
Craig-Interpolation

Theorem 3.43 (Craig 1957) Let F and G be two propositional formulas such that
F |= G. Then there exists a formula H (called the interpolant for F |= G), such that
H contains only propositional variables occurring both in F and in G, and such that
F |= H and H |= G.

Proof. Let ΠF , ΠG, and ΠFG be the sets of propositional variables that occur only
in F , only in G, or both in F and G. Translate F and ¬G into CNF; let N and M ,
respectively, denote the resulting clause set. Choose an atom ordering ≻ for which the
propositional variables in ΠF are larger than those in ΠFG ∪ ΠG. Saturate N into N ′

w. r. t. Res≻sel with an empty selection function sel. Then saturate N ′ ∪M w. r. t. Res≻sel
to derive ⊥. As N ′ is already saturated, due to the ordering restrictions only inferences
need to be considered where premises, if they are from N ′, only contain symbols from
ΠFG. The conjunction of these premises is an interpolant H . ✷

The theorem also holds for first-order formulas, but in the general case, a proof based
on resolution technology is complicated because of Skolemization.

3.14 Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (e. g., if they are tautologies)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is
called redundant w. r. t. N , if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C and
C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w. r. t. N , if all ground instances
Cσ of C are redundant w. r. t. GΣ(N).

Intuition: If a ground clause C is redundant and all clauses smaller than C hold in IC ,
then C holds in IC (so C is neither a minimal counterexample nor productive).

Note: The same ordering ≻ is used for ordering restrictions and for redundancy (and
for the completeness proof).

85

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are sufficient for us,
however.

Proposition 3.44 Some redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N .

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Res≻sel) if

Res
≻
sel(N \Red(N)) ⊆ N ∪ Red(N)

Theorem 3.45 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof (Sketch).
(i) Ground case: Consider the construction of the candidate interpretation I≻N for Res≻sel.

If a clause C ∈ N is redundant, then there exist C1, . . . , Cn ∈ N , n ≥ 0, such that
Ci ≺ C and C1, . . . , Cn |= C.

If IC |= Ci by minimality, then IC |= C.

In particular, C is not productive.

⇒ Redundant clauses are not used as premises for “essential” inferences.

By saturation, the conclusion D′ ∨ C ′ of a resolution inference is contained in N
(as before) or in Red(N). In the first case, minimality of C ensures that D′ ∨ C ′ is
productive or ID′∨C′ |= D′ ∨ C ′; in the second case, it ensures that ID′∨C′ |= D′ ∨ C ′.
So in both cases we get a contradiction (analogously for factorization). The rest of
the proof works as before.

(ii) Lifting: no additional problems over the proof of Theorem 3.42. ✷

86

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have to ensure that
redundant clauses remain redundant in the rest of the derivation.

Theorem 3.46

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof. (i) Obvious.

(ii) For ground clause sets N , the well-foundedness of the multiset extension of the clause
ordering implies that every clause in Red(N) is entailed by smaller clauses in N that are
themselves not in Red(N).

For general clause sets N , the result follows from the fact that every clause in GΣ(N) \
Red(GΣ(N)) is an instance of a clause in N \ Red(N). ✷

Recall that Red(N) may include clauses that are not in N .

Computing Saturated Sets

Redundancy is preserved when, during a theorem proving derivation one adds new
clauses or deletes redundant clauses. This motivates the following definitions:

A run of the resolution calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, we define N∞ =
⋃

i≥0
Ni and N∗ =

⋃

i≥0

⋂

j≥iNj .The set N∗ of all persistent
clauses is called the limit of the run.

Lemma 3.47 Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run. Then Red(Ni) ⊆ Red(N∞) and
Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. ✷

Corollary 3.48 Ni ⊆ N∗ ∪ Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. ✷

87

Even if a set N is inconsistent, it could happen that ⊥ is never derived, because some
required inference is never computed.

The following definition rules out such runs:

A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 3.49 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. ✷

Theorem 3.50 (Refutational Completeness: Dynamic View) LetN0 ⊢ N1 ⊢ N2 ⊢
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has a
Herbrand model. Since every clause in N0 is contained in N∗ or redundant w. r. t. N∗,
this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. ✷

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are entailed by
the current ones.

In practice, we restrict to two cases:

• We add conclusions of Res≻sel-inferences from non-redundant premises.
❀ necessary to guarantee fairness

• We add clauses that are entailed by the current ones if this makes other clauses
redundant:

N ∪ {C} ⊢ N ∪ {C,D} ⊢ N ∪ {D}

if N ∪ {C} |= D and C ∈ Red(N ∪ {D}).

