Resolution Calculus $Res_{\mathrm{sel}}^{\succ}$

The resolution calculus $\operatorname{Res}_{\operatorname{sel}}^{\succ}$ is parameterized by

- a selection function sel
- and a well-founded ordering ≻ on atoms that is total on ground atoms and stable under substitutions.

(Ground) Ordered Resolution with Selection:

$$\frac{D \vee A \qquad C \vee \neg A}{D \vee C}$$

if the following conditions are satisfied:

- (i) $A \succ L$ for all L in D;
- (ii) nothing is selected in $D \vee A$ by sel;
- (iii) $\neg A$ is selected in $C \vee \neg A$, or nothing is selected in $C \vee \neg A$ and $\neg A \succeq L$ for all L in C.

(Ground) Ordered Factorization with Selection:

$$\frac{C \vee A \vee A}{C \vee A}$$

if the following conditions are satisfied:

- (i) $A \succeq L$ for all L in C;
- (ii) nothing is selected in $C \vee A \vee A$ by sel.

The extension from ground inferences to non-ground inferences is analogous to ordered resolution (replace \succ by $\not\preceq$ and \succeq by $\not\prec$). Again we assume that \succ is stable under substitutions.

Ordered Resolution with Selection:

$$\frac{D \vee B \qquad C \vee \neg A}{(D \vee C)\sigma}$$

if the following conditions are satisfied:

- (i) $\sigma = \text{mgu}(A, B)$;
- (ii) $B\sigma \not\preceq L\sigma$ for all L in D;
- (iii) nothing is selected in $D \vee B$ by sel;
- (iv) $\neg A$ is selected in $C \vee \neg A$, or nothing is selected in $C \vee \neg A$ and $\neg A\sigma \not\prec L\sigma$ for all L in C.

Ordered Factorization with Selection:

$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$

if the following conditions are satisfied:

- (i) $\sigma = \text{mgu}(A, B)$;
- (ii) $A\sigma \not\prec L\sigma$ for all L in C.
- (iii) nothing is selected in $C \vee A \vee B$ by sel.

Lifting Lemma for $Res_{\mathrm{sel}}^{\succ}$

Lemma 3.40 Let D and C be variable-disjoint clauses. If

$$\begin{array}{ccc} D & C \\ \downarrow \sigma & \downarrow \rho \\ \underline{D\sigma} & \underline{C\rho} \\ \hline C' & [ground inference in Res_{sel}^{\succ}] \end{array}$$

and if $sel(D\sigma) \simeq sel(D)$, $sel(C\rho) \simeq sel(C)$ (that is, "corresponding" literals are selected), then there exists a substitution τ such that

$$\frac{D \qquad C}{C''} \qquad \text{[inference in $Res^{\succ}_{\rm sel}$]}$$

$$\downarrow \tau$$

$$C' = C''\tau$$

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.41 Let N be a set of general clauses saturated under Res_{sel}^{\succ} , i. e., $Res_{sel}^{\succ}(N) \subseteq N$. Then there exists a selection function sel' such that $sel|_{N} = sel'|_{N}$ and $G_{\Sigma}(N)$ is also saturated, i. e.,

$$Res_{sel'}^{\succ}(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$$

Proof. We first define the selection function sel' such that $\operatorname{sel}'(C) = \operatorname{sel}(C)$ for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \setminus N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define $\operatorname{sel}'(C)$ to be those occurrences of literals that are ground instances of the occurrences selected by sel in D. Then proceed as in the proof of Cor. 3.31 using the lifting lemma above.

Soundness and Refutational Completeness

Theorem 3.42 Let \succ be an atom ordering and sel a selection function such that $Res_{sel}^{\succ}(N) \subseteq N$. Then

$$N \models \bot \Leftrightarrow \bot \in N$$

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider first the propositional level: Construct a candidate interpretation I_N as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even if they are false in I_C and if their maximal atom occurs only once and is positive. The result for general clauses follows using Corollary 3.41.

What Do We Gain?

Search spaces become smaller:

1	$P \lor Q$		we assume $P \succ Q$
2	$P \vee \neg Q$		and sel as indicated by
3	$\neg P \lor \overline{Q}$		X. The maximal lit-
4	$\neg P \lor \boxed{\neg Q}$		eral in a clause is de-
5	$Q \lor Q$	Res 1, 3	picted in red.
6	Q	Fact 5	
7	$\neg P$	Res 6, 4	
8	P	Res 6, 2	
9	\perp	Res 8, 7	

In this example, the ordering and selection function even ensure that the refutation proceeds strictly deterministically.

Rotation redundancy can be avoided:

From

$$\frac{C_1 \vee A \quad C_2 \vee \neg A \vee B}{C_1 \vee C_2 \vee B} \quad C_3 \vee \neg B}{C_1 \vee C_2 \vee C_3}$$

we can obtain by rotation

$$\frac{C_2 \vee \neg A \vee B \quad C_3 \vee \neg B}{C_2 \vee \neg A \vee C_3}$$

$$\frac{C_1 \vee A \quad C_2 \vee \neg A \vee C_3}{C_1 \vee C_2 \vee C_3}$$

another proof of the same clause. In large proofs many rotations are possible. However, if $A \succ B$, then the second proof does not fulfill the ordering restrictions.