3 First-Order Logic

First-order logic

® is expressive:
can be used to formalize mathematical concepts,
can be used to encode Turing machines,
but cannot axiomatize natural numbers or uncountable sets,

e has important decidable fragments,

e has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical connectives (domain-independent)
= Boolean combinations, quantifiers

Signatures

A signature ¥ = (€2, 1II) fixes an alphabet of non-logical symbols, where
e ) is a set of function symbols f with arity n > 0, written arity(f) = n,
e I is a set of predicate symbols P with arity m > 0, written arity(P) = m.

Function symbols are also called operator symbols.
If n =0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use
b, ¢, d for constant symbols,
f, g, h for non-constant function symbols,

P, Q, R, S for predicate symbols.

Convention: We will usually write f/n € Q) instead of f € Q, arity(f) = n (analogously
for predicate symbols).

44



Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables
Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.

Terms

Terms over ¥ and X (X-terms) are formed according to these syntactic rules:

s,t,u,v = T ,xeX (variable)
| f(s1,-y80) , f/m€Q (functional term)

By Tx(X) we denote the set of X-terms (over X). A term not containing any variable
is called a ground term. By Ty we denote the set of ¥-ground terms.

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this syntax:
A, B = P(s1,...,8m) , P/mell (non-equational atom)
[ | (s=t) (equation)
Whenever we admit equations as atomic formulas we are in the realm of first-order
logic with equality. Admitting equality does not really increase the expressiveness of

first-order logic (see next chapter). But deductive systems where equality is treated
specifically are much more efficient.

Literals
L == A  (positive literal)
| A (negative literal)
Clauses
C,D == 1 (empty clause)

|  LyV...VLg k>1 (non-empty clause)

45



General First-Order Formulas

Fyx(X) is the set of first-order formulas over 3 defined as follows:

F.GH == L (falsum)
| T (verum)
| A (atomic formula)
| -F (negation)
|  (FAG) (conjunction)
|  (FVG) (disjunction)
| (F—G) (implication)
| (F+ G) (equivalence)
| VaF (universal quantification)
|  dzF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.
Vai,...,x, FF and dxq,...,z, F abbreviate Vz;...Vx,F and dx,...dz, F.
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+txu for +(s,*(t,u))
sxu<t+ov for < (x(s,u),+(t,v))
(

—s for —(s)
s! for I(s)
s fr L)
0 for ()

Example: Peano Arithmetic

Ypa = (Qpa, Ilpa)
Qpa = {0/0, +/2, %/2, s/1}
HPA = {</2}

Examples of formulas over this signature are:

Ve,y((x <yVemy)+ Iz@+zry))
daVy (z+y = y)
Va,y(x*s(y) = x*xy+ x)

Vo, y (s(z) = s(y) = x =~ y)

Vedy (r <y A—-Jz(z < zAz<y))

46



Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F'):

pos(z) = {e},
pos(f(s1,---,sn)) ={e} UUZ {ip | p € pos(si) },

(

pos(P(ty, ..., 1)) = {ey UU_{ip | p € pos(t) },
(
(

pos(Ve ') = {e} U{1p | p € pos(F) },
pos(Jz F) ={c}U{1lp|p € pos(F) }.

The prefix order <, the subformula (subterm) operator, the formula (term) replacement
operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by var(¢) (and analogously for
atoms, literals, clauses, and formulas).

Bound and Free Variables

In Qz F, Q € {3, V}, we call F the scope of the quantifier Qz. An occurrence of a variable
x is called bound, if it is inside the scope of a quantifier Qz. Any other occurrence of a
variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.
Formulas without variables are called ground.

Example:

scope of y
7\

7 N
scope of =

Yy ((Vz P(z) ) — R(x,y))

The occurrence of y is bound, as is the first occurrence of z. The second occurrence of
x is a free occurrence.

47



Substitutions
Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.
Substitutions are mappings
o: X — Ty(X)
such that the domain of o, that is, the set
dom(o) ={z e X |o(z) #z},
is finite. The set of variables introduced by o, that is, the set of variables occurring in
one of the terms o(z), with € dom(o), is denoted by codom(o).
Substitutions are often written as {z1 — s1,...,2, — S,}, with z; pairwise distinct,

and then denote the mapping

si, ify=um,
{1 s1,..., 20— su}y) = {

y, otherwise

We also write zo for o(x).

