3.20 Other Deductive Systems

e Instantiation-based methods
Resolution-based instance generation
Disconnection calculus

e Natural deduction
e Sequent calculus/Gentzen calculus

e Hilbert calculus

Instantiation-Based Methods for FOL

Idea:
Overlaps of complementary literals produce instantiations (as in resolution);
However, contrary to resolution, clauses are not recombined.

Instead: treat remaining variables as constant and use efficient propositional proof
methods, such as CDCL.

There are both saturation-based variants, such as partial instantiation (Hooker et al.
2002) or resolution-based instance generation (Inst-Gen) (Ganzinger and Korovin 2003),
and tableau-style variants, such as the disconnection calculus (Billon 1996; Letz and
Stenz 2001).

Successful in practice for problems that are “almost propositional” (i. e., no non-constant
function symbols, no equality).

Natural Deduction

Idea:
Model the concept of proofs from assumptions as humans do it.
To prove F' — G, assume F' and try to derive G.
Initial ideas: Jaskowski (1934), Gentzen (1934); extended by Prawitz (1965).

Popular in interactive proof systems.
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Sequent Calculus

Idea:

Assumptions internalized into the data structure of sequents
Fi,....F,F Gy, . Gy

meaning
BEAN---NF,—>G V- VG

Inferences rules, e.g.:

Ik A I'FFA YGFI
F,FI—A<WL) Y. FVGF AT (VL)
T A T'FFA  YFGI
TFFA (WR) TS F FAG,AT (AR)

Initial idea: Gentzen 1934.

Perfect symmetry between the handling of assumptions and their consequences; inter-
esting for proof theory.

Can be used both backwards and forwards.

Allows to simulate both natural deduction and semantic tableaux.

Hilbert Calculus

Idea:
Direct proof method (proves a theorem from axioms, rather than refuting its negation)

Axiom schemes, e. g.,

F— (G—F)
(F—-(G—H)— (F—-G)—= (F—H))

plus Modus ponens:

F F—-d
G

Unsuitable for finding or reading proofs, but sometimes used for specifying (e.g. modal)
logics.
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4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for
first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1 Let F' be a closed first-order formula with equality. Let ~ ¢ II be a
new predicate symbol. The set Eq(X) contains the formulas

Vo (x ~ x)
Vo, y(z~y —y~z)
Ve, y,z(x ~yANy~z—x~2)
VZ, Gz~ yr Ao A~y = f(@1, @) ~ (Y1, Yn)
VE, ¢ (x1 ~ Yy A ANy ~ Y A P(21, .. Z) = P(Y1, -+ s Um))

for every f/n € Q and P/m € II. Let F' be the formula that one obtains from F if every
occurrence of = is replaced by ~. Then F' is satisfiable if and only if Eq(X) U {F} is
satisfiable.

Proof. Let ¥ = (Q,1I), let ¥; = (Q,ITU {~/2}).

For the “only if” part assume that F' is satisfiable and let A be a >-model of F. Then we
define a ¥j-algebra B in such a way that B and A have the same universe, fg = f4 for
every f € Q, Pg = P4 for every P € II, and ~p is the identity relation on the universe.
It is easy to check that B is a model of both F and of Eq(X%).

For the “if” part assume that the ¥-algebra B = (Up, (fs : U — Us)sen, (P5 C
Ug')periu~}) is a model of Fq(¥X) U {F}. Then the interpretation ~z of ~ in B is a
congruence relation on Uz with respect to the functions fz and the predicates Pg.

We will now construct a -algebra A from B and the congruence relation ~g. Let [a]
be the congruence class of an element a € Up with respect to ~z. The universe Uy of
A is the set {]a] | @ € Ug} of congruence classes of the universe of B. For a function
symbol f € Q, we define f4([a1],...,[an]) = [fs(ai,...,a,)], and for a predicate symbol
P € 11, we define ([a1],...,[an]) € P4 if and only if (ay,...,a,) € Pg. Observe that
this is well-defined: If we take different representatives of the same congruence class,
we get the same result by congruence of ~z. For any A-assignment v choose some B-
assignment, 3 such that B(3)(x) € A(v)(z) for every z, then for every ¥-term ¢ we have

A(7)(t) = [B(B)(t)], and analogously for every Y-formula G, A(y)(G) = B(8)(G). Both

properties can easily shown by structural induction. Therefore, A is a model of . O
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By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve equational problems that are intu-
itively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.

Roadmap

How to proceed:
e This semester: Equations (unit clauses with equality)

Term rewrite systems

Expressing semantic consequence syntactically
Knuth-Bendix-Completion

Entailment for equations

e Next semester: Equational clauses

Combining resolution and KB-completion — Superposition
Entailment for clauses with equality

4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.
The rewrite relation —p C Tx(X) x Ty (X) is defined by

s —pt iff there exist (I~ 7)€ E, p € pos(s),
and 0 : X — Tx(X),
such that s|, = lo and t = s[ro],.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expres-
sion). Contracting a redex means replacing it with the corresponding instance of the
rhs (right-hand side) of the rule.

An equation | = r is also called a rewrite rule, if [ is not a variable and var(l) D var(r).
Notation: [ — r.

A set of rewrite rules is called a term rewrite system (TRS).
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We say that a set of equations E or a TRS R is terminating, if the rewrite relation — g
or — has this property.

(Analogously for other properties of abstract reduction systems).

Note: If F is terminating, then it is a TRS.

E-Algebras
Let E be a set of universally quantified equations. A model of E is also called an
FE-algebra.