Net effect: C is simplified to D
❀ useful to get easier/smaller clause sets

88

Examples of simplification techniques:

• Deletion of duplicated literals:

N ∪ {C ∨ L ∨ L} ⊢ N ∪ {C ∨ L}

• Subsumption resolution:

N ∪ {D ∨ L, C ∨Dσ ∨ Lσ} ⊢ N ∪ {D ∨ L, C ∨Dσ}

3.15 Hyperresolution

There are many variants of resolution.

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Res≻sel, the
calculus is parameterized by an atom ordering ≻ and a selection function sel.

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨Dn ∨ C)σ

with σ = mgu(A1

.
= B1, . . . , An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di;

(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by sel, or nothing
is selected in the right premise and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by a factorization in-
ference.

As we have seen, hyperresolution can be simulated by iterated binary resolution.

However this yields intermediate clauses which HR might not derive, and many of them
might not be extendable into a full HR inference.

89

3.16 Implementing Resolution: The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with the “given
clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of clauses.

The set of clauses is split into two subsets:

• WO = “Worked-off” (or “active”) clauses: Have already been selected as “given
clause”.

• U = “Usable” (or “passive”) clauses: Have not yet been selected as “given clause”.

During each iteration of the main loop:

Select a new given clause C from U ;
U := U \ {C}.

Find partner clauses Di from WO ;
New := Conclusions of inferences from {Di | i ∈ I } ∪ C where one premise is C;
U := U ∪ New ;
WO := WO ∪ {C}

⇒ At any time, all inferences between clauses in WO have been computed.

⇒ The procedure is fair, if no clause remains in U forever.

Additionally:

Try to simplify C using WO . (Skip the remainder of the iteration, if C can be
eliminated.)

Try to simplify (or even eliminate) clauses from WO using C.

Design decision: should one also simplify U using C ?

yes ❀ “Otter loop”:
Advantage: simplifications of U may be useful to derive the empty clause.

no ❀ “Discount loop”:
Advantage: clauses in U are really passive; only clauses in WO have to be kept in
index data structure. (Hence: can use index data structure for which retrieval is
faster, even if update is slower and space consumption is higher.)

90

3.17 Summary: Resolution Theorem Proving

• Resolution is a machine calculus.

• Subtle interleaving of enumerating instances and proving inconsistency through
the use of unification.

• Parameters: atom ordering ≻ and selection function sel. On the non-ground level,
ordering constraints can (only) be solved approximatively.

• Completeness proof by constructing candidate interpretations from productive
clauses C ∨ A, A ≻ C.

• Local restrictions of inferences via ≻ and sel
⇒ fewer proof variants.

• Global restrictions of the search space via elimination of redundancy
⇒ computing with “smaller”/“easier” clause sets;
⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings, equality and more specific
algebraic theories (lattices, abelian groups, rings, fields)
⇒ further specialization of inference systems required.

3.18 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem Proving, Springer-Verlag,
New York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York, 1968, revised 1995.

Like resolution, semantic tableaux were developed in the sixties, independently by Zbig-
niew Lis and Raymond Smullyan on the basis of work by Gentzen in the 30s and of Beth
in the 50s.

91

Idea

Idea (for the propositional case):

A set {F ∧G} ∪ N of formulas has a model if and only if {F ∧G, F , G} ∪ N has a
model.

A set {F ∨G} ∪ N of formulas has a model if and only if {F ∨G, F} ∪ N or
{F ∨G, G} ∪N has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are found ⇒ inconsistency de-
tected.

A Tableau for {P ∧ ¬(Q ∨ ¬R), ¬Q ∨ ¬R}

1. P ∧ ¬(Q ∨ ¬R)
2. ¬Q ∨ ¬R

3. ¬Q
5. P
6. ¬(Q ∨ ¬R)
7. ¬Q
8. ¬¬R
9. R

4. ¬R
10. P
11. ¬(Q ∨ ¬R)

This tableau is not
“maximal”,
however the first
“path” is. This
path is not
“closed”, hence the
set {1, 2} is
satisfiable. (These
notions will all be
defined below.)

Properties

Properties of tableau calculi:

analytic: inferences correspond closely to the logical meaning of the symbols.

goal oriented: inferences operate directly on the goal to be proved (unlike, e. g., ordered
resolution).

global: some inferences affect the entire proof state (set of formulas), as we will see
later.

92

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and expand the tableau at a
leaf. We append the conclusions of a rule (horizontally or vertically) at a leaf, whenever
the premise of the expansion rule matches a formula appearing anywhere on the path
from the root to that leaf.

Negation Elimination

¬¬F
F

¬⊤
⊥

¬⊥
⊤

α-Expansion
(for formulas that are essentially conjunctions: append subformulas α1 and α2 one
on top of the other)

α

α1

α2

β-Expansion
(for formulas that are essentially disjunctions:
append β1 and β2 horizontally, i. e., branch into β1 and β2)

β

β1 | β2

Classification of Formulas

conjunctive disjunctive
α α1 α2 β β1 β2

F ∧G F G ¬(F ∧G) ¬F ¬G
¬(F ∨G) ¬F ¬G F ∨G F G
¬(F → G) F ¬G F → G ¬F G

We assume that the binary connective ↔ has been eliminated in advance.

