3.20 Other Deductive Systems

- Instantiation-based methods Resolution-based instance generation Disconnection calculus
- Natural deduction
- Sequent calculus/Gentzen calculus
- Hilbert calculus

Instantiation-Based Methods for FOL

Idea:

Overlaps of complementary literals produce instantiations (as in resolution);

However, contrary to resolution, clauses are not recombined.

Instead: treat remaining variables as constant and use efficient propositional proof methods, such as CDCL.

There are both saturation-based variants, such as partial instantiation (Hooker et al. 2002) or resolution-based instance generation (Inst-Gen) (Ganzinger and Korovin 2003), and tableau-style variants, such as the disconnection calculus (Billon 1996; Letz and Stenz 2001).

Successful in practice for problems that are "almost propositional" (i.e., no non-constant function symbols, no equality).

Natural Deduction

Idea:

Model the concept of proofs from assumptions as humans do it.

To prove $F \to G$, assume F and try to derive G.

Initial ideas: Jaśkowski (1934), Gentzen (1934); extended by Prawitz (1965).

Popular in interactive proof systems.

Sequent Calculus

Idea:

Assumptions internalized into the data structure of sequents

 $F_1,\ldots,F_m\vdash G_1,\ldots,G_k$

meaning

$$F_1 \land \dots \land F_m \to G_1 \lor \dots \lor G_k$$

Inferences rules, e.g.:

$$\frac{\Gamma \vdash \Delta}{\Gamma, F \vdash \Delta} \quad (WL) \qquad \frac{\Gamma, F \vdash \Delta}{\Gamma, \Sigma, F \lor G \vdash \Delta, \Pi} \quad (\lor L)$$
$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash F, \Delta} \quad (WR) \qquad \frac{\Gamma \vdash F, \Delta}{\Gamma, \Sigma \vdash F \land G, \Delta, \Pi} \quad (\land R)$$

Initial idea: Gentzen 1934.

Perfect symmetry between the handling of assumptions and their consequences; interesting for proof theory.

Can be used both backwards and forwards.

Allows to simulate both natural deduction and semantic tableaux.

Hilbert Calculus

Idea:

Direct proof method (proves a theorem from axioms, rather than refuting its negation)

Axiom schemes, e.g.,

$$F \to (G \to F)$$
$$(F \to (G \to H)) \to ((F \to G) \to (F \to H))$$

plus Modus ponens:

$$\frac{F \qquad F \to G}{G}$$

Unsuitable for finding or reading proofs, but sometimes used for *specifying* (e.g. modal) logics.

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $Eq(\Sigma)$ contains the formulas

$$\forall x (x \sim x) \forall x, y (x \sim y \rightarrow y \sim x) \forall x, y, z (x \sim y \land y \sim z \rightarrow x \sim z) \forall \vec{x}, \vec{y} (x_1 \sim y_1 \land \dots \land x_n \sim y_n \rightarrow f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n)) \forall \vec{x}, \vec{y} (x_1 \sim y_1 \land \dots \land x_m \sim y_m \land P(x_1, \dots, x_m) \rightarrow P(y_1, \dots, y_m))$$

for every $f/n \in \Omega$ and $P/m \in \Pi$. Let \tilde{F} be the formula that one obtains from F if every occurrence of \approx is replaced by \sim . Then F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.

Proof. Let $\Sigma = (\Omega, \Pi)$, let $\Sigma_1 = (\Omega, \Pi \cup \{\sim/2\})$.

For the "only if" part assume that F is satisfiable and let \mathcal{A} be a Σ -model of F. Then we define a Σ_1 -algebra \mathcal{B} in such a way that \mathcal{B} and \mathcal{A} have the same universe, $f_{\mathcal{B}} = f_{\mathcal{A}}$ for every $f \in \Omega$, $P_{\mathcal{B}} = P_{\mathcal{A}}$ for every $P \in \Pi$, and $\sim_{\mathcal{B}}$ is the identity relation on the universe. It is easy to check that \mathcal{B} is a model of both \tilde{F} and of $Eq(\Sigma)$.

For the "if" part assume that the Σ_1 -algebra $\mathcal{B} = (U_{\mathcal{B}}, (f_{\mathcal{B}} : U_{\mathcal{B}}^n \to U_{\mathcal{B}})_{f \in \Omega}, (P_{\mathcal{B}} \subseteq U_{\mathcal{B}}^m)_{P \in \Pi \cup \{\sim\}})$ is a model of $Eq(\Sigma) \cup \{\tilde{F}\}$. Then the interpretation $\sim_{\mathcal{B}}$ of \sim in \mathcal{B} is a congruence relation on $U_{\mathcal{B}}$ with respect to the functions $f_{\mathcal{B}}$ and the predicates $P_{\mathcal{B}}$.

