3 First-Order Logic

First-order logic

- is expressive: can be used to formalize mathematical concepts, can be used to encode Turing machines, but cannot axiomatize natural numbers or uncountable sets,
- has important decidable fragments,
- has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

- non-logical symbols (domain-specific) ⇒ terms, atomic formulas
- logical connectives (domain-independent)
 ⇒ Boolean combinations, quantifiers

Signatures

A signature $\Sigma = (\Omega, \Pi)$ fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \geq 0$, written arity (f) = n,
- Π is a set of predicate symbols P with arity $m \geq 0$, written arity P = m.

Function symbols are also called operator symbols.

If n = 0 then f is also called a constant (symbol).

If m = 0 then P is also called a propositional variable.

We will usually use

b, c, d for constant symbols,

f, g, h for non-constant function symbols,

P, Q, R, S for predicate symbols.

Convention: We will usually write $f/n \in \Omega$ instead of $f \in \Omega$, arity(f) = n (analogously for predicate symbols).

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming languages); no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote variables.

Terms

Terms over Σ and X (Σ -terms) are formed according to these syntactic rules:

$$s, t, u, v ::= x$$
 , $x \in X$ (variable)
 $f(s_1, ..., s_n)$, $f/n \in \Omega$ (functional term)

By $T_{\Sigma}(X)$ we denote the set of Σ -terms (over X). A term not containing any variable is called a ground term. By T_{Σ} we denote the set of Σ -ground terms.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$A,B ::= P(s_1,\ldots,s_m) \ , P/m \in \Pi \quad \text{(non-equational atom)}$$

$$\left[\mid \quad (s\approx t) \right]$$

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of first-order logic (see next chapter). But deductive systems where equality is treated specifically are much more efficient.

Literals

$$L ::= A$$
 (positive literal)
 $\neg A$ (negative literal)

Clauses

$$C,D$$
 ::= \bot (empty clause)
| $L_1 \lor ... \lor L_k, k \ge 1$ (non-empty clause)

General First-Order Formulas

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

$$\forall x_1, \dots, x_n F$$
 and $\exists x_1, \dots, x_n F$ abbreviate $\forall x_1 \dots \forall x_n F$ and $\exists x_1 \dots \exists x_n F$.

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:

$$s + t * u$$
 for $+(s, *(t, u))$
 $s * u \le t + v$ for $\le (*(s, u), +(t, v))$
 $-s$ for $-(s)$
 $s!$ for $!(s)$
 $|s|$ for $|-|(s)$
 0 for $0()$

Example: Peano Arithmetic

$$\Sigma_{\text{PA}} = (\Omega_{\text{PA}}, \Pi_{\text{PA}})$$

 $\Omega_{\text{PA}} = \{0/0, +/2, */2, s/1\}$
 $\Pi_{\text{PA}} = \{$

Examples of formulas over this signature are:

$$\forall x, y ((x < y \lor x \approx y) \leftrightarrow \exists z (x + z \approx y))$$

$$\exists x \forall y (x + y \approx y)$$

$$\forall x, y (x * s(y) \approx x * y + x)$$

$$\forall x, y (s(x) \approx s(y) \rightarrow x \approx y)$$

$$\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$$

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

```
pos(x) = \{\varepsilon\},\ pos(f(s_1, \dots, s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(s_i)\},\ pos(P(t_1, \dots, t_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(t_i)\},\ pos(\forall x F) = \{\varepsilon\} \cup \{1p \mid p \in pos(F)\},\ pos(\exists x F) = \{\varepsilon\} \cup \{1p \mid p \in pos(F)\}.
```

The prefix order \leq , the subformula (subterm) operator, the formula (term) replacement operator and the size operator are extended accordingly. See the definitions in Sect. 2.

Variables

The set of variables occurring in a term t is denoted by var(t) (and analogously for atoms, literals, clauses, and formulas).

