} = \approx_{E_\infty \cup R_\infty} = \bigoplus_{E_\infty \cup R_\infty}^* = \downarrow_{R_*}$.

General assumptions from now on:

 $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \dots$ is a fair run.

 R_0 and E_* are empty.

A proof of $s \approx t$ in $E_{\infty} \cup R_{\infty}$ is a finite sequence (s_0, \ldots, s_n) such that $s = s_0, t = s_n$, and for all $i \in \{1, \ldots, n\}$:

- (1) $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, or
- (2) $s_{i-1} \rightarrow_{R_{\infty}} s_i$, or

(3)
$$s_{i-1} \leftarrow_{R_{\infty}} s_i$$
.

The pairs (s_{i-1}, s_i) are called proof steps.

A proof is called a rewrite proof in R_* , if there is a $k \in \{0, \ldots, n\}$ such that $s_{i-1} \to_{R_*} s_i$ for $1 \le i \le k$ and $s_{i-1} \leftarrow_{R_*} s_i$ for $k+1 \le i \le n$

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_* there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_* .

We associate a cost $c(s_{i-1}, s_i)$ with every proof step as follows:

- (1) If $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, then $c(s_{i-1}, s_i) = (\{s_{i-1}, s_i\}, -, -)$, where the first component is a multiset of terms and denotes an arbitrary (irrelevant) term.
- (2) If $s_{i-1} \to_{R_{\infty}} s_i$ using $l \to r$, then $c(s_{i-1}, s_i) = (\{s_{i-1}\}, l, s_i)$.
- (3) If $s_{i-1} \leftarrow_{R_{\infty}} s_i$ using $l \to r$, then $c(s_{i-1}, s_i) = (\{s_i\}, l, s_{i-1})$.

Proof steps are compared using the lexicographic combination of the multiset extension of the reduction ordering \succ , the encompassment ordering \sqsupset , and the reduction ordering \succ .

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering \succ_C compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma 4.35 \succ_C is a well-founded ordering.

Lemma 4.36 Let P be a proof in $E_{\infty} \cup R_{\infty}$. If P is not a rewrite proof in R_* , then there exists an equivalent proof P' in $E_{\infty} \cup R_{\infty}$ such that $P \succ_C P'$.

Proof. If P is not a rewrite proof in R_* , then it contains

- (a) a proof step that is in E_{∞} , or
- (b) a proof step that is in $R_{\infty} \setminus R_*$, or
- (c) a subproof $s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof:

Case (a): A proof step using an equation $s \approx t$ is in E_{∞} . This equation must be deleted during the run.

If $s \approx t$ is deleted using Orient:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s_i \ldots$

If $s \approx t$ is deleted using Delete:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i-1} \ldots \implies \ldots s_{i-1} \ldots$

If $s \approx t$ is deleted using Simplify-Eq:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \ldots$

Case (b): A proof step using a rule $s \to t$ is in $R_{\infty} \setminus R_*$. This rule must be deleted during the run.

If $s \to t$ is deleted using *R*-Simplify-Rule:

 $\dots s_{i-1} \to_{R_{\infty}} s_i \dots \implies \dots s_{i-1} \to_{R_{\infty}} s' \leftarrow_{R_{\infty}} s_i \dots$

If $s \to t$ is deleted using *L*-Simplify-Rule: $\dots s_{i-1} \to_{R_{\infty}} s_i \dots \implies \dots s_{i-1} \to_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \dots$

Case (c): A subproof has the form $s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1}$.

If there is no overlap or a non-critical overlap:

 $\dots s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1} \dots \Longrightarrow \dots s_{i-1} \rightarrow_{R_*}^* s' \leftarrow_{R_*}^* s_{i+1} \dots$

If there is a critical pair that has been added using *Deduce*:

 $\ldots s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1} \ldots \implies \ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i+1} \ldots$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine. $\hfill \Box$

Theorem 4.37 Let $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$ be a fair run and let R_0 and E_* be empty. Then

- (1) every proof in $E_{\infty} \cup R_{\infty}$ is equivalent to a rewrite proof in R_* ,
- (2) R_* is equivalent to E_0 , and
- (3) R_* is convergent.

Proof. (1) By well-founded induction on \succ_C using the previous lemma.

(2) Clearly $\approx_{E_{\infty}\cup R_{\infty}} = \approx_{E_0}$. Since $R_* \subseteq R_{\infty}$, we get $\approx_{R_*} \subseteq \approx_{E_{\infty}\cup R_{\infty}}$. On the other hand, by (1), $\approx_{E_{\infty}\cup R_{\infty}} \subseteq \approx_{R_*}$.

(3) Since $\rightarrow_{R_*} \subseteq \succ$, R_* is terminating. By (1), R_* is confluent.

4.7 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use *orientable instances* for rewriting.