We will now construct a Σ -algebra \mathcal{A} from \mathcal{B} and the congruence relation $\sim_{\mathcal{B}}$. Let [a]be the congruence class of an element $a \in U_{\mathcal{B}}$ with respect to $\sim_{\mathcal{B}}$. The universe $U_{\mathcal{A}}$ of \mathcal{A} is the set $\{ [a] \mid a \in U_{\mathcal{B}} \}$ of congruence classes of the universe of \mathcal{B} . For a function symbol $f \in \Omega$, we define $f_{\mathcal{A}}([a_1], \ldots, [a_n]) = [f_{\mathcal{B}}(a_1, \ldots, a_n)]$, and for a predicate symbol $P \in \Pi$, we define $([a_1], \ldots, [a_n]) \in P_{\mathcal{A}}$ if and only if $(a_1, \ldots, a_n) \in P_{\mathcal{B}}$. Observe that this is well-defined: If we take different representatives of the same congruence class, we get the same result by congruence of $\sim_{\mathcal{B}}$. For any \mathcal{A} -assignment γ choose some \mathcal{B} assignment β such that $\mathcal{B}(\beta)(x) \in \mathcal{A}(\gamma)(x)$ for every x, then for every Σ -term t we have $\mathcal{A}(\gamma)(t) = [\mathcal{B}(\beta)(t)]$, and analogously for every Σ -formula G, $\mathcal{A}(\gamma)(G) = \mathcal{B}(\beta)(\tilde{G})$. Both properties can easily shown by structural induction. Therefore, \mathcal{A} is a model of F. \Box By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve equational problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

Roadmap

How to proceed:

• This semester: Equations (unit clauses with equality)

Term rewrite systems Expressing semantic consequence syntactically Knuth-Bendix-Completion Entailment for equations

• Next semester: Equational clauses

Combining resolution and KB-completion \rightarrow Superposition Entailment for clauses with equality

4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation $\rightarrow_E \subseteq T_{\Sigma}(X) \times T_{\Sigma}(X)$ is defined by

 $s \to_E t$ iff there exist $(l \approx r) \in E, p \in \text{pos}(s)$, and $\sigma : X \to T_{\Sigma}(X)$, such that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

An instance of the lhs (left-hand side) of an equation is called a *redex* (reducible expression). *Contracting* a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

An equation $l \approx r$ is also called a *rewrite rule*, if l is not a variable and $var(l) \supseteq var(r)$.

Notation: $l \to r$.

A set of rewrite rules is called a *term rewrite system (TRS)*.

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of universally quantified equations. A model of E is also called an E-algebra.

If $E \models \forall \vec{x}(s \approx t)$, i. e., $\forall \vec{x}(s \approx t)$ is valid in all *E*-algebras, we write this also as $s \approx_E t$.

Goal:

Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

 $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$.

Let E be a set of equations over $T_{\Sigma}(X)$. The following inference system allows to derive consequences of E:

$$E \vdash t \approx t \qquad (Reflexivity)$$

for every $t \in T_{\Sigma}(X)$
$$\frac{E \vdash t \approx t'}{E \vdash t' \approx t} \qquad (Symmetry)$$

$$\frac{E \vdash t \approx t' \qquad E \vdash t' \approx t''}{E \vdash t \approx t''} \qquad (Transitivity)$$

$$\frac{E \vdash t_1 \approx t'_1 \qquad \dots \qquad E \vdash t_n \approx t'_n}{E \vdash f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)} \qquad (Congruence)$$

$$E \vdash t\sigma \approx t'\sigma \qquad (Instance)$$

if $(t \approx t') \in E$ and $\sigma : X \to T_{\Sigma}(X)$

Lemma 4.2 The following properties are equivalent:

- (i) $s \leftrightarrow_E^* t$
- (ii) $E \vdash s \approx t$ is derivable.

Proof. (i) \Rightarrow (ii): $s \leftrightarrow_E t$ implies $E \vdash s \approx t$ by induction on the depth of the position where the rewrite rule is applied; then $s \leftrightarrow_E^* t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow_E^* t$.

(ii) \Rightarrow (i): By induction on the size (number of symbols) of the derivation for $E \vdash s \approx t$.

Constructing a quotient algebra:

Let X be a set of variables.

For $t \in T_{\Sigma}(X)$ let $[t] = \{ t' \in T_{\Sigma}(X) \mid E \vdash t \approx t' \}$ be the congruence class of t.

Define a Σ -algebra $T_{\Sigma}(X)/E$ (abbreviated by \mathcal{T}) as follows:

$$U_{\mathcal{T}} = \{ [t] \mid t \in \mathcal{T}_{\Sigma}(X) \}.$$

$$f_{\mathcal{T}}([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)] \text{ for } f/n \in \Omega.$$

Lemma 4.3 $f_{\mathcal{T}}$ is well-defined: If $[t_i] = [t'_i]$, then $[f(t_1, ..., t_n)] = [f(t'_1, ..., t'_n)]$.

Proof. Follows directly from the *Congruence* rule for \vdash .

Lemma 4.4 $\mathcal{T} = T_{\Sigma}(X)/E$ is an *E*-algebra.