Bound and Free Variables

In Qx F, $Q \in \{\exists, \forall\}$, we call F the scope of the quantifier Qx. An occurrence of a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other occurrence of a variable is called free.

Formulas without free variables are also called *closed formulas* or *sentential forms*.

Formulas without variables are called ground.

Example:

$$\forall y \quad \overbrace{((\forall x P(x)))}^{\text{scope of } y} \rightarrow R(x,y))$$

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

Substitutions are mappings

$$\sigma: X \to \mathrm{T}_{\Sigma}(X)$$

such that the domain of σ , that is, the set

$$dom(\sigma) = \{ x \in X \mid \sigma(x) \neq x \},\$$

is finite. The set of variables introduced by σ , that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in \text{dom}(\sigma)$, is denoted by $\text{codom}(\sigma)$.

Substitutions are often written as $\{x_1 \mapsto s_1, \dots, x_n \mapsto s_n\}$, with x_i pairwise distinct, and then denote the mapping

$$\{x_1 \mapsto s_1, \dots, x_n \mapsto s_n\}(y) = \begin{cases} s_i, & \text{if } y = x_i \\ y, & \text{otherwise} \end{cases}$$

We also write $x\sigma$ for $\sigma(x)$.

The modification of a substitution σ at x is defined as follows:

$$\sigma[x \mapsto t](y) = \begin{cases} t, & \text{if } y = x \\ \sigma(y), & \text{otherwise} \end{cases}$$

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex: We need to make sure that the (free) variables in the codomain of σ are not captured upon placing them into the scope of a quantifier Qy, hence the bound variable must be renamed into a "fresh", that is, previously unused, variable z.

Application of a Substitution

"Homomorphic" extension of σ to terms and formulas:

$$f(s_1, ..., s_n)\sigma = f(s_1\sigma, ..., s_n\sigma)$$

$$\bot \sigma = \bot$$

$$\top \sigma = \top$$

$$P(s_1, ..., s_n)\sigma = P(s_1\sigma, ..., s_n\sigma)$$

$$(u \approx v)\sigma = (u\sigma \approx v\sigma)$$

$$\neg F\sigma = \neg (F\sigma)$$

$$(F \circ G)\sigma = (F\sigma \circ G\sigma) \text{ for each binary connective } \circ$$

$$(Qx F)\sigma = Qz (F \sigma[x \mapsto z]) \text{ with } z \text{ a fresh variable}$$

If $s = t\sigma$ for some substitution σ , we call the term s an instance of the term t, and we call t a generalization of s (analogously for formulas).

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas. The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values "true" and "false" denoted by 1 and 0, respectively.

Algebras

A Σ -algebra (also called Σ -interpretation or Σ -structure) is a triple

$$\mathcal{A} = (U_{\mathcal{A}}, (f_{\mathcal{A}}: U_{\mathcal{A}}^n \to U_{\mathcal{A}})_{f/n \in \Omega}, (P_{\mathcal{A}} \subseteq U_{\mathcal{A}}^m)_{P/m \in \Pi})$$

where $U_{\mathcal{A}} \neq \emptyset$ is a set, called the universe of \mathcal{A} .

By Σ -Alg we denote the class of all Σ -algebras.

 Σ -algebras generalize the valuations from propositional logic.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Σ -algebra \mathcal{A}), is a function $\beta: X \to U_{\mathcal{A}}$.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to β

By structural induction we define

$$\mathcal{A}(\beta): \mathrm{T}_{\Sigma}(X) \to U_{\mathcal{A}}$$

as follows:

$$\mathcal{A}(\beta)(x) = \beta(x), \qquad x \in X$$

$$\mathcal{A}(\beta)(f(s_1, \dots, s_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(s_1), \dots, \mathcal{A}(\beta)(s_n)), \quad f/n \in \Omega$$