93

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered tree and inductively
defined as follows: Let {F1, . . . , Fn} be a set of formulas.

(i) The tree consisting of a single path

F1

...
Fn

is a tableau for {F1, . . . , Fn}. (We do not draw edges if nodes have only one
successor.)

(ii) If T is a tableau for {F1, . . . , Fn} and if T ′ results from T by applying an expansion
rule then T ′ is also a tableau for {F1, . . . , Fn}.

Note: We may also consider the limit tableau of a tableau expansion; this can be an
infinite tree.

A path (from the root to a leaf) in a tableau is called closed, if it either contains ⊥, or
else it contains both some formula F and its negation ¬F . Otherwise the path is called
open.

A tableau is called closed, if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.

A path π in a tableau is called maximal, if for each formula F on π that is neither a
literal nor ⊥ nor ⊤ there exists a node in π at which the expansion rule for F has been
applied.

In that case, if F is a formula on π, π also contains:

(i) α1 and α2, if F is a α-formula,

(ii) β1 or β2, if F is a β-formula, and

(iii) F ′, if F is a negation formula, and F ′ the conclusion of the corresponding elimina-
tion rule.

A tableau is called maximal, if each path is closed or maximal.

A tableau is called strict, if for each formula the corresponding expansion rule has been
applied at most once on each path containing that formula.

A tableau is called clausal, if each of its formulas is a clause.

94

A Sample Proof

One starts out from the negation of the formula to be proved.

1. ¬
(

(P → (Q → R)) → ((P ∨ S) → ((Q → R) ∨ S))
)

2. (P → (Q → R)) [11]
3. ¬((P ∨ S) → ((Q → R) ∨ S)) [12]
4. P ∨ S [31]
5. ¬((Q → R) ∨ S)) [32]
6. ¬(Q → R) [51]
7. ¬S [52]

8. ¬P [21] 9. Q → R [22]

10. P [41] 11. S [42]

There are three paths, each of them closed.

Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . , Fn}.

Theorem 3.51 {F1, . . . , Fn} satisfiable ⇔ some path (i. e., the set of its formulas) in
T is satisfiable.

Proof. (⇐) Trivial, since every path contains in particular F1, . . . , Fn.
(⇒) By induction over the structure of T . ✷

Corollary 3.52 T closed ⇒ {F1, . . . , Fn} unsatisfiable

Theorem 3.53 Every strict propositional tableau expansion is finite.

Proof. New formulas resulting from expansion are either ⊥, ⊤ or subformulas of the
expanded formula (modulo de Morgan’s law), so the number of formulas that can occur
is finite. By strictness, on each path a formula can be expanded at most once. Therefore,
each path is finite, and a finitely branching tree with finite paths is finite by Lemma 1.9.

✷

Conclusion: Strict and maximal tableaux can be effectively constructed.

95

Refutational Completeness

A set H of propositional formulas is called a Hintikka set, if

(1) there is no P ∈ Π with P ∈ H and ¬P ∈ H;

(2) ⊥ /∈ H, ¬⊤ /∈ H;

(3) if ¬¬F ∈ H, then F ∈ H;

(4) if α ∈ H, then α1 ∈ H and α2 ∈ H;

(5) if β ∈ H, then β1 ∈ H or β2 ∈ H.

Lemma 3.54 (Hintikka’s Lemma) Every Hintikka set is satisfiable.

Proof. Let H be a Hintikka set. Define a valuation A by A(P) = 1 if P ∈ H and
A(P) = 0 otherwise. Then show that A(F) = 1 for all F ∈ H by induction over the size
of formulas. ✷

Theorem 3.55 Let π be a maximal open path in a tableau. Then the set of formulas
on π is satisfiable.

Proof. We show that set of formulas on π is a Hintikka set: Conditions (3), (4), (5)
follow from the fact that π is maximal; conditions (1) and (2) follow from the fact that
π is open and from maximality for the second negation elimination rule. ✷

Note: The theorem holds also for infinite trees that are obtained as the limit of a tableau
expansion.

Theorem 3.56 {F1, . . . , Fn} satisfiable ⇔ there exists no closed strict tableau for
{F1, . . . , Fn}.

Proof. (⇒) Clear by Cor. 3.52.
(⇐) Let T be a strict maximal tableau for {F1, . . . , Fn} and let π be an open path
in T . By the previous theorem, the set of formulas on π is satisfiable, and hence by
Theorem 3.51 the set {F1, . . . , Fn}, is satisfiable. ✷

96

Consequences

The validity of a propositional formula F can be established by constructing a strict
maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths w. r. t. atomic formulas (cf. reasoning
in the proof of Theorem 3.55).

