
4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)

Knuth-Bendix Completion: Idea

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻ (i. e., l ≻ r
for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Note: Every critical pair 〈s, t〉 can be made joinable by adding s→ t or t→ s to R.

(Actually, we first add s ≈ t to E and later try to turn it into a rule that is contained
in ≻; this gives us some additional degree of freedom.)

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of
equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step E,R ⊢ E ′, R′, the equational theories of E ∪R and E ′ ∪R′ agree: ≈E∪R =
≈E′∪R′ .

Notations:

The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.
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Orient:

E ∪ {s
.

≈ t}, R

E, R ∪ {s→ t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e., neither s ≻ t nor t ≻ s.

Trivial equations cannot be oriented – but we don’t need them anyway:

Delete:

E ∪ {s ≈ s}, R

E, R

Critical pairs between rules in R are turned into additional equations:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R) then s←R u→R t and hence R |= s ≈ t.

The following inference rules are not absolutely necessary, but very useful (e. g., to get
rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.

≈ t}, R

E ∪ {u ≈ t}, R
if s→R u.

Simplification of the right-hand side of a rule is unproblematic:

R-Simplify-Rule:

E, R ∪ {s→ t}

E, R ∪ {s→ u}
if t→R u.

Simplification of the left-hand side may influence orientability and orientation. Therefore,
it yields an equation:

L-Simplify-Rule:

E, R ∪ {s→ t}

E ∪ {u ≈ t}, R

if s→R u using a rule l → r ∈ R
such that s ⊐ l (see below).
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For technical reasons, the lhs of s → t may only be simplified using a rule l → r, if
l → r cannot be simplified using s → t, that is, if s ⊐ l, where the encompassment
quasi-ordering ⊐

∼ is defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Lemma 4.32 ⊐ is a well-founded strict partial ordering.

Lemma 4.33 If E,R ⊢ E ′, R′, then ≈E∪R = ≈E′∪R′ .

Lemma 4.34 If E,R ⊢ E ′, R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

Note: Like in ordered resolution, simplification should be preferred to deduction:

• Simplify/delete whenever possible.

• Otherwise, orient an equation, if possible.

• Last resort: compute critical pairs.

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can hap-
pen:

(1) We reach a state where no more inference rules are applicable and E is not empty.
⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the rules in the
current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . with R0 = ∅ is called a run
of the completion procedure with input E0 and ≻.

For a run, E∞ =
⋃

i≥0
Ei and R∞ =

⋃
i≥0

Ri.

The sets of persistent equations or rules of the run are E∗ =
⋃

i≥0

⋂
j≥iEj and R∗ =⋃

i≥0

⋂
j≥iRj .

Note: If the run is finite and ends with En, Rn, then E∗ = En and R∗ = Rn.
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A run is called fair, if CP (R∗) ⊆ E∞ (i. e., if every critical pair between persisting rules
is computed at some step of the derivation).

Goal:

Show: If a run is fair and E∗ is empty, then R∗ is convergent and equivalent to E0.

In particular: If a run is fair and E∗ is empty, then ≈E0
= ≈E∞∪R∞

=↔∗
E∞∪R∞

= ↓R∗
.

General assumptions from now on:

E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . is a fair run.

R0 and E∗ are empty.

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn) such that s = s0, t = sn,
and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∞
si, or

(2) si−1 →R∞
si, or

(3) si−1 ←R∞
si.

The pairs (si−1, si) are called proof steps.

A proof is called a rewrite proof in R∗, if there is a k ∈ {0, . . . , n} such that si−1 →R∗
si

for 1 ≤ i ≤ k and si−1 ←R∗
si for k + 1 ≤ i ≤ n

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite
proof in R∗ there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R∗.

We associate a cost c(si−1, si) with every proof step as follows:

(1) If si−1 ↔E∞
si, then c(si−1, si) = ({si−1, si},−,−), where the first component is a

multiset of terms and − denotes an arbitrary (irrelevant) term.

(2) If si−1 →R∞
si using l → r, then c(si−1, si) = ({si−1}, l, si).

(3) If si−1 ←R∞
si using l → r, then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographic combination of the multiset extension
of the reduction ordering ≻, the encompassment ordering ⊐, and the reduction ordering
≻.

The cost c(P ) of a proof P is the multiset of the costs of its proof steps.

The proof ordering ≻C compares the costs of proofs using the multiset extension of the
proof step ordering.
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Lemma 4.35 ≻C is a well-founded ordering.

Lemma 4.36 Let P be a proof in E∞ ∪ R∞. If P is not a rewrite proof in R∗, then
there exists an equivalent proof P ′ in E∞ ∪ R∞ such that P ≻C P ′.

Proof. If P is not a rewrite proof in R∗, then it contains

(a) a proof step that is in E∞, or
(b) a proof step that is in R∞ \R∗, or
(c) a subproof si−1 ←R∗

si →R∗
si+1 (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller
subproof:

Case (a): A proof step using an equation s
.

≈ t is in E∞. This equation must be deleted
during the run.

If s
.

≈ t is deleted using Orient:
. . . si−1 ↔E∞

si . . . =⇒ . . . si−1 →R∞
si . . .

If s
.

≈ t is deleted using Delete:
. . . si−1 ↔E∞

si−1 . . . =⇒ . . . si−1 . . .

If s
.

≈ t is deleted using Simplify-Eq:
. . . si−1 ↔E∞

si . . . =⇒ . . . si−1 →R∞
s′ ↔E∞

si . . .