If £ |=V%(s = t),i.e, VZ(s ~ t)is valid in all E-algebras, we write this also as s ~g t.

Goal:

Use the rewrite relation — g to express the semantic consequence relation syntactically:
s ~p t if and only if s <3}, .

Let E be a set of equations over Tx(X). The following inference system allows to derive
consequences of E:

Ert~t (Reflexivity)
for every t € Tx(X)

Erbt~t
EFt~t (Symmetry)
Ert=t EFt ~t

Ebtat (Transitivity)

- C.

E|_f<t1,-..,tn)%f(t’l’_”’t/n) ( Ongruence)
El-to~to (Instance)

if(t~t)e Fando: X — Ty(X)
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Lemma 4.2 The following properties are equivalent:
(i) s <54t

(ii) E'+ s &~ t is derivable.

Proof. (i)=-(ii): s <> t implies £ F s &~ t by induction on the depth of the position
where the rewrite rule is applied; then s «<+7, ¢ implies £ F s ~ ¢ by induction on the
number of rewrite steps in s <+, t.

(ii)=-(i): By induction on the size (number of symbols) of the derivation for £ F s & t.

O
Constructing a quotient algebra:
Let X be a set of variables.
Fort € Tx(X) let [t] ={¢ € Ts(X) | EF ¢t &~ '} be the congruence class of t.
Define a Y-algebra Tx(X)/E (abbreviated by 7) as follows:
Ur ={[t][t € Ts(X)}.
fr(tl, - ta]) = [f (1, - to)] for f/n € Q.
Lemma 4.3 fr is well-defined: If [t;| = [t}], then [f(t1,...,t,)] = [f(t], ..., )]
Proof. Follows directly from the Congruence rule for . O

Lemma 4.4 7 = Tx(X)/F is an E-algebra.

Proof. Let Vx;...z,(s =~ t) be an equation in F; let § be an arbitrary assignment.

We have to show that 7 (8)(VZ(s & t)) = 1, or equivalently, that T (v)(s) = T (v)(t) for

Let 0 = {x1 = t1,...,x, > t,}, then so € T(7)(s) and to € T (y)(t).
By the Instance rule, F - so = to is derivable, hence T (7)(s) = [so] = [ta] = T (7)(¢).
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Lemma 4.5 Let X be a countably infinite set of variables; let s,t € Tx(Y). If
Ts(X)/E = VZ(s ~t), then F + s~ t is derivable.

Proof. Without loss of generality, we assume that all variables in ¥ are contained in
X. (Otherwise, we rename the variables in the equation. Since X is countably infinite,

this is always possible.) Assume that T = VZ(s =~ t), i.e, T(8)(VZ(s =~ t)) = 1.
Consequently, T(7)(s) = T (7)(t) for all v = p[z; — [t;] | 1 < < n| with [t;] € Ur.

Choose t; = x;, then [s] = T(y)(s) = T(y)(t) = [t], so E F s ~ t is derivable by
definition of T . O

Theorem 4.6 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s,t € Tx(X):

(i) s <% t.

(ii) E'+ s &~ t is derivable.

(iii) s =g t, i.e., E = V(s = t).
(iv) Tx(X)/E E VZ(s =~ ).

Proof. (i)<(ii): Lemma 4.2.
(ii)=-(iii): By induction on the size of the derivation for £+ s ~ t.
(ili)=(iv): Obvious, since 7 = Ty (X)/E is an E-algebra.

(iv)=(ii): Lemma 4.5. O

Universal Algebra
Ts(X)/E = Tx(X)/~p = Tx(X)/4%; is called the free E-algebra with generating set
XJmp = {[g] |2 € X}

Every mapping ¢ : X/~pr — B for some F-algebra B can be extended to a homomor-
phism ¢ : Ty (X)/E — B.

Tx(0)/E = Tx(0)/~p = Tx(0)/+>% is called the initial E-algebra.
~p=1{(s,t)| E = s~t}is called the equational theory of E.

~L ={(s,t)| Ts(D)/E | s ~ t} is called the inductive theory of E.
Example:

Let £ = {Vz(z + 0 ~ z), VaVy(z + s(y) =~ s(z + y))}. Then x +y ~L y + z, but
r+y@Epy -+
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4.3 Confluence

Let (A, —) be an abstract reduction system.

b and ¢ € A are joinable, if there is a a such that b —* a +* c.
Notation: b | c.

The relation — is called
Church-Rosser, if b <+* ¢ implies b | c.
confluent, if b <* a —* ¢ implies b | c.
locally confluent, if b <— a — ¢ implies b | c.

convergent, if it is confluent and terminating.

Theorem 4.7 The following properties are equivalent:
(i) — has the Church-Rosser property.

(ii) — is confluent.

Proof. (i)=(ii): trivial.

(ii)=-(i): by induction on the number of peaks in the derivation b <>* c. O
Lemma 4.8 If — is confluent, then every element has at most one normal form.

Proof. Suppose that some element a € A has normal forms b and ¢, then b <* a —* c.
If — is confluent, then b —* d <* ¢ for some d € A. Since b and ¢ are normal forms,
both derivations must be empty, hence b —° d < ¢, so b, ¢, and d must be identical.

O

Corollary 4.9 If — is normalizing and confluent, then every element b has a unique
normal form.

Proposition 4.10 If — is normalizing and confluent, then b <+* c if and only if b} = c|.

Proof. FEither using Thm. 4.7 or directly by induction on the length of the derivation
of b +* c. O
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