Proof. Let $\forall x_1 \dots x_n (s \approx t)$ be an equation in E; let β be an arbitrary assignment. We have to show that $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t)) = 1$, or equivalently, that $\mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t)$ for all $\gamma = \beta [x_i \mapsto [t_i] \mid 1 \leq i \leq n]$ with $[t_i] \in U_{\mathcal{T}}$.

Let $\sigma = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$, then $s\sigma \in \mathcal{T}(\gamma)(s)$ and $t\sigma \in \mathcal{T}(\gamma)(t)$.

By the Instance rule, $E \vdash s\sigma \approx t\sigma$ is derivable, hence $\mathcal{T}(\gamma)(s) = [s\sigma] = [t\sigma] = \mathcal{T}(\gamma)(t)$.

Lemma 4.5 Let X be a countably infinite set of variables; let $s, t \in T_{\Sigma}(Y)$. If $T_{\Sigma}(X)/E \models \forall \vec{x}(s \approx t)$, then $E \vdash s \approx t$ is derivable.

Proof. Without loss of generality, we assume that all variables in \vec{x} are contained in X. (Otherwise, we rename the variables in the equation. Since X is countably infinite, this is always possible.) Assume that $\mathcal{T} \models \forall \vec{x}(s \approx t)$, i.e., $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t)) = 1$. Consequently, $\mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] \mid 1 \leq i \leq n]$ with $[t_i] \in U_{\mathcal{T}}$.

Choose $t_i = x_i$, then $[s] = \mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t) = [t]$, so $E \vdash s \approx t$ is derivable by definition of \mathcal{T} .

Theorem 4.6 ("Birkhoff's Theorem") Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\Sigma}(X)$:

- (i) $s \leftrightarrow_E^* t$.
- (ii) $E \vdash s \approx t$ is derivable.
- (iii) $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$.
- (iv) $T_{\Sigma}(X)/E \models \forall \vec{x}(s \approx t).$

Proof. (i) \Leftrightarrow (ii): Lemma 4.2.

(ii) \Rightarrow (iii): By induction on the size of the derivation for $E \vdash s \approx t$.

(iii) \Rightarrow (iv): Obvious, since $\mathcal{T} = T_{\Sigma}(X)/E$ is an *E*-algebra.

 $(iv) \Rightarrow (ii)$: Lemma 4.5.

Universal Algebra

 $T_{\Sigma}(X)/E = T_{\Sigma}(X)/\approx_E = T_{\Sigma}(X)/\leftrightarrow_E^*$ is called the free *E*-algebra with generating set $X/\approx_E = \{ [x] \mid x \in X \}$:

Every mapping $\varphi: X/\approx_E \to \mathcal{B}$ for some *E*-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi}: T_{\Sigma}(X)/E \to \mathcal{B}$.

 $T_{\Sigma}(\emptyset)/E = T_{\Sigma}(\emptyset)/\approx_{E} = T_{\Sigma}(\emptyset)/\leftrightarrow_{E}^{*}$ is called the *initial E-algebra*.

 $\approx_E = \{ (s,t) \mid E \models s \approx t \}$ is called the equational theory of E.

 $\approx_E^I = \{ (s,t) \mid T_{\Sigma}(\emptyset)/E \models s \approx t \}$ is called the *inductive theory* of E.

Example:

Let $E = \{ \forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y)) \}$. Then $x+y \approx_E^I y+x$, but $x+y \not\approx_E y+x$.

4.3 Confluence

Let (A, \rightarrow) be an abstract reduction system.

b and $c \in A$ are *joinable*, if there is a a such that $b \to^* a \leftarrow^* c$. Notation: $b \downarrow c$.

The relation \rightarrow is called

Church-Rosser, if $b \leftrightarrow^* c$ implies $b \downarrow c$.

confluent, if $b \leftarrow^* a \rightarrow^* c$ implies $b \downarrow c$.

locally confluent, if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$.

convergent, if it is confluent and terminating.

Theorem 4.7 The following properties are equivalent:

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

Proof. (i) \Rightarrow (ii): trivial.

(ii) \Rightarrow (i): by induction on the number of peaks in the derivation $b \leftrightarrow^* c$.

Lemma 4.8 If \rightarrow is confluent, then every element has at most one normal form.

Proof. Suppose that some element $a \in A$ has normal forms b and c, then $b \leftarrow^* a \rightarrow^* c$. If \rightarrow is confluent, then $b \rightarrow^* d \leftarrow^* c$ for some $d \in A$. Since b and c are normal forms, both derivations must be empty, hence $b \rightarrow^0 d \leftarrow^0 c$, so b, c, and d must be identical.

Corollary 4.9 If \rightarrow is normalizing and confluent, then every element *b* has a unique normal form.

Proposition 4.10 If \rightarrow is normalizing and confluent, then $b \leftrightarrow^* c$ if and only if $b \downarrow = c \downarrow$.

Proof. Either using Thm. 4.7 or directly by induction on the length of the derivation of $b \leftrightarrow^* c$.