In the scope of a quantifier we need to evaluate terms with respect to modified assignments. To that end, let $\beta[x \mapsto a] : X \to U_A$, for $x \in X$ and $a \in U_A$, denote the assignment

$$\beta[x \mapsto a](y) = \begin{cases} a & \text{if } x = y\\ \beta(y) & \text{otherwise} \end{cases}$$

Truth Value of a Formula in A with Respect to β

 $\mathcal{A}(\beta): \mathcal{F}_{\Sigma}(X) \to \{0,1\}$ is defined inductively as follows:

$$\mathcal{A}(\beta)(\bot) = 0$$

$$\mathcal{A}(\beta)(F) = 1$$

$$\mathcal{A}(\beta)(P(s_1, ..., s_n)) = \text{if } (\mathcal{A}(\beta)(s_1), ..., \mathcal{A}(\beta)(s_n)) \in P_{\mathcal{A}} \text{ then 1 else 0}$$

$$\mathcal{A}(\beta)(s \approx t) = \text{if } \mathcal{A}(\beta)(s) = \mathcal{A}(\beta)(t) \text{ then 1 else 0}$$

$$\mathcal{A}(\beta)(\neg F) = 1 - \mathcal{A}(\beta)(F)$$

$$\mathcal{A}(\beta)(F \wedge G) = \min(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$

$$\mathcal{A}(\beta)(F \vee G) = \max(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$

$$\mathcal{A}(\beta)(F \to G) = \max(1 - \mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$

$$\mathcal{A}(\beta)(F \leftrightarrow G) = \text{if } \mathcal{A}(\beta)(F) = \mathcal{A}(\beta)(G) \text{ then 1 else 0}$$

$$\mathcal{A}(\beta)(\forall x F) = \min_{a \in U_{\mathcal{A}}} \{\mathcal{A}(\beta[x \mapsto a])(F)\}$$

$$\mathcal{A}(\beta)(\exists x F) = \max_{a \in U_{\mathcal{A}}} \{\mathcal{A}(\beta[x \mapsto a])(F)\}$$

Example

The "Standard" interpretation for Peano arithmetic:

$$\begin{array}{rcl} U_{\mathbb{N}} & = & \{0, 1, 2, \ldots\} \\ 0_{\mathbb{N}} & = & 0 \\ s_{\mathbb{N}} & : & n \mapsto n + 1 \\ +_{\mathbb{N}} & : & (n, m) \mapsto n + m \\ *_{\mathbb{N}} & : & (n, m) \mapsto n * m \\ <_{\mathbb{N}} & = & \{ (n, m) \mid n \text{ less than } m \} \end{array}$$

Note that $\mathbb N$ is just one out of many possible Σ_{PA} -interpretations.

Values over \mathbb{N} for sample terms and formulas:

Under the assignment $\beta: x \mapsto 1, y \mapsto 3$ we obtain

$$\begin{array}{lll} \mathbb{N}(\beta)(s(x)+s(0)) & = & 3 \\ \mathbb{N}(\beta)(x+y\approx s(y)) & = & 1 \\ \mathbb{N}(\beta)(\forall x,y\,(x+y\approx y+x)) & = & 1 \\ \mathbb{N}(\beta)(\forall z\,(z< y)) & = & 0 \\ \mathbb{N}(\beta)(\forall x\exists y\,(x< y)) & = & 1 \end{array}$$

Ground Terms and Closed Formulas

If t is a ground term, then $\mathcal{A}(\beta)(t)$ does not depend on β :

$$\mathcal{A}(\beta)(t) = \mathcal{A}(\beta')(t)$$

for every β and β' .

Analogously, if F is a closed formula, then $\mathcal{A}(\beta)(F)$ does not depend on β :

$$\mathcal{A}(\beta)(F) = \mathcal{A}(\beta')(F)$$

for every β and β' .