Note: If \succ is total on ground terms, then every ground instance of an equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

Let E be a set of equations, let \succ be a reduction ordering.

We define the relation $\rightarrow_{E^{\succ}}$ by

 $s \to_{E^{\succ}} t$ iff there exist $(u \approx v) \in E$ or $(v \approx u) \in E$, $p \in \text{pos}(s)$, and $\sigma : X \to T_{\Sigma}(X)$, such that $s|_p = u\sigma$ and $t = s[v\sigma]_p$ and $u\sigma \succ v\sigma$.

Note: $\rightarrow_{E^{\succ}}$ is terminating by construction.

From now on let \succ be a reduction ordering that is total on ground terms.

E is called ground convergent w.r.t. \succ , if for all ground terms s and t with $s \leftrightarrow_E^* t$ there exists a ground term v such that $s \rightarrow_{E^{\succ}}^* v \leftarrow_{E^{\succ}}^* t$. (Analogously for $E \cup R$.)

As for standard completion, we establish ground convergence by computing critical pairs.

However, the ordering \succ is not total on non-ground terms. Since $s\theta \succ t\theta$ implies $s \not\preceq t$, we approximate \succ on ground terms by $\not\preceq$ on arbitrary terms.

Let $u_i \approx v_i$ (i = 1, 2) be equations in E whose variables have been renamed such that $\operatorname{var}(u_1 \approx v_1) \cap \operatorname{var}(u_2 \approx v_2) = \emptyset$. Let $p \in \operatorname{pos}(u_1)$ be a position such that $u_1|_p$ is not a variable, σ is an mgu of $u_1|_p$ and u_2 , and $u_i \sigma \not\preceq v_i \sigma$ (i = 1, 2). Then $\langle v_1 \sigma, (u_1 \sigma) [v_2 \sigma]_p \rangle$ is called a semi-critical pair of E with respect to \succ .

The set of all semi-critical pairs of E is denoted by $SP_{\succ}(E)$.

Semi-critical pairs of $E \cup R$ are defined analogously. If $\rightarrow_R \subseteq \succ$, then $\operatorname{CP}(R)$ and $\operatorname{SP}_{\succ}(R)$ agree.

Note: In contrast to critical pairs, it may be necessary to consider overlaps of an equation with itself at the top. For instance, if $E = \{f(x) \approx g(y)\}$, then $\langle g(y), g(y') \rangle$ is a non-trivial semi-critical pair.

The *Deduce* rule takes now the following form:

Deduce:

$$\frac{E, R}{E \cup \{s \approx t\}, R} \quad \text{if } \langle s, t \rangle \in \mathrm{SP}_{\succ}(E \cup R).$$

Moreover, the fairness criterion for runs is replaced by

 $\operatorname{SP}_{\succ}(E_* \cup R_*) \subseteq E_{\infty}$

(i. e., if every semi-critical pair between persisting rules or equations is computed at some step of the derivation).

Analogously to Thm. 4.37 we obtain now the following theorem:

Theorem 4.38 Let $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$ be a fair run; let $R_0 = \emptyset$. Then

- (1) $E_* \cup R_*$ is equivalent to E_0 , and
- (2) $E_* \cup R_*$ is ground convergent.

Moreover one can show that, whenever there exists a reduced convergent R such that $\approx_{E_0} = \downarrow_R$ and $\rightarrow_R \in \succ$, then for every fair and simplifying run $E_* = \emptyset$ and $R_* = R$ up to variable renaming.

Here R is called reduced, if for every $l \to r \in R$, both l and r are irreducible w.r.t. $R \setminus \{l \to r\}$. A run is called simplifying, if R_* is reduced, and for all equations $u \approx v \in E_*$, u and v are incomparable w.r.t. \succ and irreducible w.r.t. R_* .

Unfailing completion is refutationally complete for equational theories:

Theorem 4.39 Let E be a set of equations, let \succ be a reduction ordering that is total on ground terms. For any two terms s and t, let \hat{s} and \hat{t} be the terms obtained from sand t by replacing all variables by Skolem constants. Let eq/2, true/0 and false/0 be new operator symbols, such that true and false are smaller than all other terms. Let $E_0 = E \cup \{eq(\hat{s}, \hat{t}) \approx true, eq(x, x) \approx false\}$. If $E_0, \emptyset \vdash E_1, R_1 \vdash E_2, R_2 \vdash \dots$ be a fair run of unfailing completion, then $s \approx_E t$ iff some $E_i \cup R_i$ contains true \approx false.

Outlook:

Combine ordered resolution and unfailing completion to get a calculus for equational clauses:

compute inferences between (strictly) maximal literals as in ordered resolution, compute overlaps between maximal sides of equations as in unfailing completion

 \Rightarrow Superposition calculus.