
6.1 Term Representations

The obvious data structure for terms: Trees

f(g(x1), f(g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

An alternative: Flatterms

f(g(x1), f(g(x1), x2))

f g x1 f g x1 x2

need more memory;
but: better suited for preorder term traversal and easier memory management.

6.2 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .
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Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the requirements are different
(insertion and deletion are much less important).

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

Perfect filtering:

The indexing technique returns exactly those terms satisfying the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all terms satisfying the
query.

Retrieval operations must be followed by an additional check, but the index can often
be implemented more efficiently.

Frequently: All occurrences of variables are treated as different variables.
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Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f(g(∗, b), ∗): f.1.g.1.∗
f.1.g.2.b
f.2.∗

Each leaf of the trie contains the set of (pointers to) all terms that contain the respec-
tive path.

Example: Path index for {f(g(d, ∗), c), g(b, h(c)), f(g(∗, c), c), f(b, g(c, b)), f(b, g(∗, b)),
f(∗, c), f(∗, g(c, b))}

f

1 2

g c

{1, 3, 6}1 2

d

{1}

∗

{1}

g

1 2

b

{2}

h

1

c

{2}

∗

{3}

c

{3}

b

{4, 5}

g

1 2

c

{4, 7}

b

{4, 5, 7}

∗

{5}

∗

{6, 7}

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for all paths.
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Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f(g(∗, b), ∗): f.g.∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is represented by the path.

Example: Discrimination tree for {f(g(d, ∗), c), g(b, h(c)), f(g(∗, c), c), f(b, g(c, b)),
f(b, g(∗, b)), f(∗, c), f(∗, g(c, b))}

f

g

d

∗

c

{1}

g

b

h

c

{2}

∗

c

c

{3}

b

g

c

b

{4}

∗

b

{5}

∗

c

{6}

g

c

b

{7}

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for all paths.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up the search for instances
or unifiable terms.
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Feature Vector Indexing

Goal:

C ′ is subsumed by C if C ′ = Cσ ∨D.

Find all clauses C ′ for a given C or vice versa.

If C ′ is subsumed by C, then

• C ′ contains at least as many literals as C.

• C ′ contains at least as many positive literals as C.

• C ′ contains at least as many negative literals as C.

• C ′ contains at least as many function symbols as C.

• C ′ contains at least as many occurrences of f as C.

• C ′ contains at least as many occurrences of f in negative literals as C.

• the deepest occurrence of f in C ′ is at least as deep as in C.

• . . .

Idea:

Select a list of these “features”.

Compute the “feature vector” (a list of natural numbers) for each clause and store it
in a trie.

When searching for a subsuming clause: Traverse the trie, check all clauses for which
all features are smaller or equal. (Stop if a subsuming clause is found.)

When searching for subsumed clauses: Traverse the trie, check all clauses for which
all features are larger or equal.

Advantages:

Works on the clause level, rather than on the term level.

Specialized for subsumption testing.

Disadvantages:

Needs to be complemented by other index structure for other operations.
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7 Outlook

7.1 Satisfiability Modulo Theories (SMT)

CDCL checks satisfiability of propositional formulas.

CDCL can also be used for ground first-order formulas without equality:

Ground first-order atoms are treated like propositional variables.

Truth values of P (a), Q(a), Q(f(a)) are independent.

For ground formulas with equality, independence is lost:

If b ≈ c is true, then f(b) ≈ f(c) must also be true.

Similarly for other theories, e. g. linear arithmetic: b > 5 implies b > 3.

We can still use CDCL, but we must combine it with a decision procedure for the theory
part T :

M |=T C: M and the theory axioms T entail C.

New CDCL rules:

T -Propagate:

M ‖ N ⇒CDCL(T) M L ‖ N

if M |=T L where L is undefined in M and L or L occurs in N .

T -Learn:

M ‖ N ⇒CDCL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒CDCL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C
and there is some “backjump clause” C ′ ∨ L′ such that
N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′,
L′ is undefined under M , and
L′ or L′ occurs in N or in M Ld M ′.
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7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:

read/2 becomes read : array × nat → data.

write/3 becomes write : array × nat× data → array.

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, natA.

Interpretations of function and predicate symbols correspond to their declarations:

readA : arrayA × natA → dataA

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

More difficult:

Subsorts

Overloading

7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint (positive) disjunctions:

N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

if var(C1) ∩ var(C2) = ∅.

Split clauses are smaller and more likely to be usable for simplification.

Splitting tree is explored using intelligent backtracking.
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7.4 Integrating Theories into Resolution

Certain kinds of axioms are

important in practice,

but difficult for theorem provers.

Most important case: equality

but also: orderings, (associativity and) commutativity, . . .

Idea: Combine ordered resolution and critical pair computation.

Superposition (ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Superposition (non-ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and u is not a variable.

Advantages:

No variable overlaps (as in KB-completion).

Stronger ordering restrictions:
Only overlaps of (strictly) maximal sides of (strictly) maximal literals are required.

Stronger redundancy criteria.

Similarly for orderings:

Ordered chaining:

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

Integrating other theories:

Black box:

Use external decision procedure.

Easy, but works only under certain restrictions.
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White box:

Integrate using specialized inference rules and theory unification.

Hard work.

Often: integrating more theory axioms is better.
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