• Which of the potentially many strict maximal tableaux one computes does not
matter. In other words, tableau expansion rules can be applied don’t-care non-
deterministically (“proof confluence”).

• The expansion strategy, however, can have a dramatic impact on the tableau size.

A Variant of the β-Rule

Since F ∨G |=| F ∨ (G ∧ ¬F), the β expansion rule

β

β1 | β2

can be replaced by the following variant:

β

β1

∣

∣

∣

∣

β2

¬β1

The variant β-rule can lead to much shorter proofs, but it is not always beneficial.

In general, it is most helpful if ¬β1 can be at most (iteratively) α-expanded.

97

3.19 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified formulas:

• using ground instantiation,

• using free variables.

Tableaux with Ground Instantiation

Classification of quantified formulas:

universal existential
γ γ(t) δ δ(t)

∀xF F{x 7→ t} ∃xF F{x 7→ t}
¬∃xF ¬F{x 7→ t} ¬∀xF ¬F{x 7→ t}

Idea:

Replace universally quantified formulas by appropriate ground instances.

γ-expansion
γ

γ(t)
where t is some ground term

δ-expansion

δ

δ(c)
where c is a new Skolem constant

Skolemization becomes part of the calculus and needs not necessarily be applied in a
preprocessing step. Of course, one could do Skolemization beforehand, and then the
δ-rule would not be needed.

Note:

Skolem constants are sufficient:
In a δ-formula ∃xF , ∃ is the outermost quantifier and x is the only free variable in F .

Problems:

Having to guess ground terms is impractical.

Even worse, we may have to guess several ground instances, as strictness for γ is
incomplete. For instance, constructing a closed tableau for

{∀x (P (x) → P (f(x))), P (b), ¬P (f(f(b)))}

is impossible without applying γ-expansion twice on one path.

98

Free-Variable Tableaux

An alternative approach:

Delay the instantiation of universally quantified variables.

Replace universally quantified variables by new free variables.

Intuitively, the free variables are universally quantified outside of the entire tableau.

γ-expansion

γ

γ(x)
where x is a new free variable

δ-expansion

δ
δ(f(x1, . . . , xn))

where f is a new Skolem function, and the xi are the free variables in δ

Application of expansion rules has to be supplemented by a substitution rule:

(iii) If T is a tableau for {F1, . . . , Fn} and if σ is a substitution, then Tσ is also a
tableau for {F1, . . . , Fn}.

The substitution rule may, potentially, modify all the formulas of a tableau. This feature
is what makes the tableau method a global proof method. (Resolution, by comparison,
is a local method.)

One can show that it is sufficient to consider substitutions σ for which there is a path in
T containing two literals ¬A and B such that σ = mgu(A,B). Such tableaux are called
AMGU-Tableaux.

99

Example

1. ¬
(

∃w∀x P (x, w, f(x, w)) → ∃w∀x∃y P (x, w, y)
)

2. ∃w∀x P (x, w, f(x, w)) 11 [α]
3. ¬∃w∀x∃y P (x, w, y) 12 [α]
4. ∀x P (x, c, f(x, c)) 2(c) [δ]
5. ¬∀x∃y P (x, v1, y) 3(v1) [γ]
6. ¬∃y P (b(v1), v1, y) 5(b(v1)) [δ]
7. P (v2, c, f(v2, c)) 4(v2) [γ]
8. ¬P (b(v1), v1, v3) 6(v3) [γ]

7. and 8. are complementary (modulo unification):

{v2
.
= b(v1), c

.
= v1, f(v2, c)

.
= v3}

is solvable with an mgu σ = {v1 7→ c, v2 7→ b(c), v3 7→ f(b(c), c)}, and hence, Tσ is a
closed (linear) tableau for the formula in 1.

Problem:

Strictness for γ is still incomplete. For instance, constructing a closed tableau for

{∀x (P (x) → P (f(x))), P (b), ¬P (f(f(b)))}

is impossible without applying γ-expansion twice on one path.

Semantic Tableaux vs. Resolution

• Tableaux: global, goal-oriented, “backward”.

• Resolution: local, “forward”.

• Goal-orientation is a clear advantage if only a small subset of a large set of formulas
is necessary for a proof. (Note that resolution provers saturate also those parts of
the clause set that are irrelevant for proving the goal.)

• Resolution can be combined with more powerful redundancy elimination methods;
because of its global nature this is more difficult for the tableau method.

• Resolution can be refined to work well with equality; for tableaux this seems to be
impossible.

• On the other hand tableau calculi can be easily extended to other logics; in par-
ticular tableau provers are very successful in modal and description logics.

100