The modification of a substitution o at z is defined as follows:

t, ify==xa

olz = t)(y) = {

o(y), otherwise

Why Substitution is Complicated

We define the application of a substitution o to a term ¢ or formula F' by structural
induction over the syntactic structure of t or F' by the equations depicted on the next

page.
In the presence of quantification it is surprisingly complex: We need to make sure that
the (free) variables in the codomain of ¢ are not captured upon placing them into the

scope of a quantifier Qy, hence the bound variable must be renamed into a “fresh”, that
is, previously unused, variable z.

48



Application of a Substitution

“Homomorphic” extension of ¢ to terms and formulas:

f(s1,...,80)0 = f(s10,...,8,0)
lo=1
To=T

P(s1,...,8,)0 = P(s10,...,8,0)
(uxv)o = (uo =~ vo)
—Fo =—(Fo)
(FoG)o=(Fo o Go) for each binary connective o
(Qz F)o = Qz (Folxr + z|) with z a fresh variable

If s = to for some subsitution o, we call the term s an instance of the term t, and we
call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

Algebras

A Y-algebra (also called Y-interpretation or X-structure) is a triple

A= (Ua, (fa:Ul = Ud)pmea, (Pa S UY)p/men)
where Uy # () is a set, called the universe of A.

By X-Alg we denote the class of all Y-algebras.

Y-algebras generalize the valuations from propositional logic.

49



Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined exter-
nally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Y-algebra A), is a function 5 : X — Uy.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to (5

By structural induction we define
A(B) : Te(X) = Ua

as follows:

A(B)(x) = B(x), zeX
AB)(f (515 8n)) = Ja(AB)(s1), -, A(B)(sn), [/n €

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let SBlx — a] : X — Uy, for x € X and a € Uy, denote the
assignment

Blz — al(y) = {

a ifr=y

B(y) otherwise

Truth Value of a Formula in A with Respect to

A(B) : Fx(X) — {0,1} is defined inductively as follows:

AB)(L) = 0
AB)T) =1
A(B)(P(s1,...,8,)) = if (A(B)(s1),-.-, A(B)(sn)) € P4 then 1 else 0
AB)(s~=t) = if A(B)(s) = .A(H)(t) then 1 else 0
AB)(-F) = 1 - A(B)(F)
AB)F AG) = min(A(B)(F), AB)(G))
AB)FVG) = max(A(B)(F), A(B)(G))
AB)F — G) = max(1 - A(B)(F), A(B)(G))
AB)F < G) = if A(B)(F)=A(B)(G) then 1 else 0
AB) vz F) = min{A(Blz — a])(F)}
AB)EFz F) = max{A(B[z — d])(F)}



Example

The “Standard” interpretation for Peano arithmetic:

Uy = {0,1,2,..}

On = 0

sy ¢ n—n+1

+y : (ny,m)—n+m

N : (n,m)—nxm

<y = {(n,m)|n less than m }

Note that N is just one out of many possible Xpa-interpretations.
Values over N for sample terms and formulas:

Under the assignment 5 : x — 1,y — 3 we obtain

N(B)(s(z) + s(0)) = 3
N(B)(z +y =~ s(y)) =1
N@B)(Vr,y(z+y~y+x) = 1
N(B)(Vz (2 < y)) = 0
N(B)(Vz3y (z < y)) =1

Ground Terms and Closed Formulas
If ¢ is a ground term, then A(5)(t) does not depend on f:

A(B)(t) = A(B)(t)
for every 8 and 3.
Analogously, if F'is a closed formula, then A(S3)(F") does not depend on :

AP)(F) = A(B)(F)

for every 8 and (.

An element a € Uy is called term-generated, if a = A(/3)(t) for some ground term t.

In general, not every element of an algebra is term-generated.

51



3.3 Models, Validity, and Satisfiability

Fis true in A under assignment f3:
ABEF = APB)F) =1
F is true in A (A is a model of F'; F' is valid in A):
AEF & APEF foralfe X - Uy
F is valid (or is a tautology):
EF & AEF foral Ae X-Alg

F is called satisfiable iff there exist A and [ such that A, 5 = F. Otherwise F is called
unsatisfiable.

