
SU: Main Properties

If E = {x1

.
= u1, . . . , xk

.
= uk}, with xi pairwise distinct, xi 6∈ var(uj), then E is called

an (equational problem in) solved form representing the solution σE = {x1 7→ u1, . . . ,

xk 7→ uk}.

Proposition 3.26 If E is a solved form then σE is an mgu of E.

Theorem 3.27

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒SU ⊥ then E is not unifiable.

3. If E
∗

⇒SU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let’s treat the case for the 4th
rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ {x 7→ t} = σ[x 7→

tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ, iff u{x 7→

t}σ = v{x 7→ t}σ. (2) and (3) follow by induction from (1) using Proposition 3.26. ✷

Main Unification Theorem

Theorem 3.28 E is unifiable if and only if there is a most general unifier σ of E, such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof. The right-to-left implication is trivial. For the left-to-right implication we ob-
serve the following:

• ⇒SU is terminating. A suitable lexicographic ordering on the multisets E (with ⊥
minimal) shows this. Compare in this order:

(1) the number of variables that occur in E below a function or predicate symbol,
or on the right-hand side of an equation, or at least twice;

(2) the multiset of the sizes (numbers of symbols) of all equations in E;

(3) the number of non-variable left-hand sides of equations in E.

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or non-unifiability) of E from E ′ (Theorem 3.27, Proposition 3.26).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

✷
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Rule-Based Polynomial Unification

Problem: using ⇒SU , an exponential growth of terms is possible.

The following unification algorithm avoids this problem, at least if the final solved form
is represented as a DAG.

t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

if f 6= g

x
.
= y, E ⇒PU x

.
= y, E{x 7→ y}

if x ∈ var(E), x 6= y

x1

.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with
ti|pi = xi+1, tn|pn = x1

and some pi 6= ε

x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s, E ⇒PU x

.
= t, t

.
= s, E

if t, s 6∈ X and |t| ≤ |s|

Properties of PU

Theorem 3.29

1. If E ⇒PU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒PU ⊥ then E is not unifiable.

3. If E
∗

⇒PU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Note: The solved form of ⇒PU is different from the solved form obtained from ⇒SU .
In order to obtain the unifier σE′ , we have to sort the list of equality problems xi

.
= ti

in such a way that xi does not occur in tj for j < i, and then we have to compose the
substitutions {x1 7→ t1} ◦ · · · ◦ {xk 7→ tk}.
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Resolution for General Clauses

We obtain the resolution inference rules for non-ground clauses from the inference rules
for ground clauses by replacing equality by unifiabilty:

General resolution Res :

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in the premises
are (bijectively) renamed such that they become different to any variable in the other
premises. We do not formalize this. Which names one uses for variables is otherwise
irrelevant.

Lifting Lemma

Lemma 3.30 Let C and D be variable-disjoint clauses. If

D




y

σ

Dσ

C




y

ρ

Cρ

C ′
[ground resolution]

then there exists a substitution τ such that

D C

C ′′





y

τ

C ′ = C ′′τ

[general resolution]

An analogous lifting lemma holds for factorization.
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Saturation of Sets of General Clauses

Corollary 3.31 Let N be a set of general clauses saturated under Res , i. e., Res(N) ⊆
N . Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Other-
wise make them disjoint, and this renaming process changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)). Then either (i) there exist resolvable ground instances Dσ and
Cρ of N with resolvent C ′, or else (ii) C ′ is a factor of a ground instance Cσ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent C ′′ with
C ′′τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by assumption, we obtain that
C ′ ∈ GΣ(N).

Case (ii): Similar. ✷

Soundness for General Clauses

Proposition 3.32 The general resolution calculus is sound.

Proof. We have to show that, if σ = mgu(A,B) then {∀~x (D ∨ B), ∀~y (C ∨ ¬A)} |=
∀~z (D ∨ C)σ and {∀~x (C ∨ A ∨ B)} |= ∀~z (C ∨ A)σ.

Let A be a model of ∀~x (D ∨B) and ∀~y (C ∨ ¬A). By Lemma 3.23, A is also a model of
∀~z (D ∨B)σ and ∀~z (C ∨¬A)σ and by Lemma 3.22, A is also a model of (D ∨B)σ and
(C ∨ ¬A)σ. Let β be an assignment. If A(β)(Bσ) = 0, then A(β)(Dσ) = 1. Otherwise
A(β)(Bσ) = A(β)(Aσ) = 1, hence A(β)(¬Aσ) = 0 and therefore A(β)(Cσ) = 1.
In both cases A(β)((D ∨ C)σ) = 1, so A |= (D ∨ C)σ and by Lemma 3.22, A |=
∀~z (D ∨ C)σ.

The proof for factorization inferences is similar. ✷
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