
3.20 Other Deductive Systems

• Instantiation-based methods
Resolution-based instance generation
Disconnection calculus
. . .

• Natural deduction

• Sequent calculus/Gentzen calculus

• Hilbert calculus

Instantiation-Based Methods for FOL

Idea:

Overlaps of complementary literals produce instantiations (as in resolution);

However, contrary to resolution, clauses are not recombined.

Instead: treat remaining variables as constant and use efficient propositional proof
methods, such as CDCL.

There are both saturation-based variants, such as partial instantiation (Hooker et al.
2002) or resolution-based instance generation (Inst-Gen) (Ganzinger and Korovin 2003),
and tableau-style variants, such as the disconnection calculus (Billon 1996; Letz and
Stenz 2001).

Successful in practice for problems that are “almost propositional” (i. e., no non-constant
function symbols, no equality).

Natural Deduction

Idea:

Model the concept of proofs from assumptions as humans do it.

To prove F → G, assume F and try to derive G.

Initial ideas: Jaśkowski (1934), Gentzen (1934); extended by Prawitz (1965).

Popular in interactive proof systems.

101

Sequent Calculus

Idea:

Assumptions internalized into the data structure of sequents

F1, . . . , Fm ⊢ G1, . . . , Gk

meaning

F1 ∧ · · · ∧ Fm → G1 ∨ · · · ∨Gk

Inferences rules, e.g.:

Γ ⊢ ∆

Γ, F ⊢ ∆
(WL)

Γ, F ⊢ ∆ Σ, G ⊢ Π

Γ,Σ, F ∨G ⊢ ∆,Π
(∨L)

Γ ⊢ ∆

Γ ⊢ F,∆
(WR)

Γ ⊢ F,∆ Σ ⊢ G,Π

Γ,Σ ⊢ F ∧G,∆,Π
(∧R)

Initial idea: Gentzen 1934.

Perfect symmetry between the handling of assumptions and their consequences; inter-
esting for proof theory.

Can be used both backwards and forwards.

Allows to simulate both natural deduction and semantic tableaux.

Hilbert Calculus

Idea:

Direct proof method (proves a theorem from axioms, rather than refuting its negation)

Axiom schemes, e. g.,

F → (G→ F)
(F → (G→ H))→ ((F → G)→ (F → H))

plus Modus ponens:

F F → G

G

Unsuitable for finding or reading proofs, but sometimes used for specifying (e.g. modal)
logics.

102

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for
first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let ∼ /∈ Π be a
new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P (x1, . . . , xm)→ P (y1, . . . , ym))

for every f/n ∈ Ω and P/m ∈ Π. Let F̃ be the formula that one obtains from F if every
occurrence of ≈ is replaced by ∼. Then F is satisfiable if and only if Eq(Σ) ∪ {F̃} is
satisfiable.

Proof. Let Σ = (Ω,Π), let Σ1 = (Ω,Π ∪ {∼/2}).

For the “only if” part assume that F is satisfiable and let A be a Σ-model of F . Then we
define a Σ1-algebra B in such a way that B and A have the same universe, fB = fA for
every f ∈ Ω, PB = PA for every P ∈ Π, and ∼B is the identity relation on the universe.
It is easy to check that B is a model of both F̃ and of Eq(Σ).

For the “if” part assume that the Σ1-algebra B = (UB, (fB : Un
B → UB)f∈Ω, (PB ⊆

Um
B)P∈Π∪{∼}) is a model of Eq(Σ) ∪ {F̃}. Then the interpretation ∼B of ∼ in B is a

congruence relation on UB with respect to the functions fB and the predicates PB.

We will now construct a Σ-algebra A from B and the congruence relation ∼B. Let [a]
be the congruence class of an element a ∈ UB with respect to ∼B. The universe UA of
A is the set { [a] | a ∈ UB } of congruence classes of the universe of B. For a function
symbol f ∈ Ω, we define fA([a1], . . . , [an]) = [fB(a1, . . . , an)], and for a predicate symbol
P ∈ Π, we define ([a1], . . . , [an]) ∈ PA if and only if (a1, . . . , an) ∈ PB. Observe that
this is well-defined: If we take different representatives of the same congruence class,
we get the same result by congruence of ∼B. For any A-assignment γ choose some B-
assignment β such that B(β)(x) ∈ A(γ)(x) for every x, then for every Σ-term t we have
A(γ)(t) = [B(β)(t)], and analogously for every Σ-formula G, A(γ)(G) = B(β)(G̃). Both
properties can easily shown by structural induction. Therefore, A is a model of F . ✷

103

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve equational problems that are intu-
itively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.

Roadmap

How to proceed:

• This semester: Equations (unit clauses with equality)

Term rewrite systems
Expressing semantic consequence syntactically
Knuth-Bendix-Completion
Entailment for equations

• Next semester: Equational clauses

Combining resolution and KB-completion → Superposition
Entailment for clauses with equality

4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s→E t iff there exist (l ≈ r) ∈ E, p ∈ pos(s),
and σ : X → TΣ(X),
such that s|p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expres-
sion). Contracting a redex means replacing it with the corresponding instance of the
rhs (right-hand side) of the rule.