An element $a \in U_A$ is called term-generated, if $a = A(\beta)(t)$ for some ground term t. In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in \mathcal{A} under assignment β :

$$\mathcal{A}, \beta \models F : \Leftrightarrow \mathcal{A}(\beta)(F) = 1$$

F is true in A (A is a model of F; F is valid in A):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}, \beta \models F \text{ for all } \beta \in X \to U_{\mathcal{A}}$$

F is valid (or is a tautology):

$$\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \mathcal{A} \in \Sigma\text{-Alg}$$

F is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$. Otherwise F is called unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all $A \in \Sigma$ -Alg and $\beta \in X \to U_A$, whenever $A, \beta \models F$, then $A, \beta \models G$.

F and G are called equivalent, written $F \models G$, if for all $A \in \Sigma$ -Alg and $\beta \in X \to U_A$ we have $A, \beta \models F \Leftrightarrow A, \beta \models G$.

Proposition 3.1 $F \models G \text{ iff } (F \rightarrow G) \text{ is valid}$

Proof. (\Rightarrow) Suppose that $(F \to G)$ is not valid. Then there exist an algebra \mathcal{A} and an assignment β such that $\mathcal{A}(\beta)(F \to G) = 0$, which means that $\mathcal{A}(\beta)(F) = 1$ and $\mathcal{A}(\beta)(G) = 0$, or in other words $\mathcal{A}, \beta \models F$ but not $\mathcal{A}, \beta \models G$. Consequently, $F \models G$ does not hold.

(\Leftarrow) Suppose that $F \models G$ does not hold. Then there exist an algebra \mathcal{A} and an assignment β such that $\mathcal{A}, \beta \models F$ but not $\mathcal{A}, \beta \models G$. Therefore $\mathcal{A}(\beta)(F) = 1$ and $\mathcal{A}(\beta)(G) = 0$, which implies $\mathcal{A}(\beta)(F \to G) = 0$, so $(F \to G)$ is not valid.

Proposition 3.2 $F \models G \text{ iff } (F \leftrightarrow G) \text{ is valid.}$

Extension to sets of formulas N in the "natural way", e.g., $N \models F$

: \Leftrightarrow for all $A \in \Sigma$ -Alg and $\beta \in X \to U_A$: if $A, \beta \models G$, for all $G \in N$, then $A, \beta \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.3 Let F and G be formulas, let N be a set of formulas. Then

- (i) F is valid if and only if $\neg F$ is unsatisfiable.
- (ii) $F \models G$ if and only if $F \land \neg G$ is unsatisfiable.
- (iii) $N \models G$ if and only if $N \cup \{\neg G\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Substitution Lemma

Lemma 3.4 Let \mathcal{A} be a Σ -algebra, let β be an assignment, let σ be a substitution. Then for any Σ -term t

$$\mathcal{A}(\beta)(t\sigma) = \mathcal{A}(\beta \circ \sigma)(t),$$

where $\beta \circ \sigma : X \to U_A$ is the assignment $\beta \circ \sigma(x) = \mathcal{A}(\beta)(x\sigma)$.

Proof. We use induction over the structure of Σ -terms.

If t = x, then $\mathcal{A}(\beta \circ \sigma)(x) = \beta \circ \sigma(x) = \mathcal{A}(\beta)(x\sigma)$ by definition of $\beta \circ \sigma$.

If
$$t = f(t_1, \ldots, t_n)$$
, then $\mathcal{A}(\beta \circ \sigma)(f(t_1, \ldots, t_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta \circ \sigma)(t_1), \ldots, \mathcal{A}(\beta \circ \sigma)(t_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1\sigma), \ldots, \mathcal{A}(\beta)(t_n\sigma)) = \mathcal{A}(\beta)(f(t_1\sigma, \ldots, t_n\sigma)) = \mathcal{A}(\beta)(f(t_1, \ldots, t_n)\sigma)$ by induction.