Entailment and Equivalence
F entails (implies) G (or G is a consequence of F), written F' |= G, if for all A € ¥-Alg
and € X — Uy, whenever A, 8 | F, then A, 5 E G.

F and G are called equivalent, written F' H G, if for all A € ¥-Alg and € X — Uy
we have A, EF < A [EG.

Proposition 3.1 F = G iff (F — G) is valid

Proof. (=) Suppose that (F — @) is not valid. Then there exist an algebra A and
an assignment S such that A(8)(F — G) = 0, which means that A(5)(F) = 1 and
A(B)(G) =0, or in other words A, 5 = F but not A, 8 = G. Consequently, F' = G does
not hold.

(<) Suppose that F' = G does not hold. Then there exist an algebra .4 and an assign-
ment /3 such that A, 8 |= F but not A, 8 |= G. Therefore A(B)(F) = 1 and A(B)(G) =0,
which implies A(8)(F — G) =0, so (F' — @) is not valid. O

Proposition 3.2 F' H G iff (F < Q) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N = F

& forall A€ Y-Algand f € X — Uy if A, B =G, for all G € N, then A, 5 = F.

52



Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.3 Let F' and G be formulas, let N be a set of formulas. Then
(i) F is valid if and only if =F' is unsatisfiable.
(ii) F = G if and only if F A\ =G is unsatisfiable.

(iii) N | G if and only if N U{—~G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Substitution Lemma

Lemma 3.4 Let A be a Y-algebra, let § be an assignment, let ¢ be a substitution.
Then for any Y-term t

A(B)(to) = A(Boo)(t),

where S oo : X — Uy is the assignment 5o o(x) = A(S)(z0o).

Proof. We use induction over the structure of >-terms.
If t =z, then A(foo)(z) = LBoo(x)=A(B)(xo) by definition of 8o o.

Ift = f(t1,...,tn), then A(Boo)(f(t1,...,tn)) = fa(A(Boo)(t1),..., A(Boo)(t,)) =
fa(AB)(tio), ..., A(B)(tao)) = AB)(f(to, ..., tao)) = A(B)(f(t1, . .., tn)o) by induc-

tion. O

Proposition 3.5 Let A be a Y-algebra, let 5 be an assignment, let o be a substitution.
Then for every ¥-formula F

A(B)(Fo) = A(Boo)(F).
Corollary 3.6 A, = Fo & A, foocEF

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

53



Two Lemmas

Lemma 3.7 Let A be a YX-algebra and let F' be a >-formula with free variables x1, . . ., x,.
Then

AEVry,...,x, F ifand only if A F.

Proof. (=) Suppose that A = Vay,...,x, F, that is, A(8)(Vxq,...,2, F) = 1 for all
assignments (. By definition, that means

min  {A(Blx; — a1, ...,x, = a,])(F)} =1,

and therefore A(f[x1 — aq,...,z, = a,])(F) =1 for all aq,...,a, € Uyk.

Let v be an arbitrary assigmnment. We have to show that A(y)(F) = 1. For every
i € {l,...,n} define a; = ~v(x;), then v = y[x; — ay,...,x, — a,], and therefore
A (F) = A(y[x1 — a1, ...,z = ay])(F) = 1.

(<) Suppose that A = F, that is, A(7)(F) = 1 for all assignments ~.

Then in particular A(Blx; — aq,...,z, — a,])(F) = 1 for all ay,...,a, € Uy (take
v = Blr1 = ay,...,z, — ay)). Therefore

AB)Vzy, ...,z F)= min  {A(B[x1 = a1, ..., 2, — a,])(F)} = 1.

Note that it is not possible to replace A= ... by A, = ... in Lemma 3.7.

Lemma 3.8 Let A be a Y-algebra, let F' be a X-formula with free variables x1, ..., x,,
let o be a substitution, and let yi, . ..,y,, be the free variables of Fo. Then

AEVry,...,x, F implies A=Yy, ...,ym Fo.

Proof. By the previous lemma, we have A |= Vzq,...,z, F if and only if A = F and
similarly A =Yy, ..., ym Fo if and only if A = Fo. So it suffices to show that A = F'
implies A = Fo. Suppose that A |= F, that is, A(S)(F) = 1 for all assignments [.
Then for every assignment v, we have by Prop. 3.5 A(v)(Fo) = A(yoo)(F) =1 (take
f =~o0), and therefore A = Fo. O

54