An equation l ≈ r is also called a rewrite rule, if l is not a variable and var(l) ⊇ var(r).

Notation: l → r.

A set of rewrite rules is called a term rewrite system (TRS).

104

We say that a set of equations E or a TRS R is terminating, if the rewrite relation →E

or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of universally quantified equations. A model of E is also called an
E-algebra.

If E |= ∀~x(s ≈ t), i. e., ∀~x(s ≈ t) is valid in all E-algebras, we write this also as s ≈E t.

Goal:
Use the rewrite relation→E to express the semantic consequence relation syntactically:

s ≈E t if and only if s↔∗
E t.

Let E be a set of equations over TΣ(X). The following inference system allows to derive
consequences of E:

E ⊢ t ≈ t (Reflexivity)
for every t ∈ TΣ(X)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′1 . . . E ⊢ tn ≈ t′n
E ⊢ f(t1, . . . , tn) ≈ f(t′

1
, . . . , t′n)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)
if (t ≈ t′) ∈ E and σ : X → TΣ(X)

105

Lemma 4.2 The following properties are equivalent:

(i) s↔∗
E t

(ii) E ⊢ s ≈ t is derivable.

Proof. (i)⇒(ii): s ↔E t implies E ⊢ s ≈ t by induction on the depth of the position
where the rewrite rule is applied; then s ↔∗

E t implies E ⊢ s ≈ t by induction on the
number of rewrite steps in s↔∗

E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for E ⊢ s ≈ t.
✷

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ⊢ t ≈ t′ } be the congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f(t1, . . . , tn)] for f/n ∈ Ω.

Lemma 4.3 fT is well-defined: If [ti] = [t′i], then [f(t1, . . . , tn)] = [f(t′1, . . . , t
′
n)].

Proof. Follows directly from the Congruence rule for ⊢. ✷

Lemma 4.4 T = TΣ(X)/E is an E-algebra.

Proof. Let ∀x1 . . . xn(s ≈ t) be an equation in E; let β be an arbitrary assignment.

We have to show that T (β)(∀~x(s ≈ t)) = 1, or equivalently, that T (γ)(s) = T (γ)(t) for
all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ UT .

Let σ = {x1 7→ t1, . . . , xn 7→ tn}, then sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ⊢ sσ ≈ tσ is derivable, hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t).
✷

106

Lemma 4.5 Let X be a countably infinite set of variables; let s, t ∈ TΣ(Y). If
TΣ(X)/E |= ∀~x(s ≈ t), then E ⊢ s ≈ t is derivable.

Proof. Without loss of generality, we assume that all variables in ~x are contained in
X . (Otherwise, we rename the variables in the equation. Since X is countably infinite,
this is always possible.) Assume that T |= ∀~x(s ≈ t), i. e., T (β)(∀~x(s ≈ t)) = 1.
Consequently, T (γ)(s) = T (γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ UT .

Choose ti = xi, then [s] = T (γ)(s) = T (γ)(t) = [t], so E ⊢ s ≈ t is derivable by
definition of T . ✷

Theorem 4.6 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s, t ∈ TΣ(X):

(i) s↔∗
E t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

Proof. (i)⇔(ii): Lemma 4.2.

(ii)⇒(iii): By induction on the size of the derivation for E ⊢ s ≈ t.

(iii)⇒(iv): Obvious, since T = TΣ(X)/E is an E-algebra.

(iv)⇒(ii): Lemma 4.5. ✷

Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗
E is called the free E-algebra with generating set

X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E-algebra B can be extended to a homomor-
phism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔
∗
E is called the initial E-algebra.

≈E = { (s, t) | E |= s ≈ t } is called the equational theory of E.

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t } is called the inductive theory of E.

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}. Then x + y ≈I
E y + x, but

x+ y 6≈E y + x.

107

4.3 Confluence

Let (A,→) be an abstract reduction system.

b and c ∈ A are joinable, if there is a a such that b→∗ a←∗ c.
Notation: b ↓ c.

The relation → is called

Church-Rosser, if b↔∗ c implies b ↓ c.

confluent, if b←∗ a→∗ c implies b ↓ c.

locally confluent, if b← a→ c implies b ↓ c.

convergent, if it is confluent and terminating.

Theorem 4.7 The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof. (i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in the derivation b↔∗ c. ✷

Lemma 4.8 If → is confluent, then every element has at most one normal form.

Proof. Suppose that some element a ∈ A has normal forms b and c, then b←∗ a→∗ c.
If → is confluent, then b →∗ d ←∗ c for some d ∈ A. Since b and c are normal forms,
both derivations must be empty, hence b →0 d ←0 c, so b, c, and d must be identical.

✷

Corollary 4.9 If → is normalizing and confluent, then every element b has a unique
normal form.

Proposition 4.10 If→ is normalizing and confluent, then b↔∗ c if and only if b↓ = c↓.

Proof. Either using Thm. 4.7 or directly by induction on the length of the derivation
of b↔∗ c. ✷

108