Proposition 3.5 Let A be a Σ -algebra, let β be an assignment, let σ be a substitution. Then for every Σ -formula F

$$\mathcal{A}(\beta)(F\sigma) = \mathcal{A}(\beta \circ \sigma)(F).$$

Corollary 3.6 $\mathcal{A}, \beta \models F\sigma \iff \mathcal{A}, \beta \circ \sigma \models F$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Two Lemmas

Lemma 3.7 Let \mathcal{A} be a Σ -algebra and let F be a Σ -formula with free variables x_1, \ldots, x_n . Then

$$\mathcal{A} \models \forall x_1, \dots, x_n F$$
 if and only if $\mathcal{A} \models F$.

Proof. (\Rightarrow) Suppose that $\mathcal{A} \models \forall x_1, \dots, x_n F$, that is, $\mathcal{A}(\beta)(\forall x_1, \dots, x_n F) = 1$ for all assignments β . By definition, that means

$$\min_{a_1,\dots,a_n\in U_A} \{ \mathcal{A}(\beta[x_1\mapsto a_1,\dots,x_n\mapsto a_n])(F) \} = 1,$$

and therefore $\mathcal{A}(\beta[x_1 \mapsto a_1, \dots, x_n \mapsto a_n])(F) = 1$ for all $a_1, \dots, a_n \in U_{\mathcal{A}}$.

Let γ be an arbitrary assignment. We have to show that $\mathcal{A}(\gamma)(F) = 1$. For every $i \in \{1, \ldots, n\}$ define $a_i = \gamma(x_i)$, then $\gamma = \gamma[x_1 \mapsto a_1, \ldots, x_n \mapsto a_n]$, and therefore $\mathcal{A}(\gamma)(F) = \mathcal{A}(\gamma[x_1 \mapsto a_1, \ldots, x_n \mapsto a_n])(F) = 1$.

 (\Leftarrow) Suppose that $\mathcal{A} \models F$, that is, $\mathcal{A}(\gamma)(F) = 1$ for all assignments γ .

Then in particular $\mathcal{A}(\beta[x_1 \mapsto a_1, \dots, x_n \mapsto a_n])(F) = 1$ for all $a_1, \dots, a_n \in U_{\mathcal{A}}$ (take $\gamma = \beta[x_1 \mapsto a_1, \dots, x_n \mapsto a_n]$). Therefore

$$\mathcal{A}(\beta)(\forall x_1, \dots, x_n F) = \min_{a_1, \dots, a_n \in U_{\mathcal{A}}} \{ \mathcal{A}(\beta[x_1 \mapsto a_1, \dots, x_n \mapsto a_n])(F) \} = 1.$$

Note that it is not possible to replace $A \models \dots$ by $A, \beta \models \dots$ in Lemma 3.7.

Lemma 3.8 Let \mathcal{A} be a Σ -algebra, let F be a Σ -formula with free variables x_1, \ldots, x_n , let σ be a substitution, and let y_1, \ldots, y_m be the free variables of $F\sigma$. Then

$$\mathcal{A} \models \forall x_1, \dots, x_n F \text{ implies } \mathcal{A} \models \forall y_1, \dots, y_m F \sigma.$$

Proof. By the previous lemma, we have $\mathcal{A} \models \forall x_1, \ldots, x_n F$ if and only if $\mathcal{A} \models F$ and similarly $\mathcal{A} \models \forall y_1, \ldots, y_m F \sigma$ if and only if $\mathcal{A} \models F \sigma$. So it suffices to show that $\mathcal{A} \models F$ implies $\mathcal{A} \models F \sigma$. Suppose that $\mathcal{A} \models F$, that is, $\mathcal{A}(\beta)(F) = 1$ for all assignments β . Then for every assignment γ , we have by Prop. 3.5 $\mathcal{A}(\gamma)(F\sigma) = \mathcal{A}(\gamma \circ \sigma)(F) = 1$ (take $\beta = \gamma \circ \sigma$), and therefore $\mathcal{A} \models F \sigma$.