Case (b): A proof step using a rule s→ t is in R∞ \R∗. This rule must be deleted during
the run.

If s→ t is deleted using R-Simplify-Rule:
. . . si−1 →R∞

si . . . =⇒ . . . si−1 →R∞
s′ ←R∞

si . . .

If s→ t is deleted using L-Simplify-Rule:
. . . si−1 →R∞

si . . . =⇒ . . . si−1 →R∞
s′ ↔E∞

si . . .

Case (c): A subproof has the form si−1 ←R∗
si →R∗

si+1.

If there is no overlap or a non-critical overlap:
. . . si−1 ←R∗

si →R∗
si+1 . . . =⇒ . . . si−1 →

∗
R∗

s′ ←∗
R∗

si+1 . . .

If there is a critical pair that has been added using Deduce:
. . . si−1 ←R∗

si →R∗
si+1 . . . =⇒ . . . si−1 ↔E∞

si+1 . . .

In all cases, checking that the replacement subproof is smaller than the replaced subproof
is routine. ✷

128



Theorem 4.37 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair run and let R0 and E∗ be
empty. Then

(1) every proof in E∞ ∪ R∞ is equivalent to a rewrite proof in R∗,

(2) R∗ is equivalent to E0, and

(3) R∗ is convergent.

Proof. (1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∞∪R∞
= ≈E0

. Since R∗ ⊆ R∞, we get ≈R∗
⊆ ≈E∞∪R∞

. On the other hand,
by (1), ≈E∞∪R∞

⊆ ≈R∗
.

(3) Since →R∗
⊆ ≻, R∗ is terminating. By (1), R∗ is confluent. ✷

4.7 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use orientable instances for rewriting.

Note: If ≻ is total on ground terms, then every ground instance of an equation is
trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

Let E be a set of equations, let ≻ be a reduction ordering.

We define the relation →E≻ by

s→E≻ t iff there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E,
p ∈ pos(s), and σ : X → TΣ(X),
such that s|p = uσ and t = s[vσ]p and uσ ≻ vσ.

Note: →E≻ is terminating by construction.

From now on let ≻ be a reduction ordering that is total on ground terms.

E is called ground convergent w. r. t. ≻, if for all ground terms s and t with s↔∗
E t there

exists a ground term v such that s→∗
E≻ v ←∗

E≻ t. (Analogously for E ∪R.)

As for standard completion, we establish ground convergence by computing critical
pairs.
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However, the ordering ≻ is not total on non-ground terms. Since sθ ≻ tθ implies s 6� t,
we approximate ≻ on ground terms by 6� on arbitrary terms.

Let ui

.

≈ vi (i = 1, 2) be equations in E whose variables have been renamed such that
var(u1

.

≈ v1) ∩ var(u2

.

≈ v2) = ∅. Let p ∈ pos(u1) be a position such that u1|p is not a
variable, σ is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2). Then 〈v1σ, (u1σ)[v2σ]p〉 is
called a semi-critical pair of E with respect to ≻.

The set of all semi-critical pairs of E is denoted by SP≻(E).

Semi-critical pairs of E ∪R are defined analogously. If→R ⊆ ≻, then CP(R) and SP≻(R)
agree.

Note: In contrast to critical pairs, it may be necessary to consider overlaps of an equation
with itself at the top. For instance, if E = {f(x) ≈ g(y)}, then 〈g(y), g(y′)〉 is a non-
trivial semi-critical pair.

The Deduce rule takes now the following form:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ SP≻(E ∪R).

Moreover, the fairness criterion for runs is replaced by

SP≻(E∗ ∪ R∗) ⊆ E∞

(i. e., if every semi-critical pair between persisting rules or equations is computed at some
step of the derivation).

Analogously to Thm. 4.37 we obtain now the following theorem:

Theorem 4.38 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair run; let R0 = ∅. Then

(1) E∗ ∪R∗ is equivalent to E0, and

(2) E∗ ∪R∗ is ground convergent.

Moreover one can show that, whenever there exists a reduced convergent R such that
≈E0

= ↓R and →R ∈ ≻, then for every fair and simplifying run E∗ = ∅ and R∗ = R up
to variable renaming.

Here R is called reduced, if for every l → r ∈ R, both l and r are irreducible w. r. t. R \
{l → r}. A run is called simplifying, if R∗ is reduced, and for all equations u ≈ v ∈ E∗,
u and v are incomparable w. r. t. ≻ and irreducible w. r. t. R∗.

Unfailing completion is refutationally complete for equational theories:
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Theorem 4.39 Let E be a set of equations, let ≻ be a reduction ordering that is total
on ground terms. For any two terms s and t, let ŝ and t̂ be the terms obtained from s
and t by replacing all variables by Skolem constants. Let eq/2, true/0 and false/0 be
new operator symbols, such that true and false are smaller than all other terms. Let
E0 = E ∪ {eq(ŝ, t̂) ≈ true , eq(x, x) ≈ false}. If E0, ∅ ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair
run of unfailing completion, then s ≈E t iff some Ei ∪ Ri contains true ≈ false.

Outlook:

Combine ordered resolution and unfailing completion to get a calculus for equational
clauses:

compute inferences between (strictly) maximal literals as in ordered resolution,
compute overlaps between maximal sides of equations as in unfailing completion

⇒ Superposition calculus.
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