
Herbrand’s Theorem

Lemma 3.33 Let N be a set of Σ-clauses, let A be an interpretation. Then A |= N

implies A |= GΣ(N).

Lemma 3.34 Let N be a set of Σ-clauses, let A be a Herbrand interpretation. Then
A |= GΣ(N) implies A |= N .

Proof. Let A be a Herbrand model of GΣ(N). We have to show that A |= ∀~x C for
all clauses ∀~x C in N . This is equivalent to A |= C, which in turn is equivalent to
A(β)(C) = 1 for all assignments β.

Choose β : X → UA arbitrarily. Since A is a Herbrand interpretation, β(x) is a ground
term for every variable x, so there is a substitution σ such that xσ = β(x) for all
variables x occurring in C. Now let γ be an arbitrary assignment, then for every variable
occurring in C we have (γ ◦ σ)(x) = A(γ)(xσ) = xσ = β(x) and consequently A(β)(C) =
A(γ ◦ σ)(C) = A(γ)(Cσ). Since Cσ ∈ GΣ(N) and A is a Herbrand model of GΣ(N),
we get A(γ)(Cσ) = 1, so A is a model of C. ✷

Theorem 3.35 (Herbrand) A set N of Σ-clauses is satisfiable if and only if it has a
Herbrand model over Σ.

Proof. The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥. Since resolution is sound,
this implies that ⊥ 6∈ Res

∗(N). Obviously, a ground instance of a clause has the same
number of literals as the clause itself, so we can conclude that ⊥ 6∈ GΣ(Res

∗(N)). Since
Res

∗(N) is saturated, GΣ(Res
∗(N)) is saturated as well by Cor. 3.31. Now IGΣ(Res∗(N))

is a Herbrand interpretation over Σ and by Thm. 3.18 it is a model of GΣ(Res
∗(N)).

By Lemma 3.34, every Herbrand model of GΣ(Res
∗(N)) is a model of Res∗(N). Now

N ⊆ Res
∗(N), so IGΣ(Res

∗(N)) |= N . ✷

Corollary 3.36 A set N of Σ-clauses is satisfiable if and only if its set of ground
instances GΣ(N) is satisfiable.

Proof. The “⇒” part follows directly from Lemma 3.33. For the “⇐” part assume that
GΣ(N) is satisfiable. By Thm. 3.35 GΣ(N) has a Herbrand model. By Lemma 3.34,
every Herbrand model of GΣ(N) is a model of N . ✷
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Refutational Completeness of General Resolution

Theorem 3.37 Let N be a set of general clauses that is saturated w. r. t. Res . Then
N |= ⊥ if and only if ⊥ ∈ N .

Proof. The “⇐” part is trivial. For the “⇒” part assume that N is saturated, that
is, Res(N) ⊆ N . By Corollary 3.31, GΣ(N) is saturated as well, i. e., Res(GΣ(N)) ⊆
GΣ(N). By Cor. 3.36, N |= ⊥ implies GΣ(N) |= ⊥. By the refutational completeness of
ground resolution, GΣ(N) |= ⊥ implies ⊥ ∈ GΣ(N), so ⊥ ∈ N . ✷

3.12 Theoretical Consequences

We get some classical results on properties of first-order logic as easy corollaries.

The Theorem of Löwenheim-Skolem

Theorem 3.38 (Löwenheim–Skolem) Let Σ be a countable signature and let S be
a set of closed Σ-formulas. Then S is satisfiable iff S has a model over a countable
universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now
generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at
most countably many new Skolem functions to Σ′. As Σ′ is countable, so is TΣ′, the
universe of Herbrand-interpretations over Σ′. Now apply Theorem 3.35. ✷

There exist more refined versions of this theorem. For instance, one can show that, if S
has some infinite model, then S has a model with a universe of cardinality κ for every
κ that is larger than or equal to the cardinalty of the signature Σ.

Compactness of Predicate Logic

Theorem 3.39 (Compactness Theorem for First-Order Logic) Let S be a set of
closed first-order formulas. S is unsatisfiable⇔ some finite subset S ′ ⊆ S is unsatisfiable.

Proof. The “⇐” part is trivial. For the “⇒” part let S be unsatisfiable and let N be
the set of clauses obtained by Skolemization and CNF transformation of the formulas
in S. Clearly Res

∗(N) is unsatisfiable. By Theorem 3.37, ⊥ ∈ Res
∗(N), and therefore

⊥ ∈ Res
n(N) for some n ∈ N. Consequently, ⊥ has a finite resolution proof B of

depth ≤ n. Choose S ′ as the subset of formulas in S such that the corresponding clauses
contain the assumptions (leaves) of B. ✷
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3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.18) one only needs to
resolve and factor maximal atoms
⇒ if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
⇒ ordering restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
⇒ choose a negative literal don’t-care-nondeterministically
⇒ selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms
⇒ If we impose ordering restrictions on ground inferences, the proof remains correct:

(Ground) Ordered Resolution:

D ∨A C ∨ ¬A

D ∨ C

if A ≻ L for all L in D and ¬A � L for all L in C.

(Ground) Ordered Factorization:

C ∨ A ∨A

C ∨A

if A � L for all L in C.

Problem: How to extend this to non-ground inferences?

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances.
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An ordering ≻ on atoms (or terms) is called stable under substitutions, if A ≻ B implies
Aσ ≻ Bσ.

Note:

• We can not require that A ≻ B iff Aσ ≻ Bσ.

• We can not require that ≻ is total on non-ground atoms.

Consequence: In the ordering restrictions for non-ground inferences, we have to replace
≻ by 6� and � by 6≺.

Ordered Resolution:

D ∨B C ∨ ¬A

(D ∨ C)σ

if σ = mgu(A,B) and Bσ 6� Lσ for all L in D and ¬Aσ 6≺ Lσ for all L in C.

Ordered Factorization:

C ∨ A ∨B

(C ∨ A)σ

if σ = mgu(A,B) and Aσ 6≺ Lσ for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.

A selection function is a mapping

sel : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨A

Intuition:

• If a clause has at least one selected literal, compute only inferences that involve a
selected literal.

• If a clause has no selected literals, compute only inferences that involve a maximal
literal.
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