Herbrand's Theorem

Lemma 3.33 Let N be a set of Σ -clauses, let \mathcal{A} be an interpretation. Then $\mathcal{A} \models N$ implies $\mathcal{A} \models G_{\Sigma}(N)$.

Lemma 3.34 Let N be a set of Σ -clauses, let \mathcal{A} be a Herbrand interpretation. Then $\mathcal{A} \models G_{\Sigma}(N)$ implies $\mathcal{A} \models N$.

Proof. Let \mathcal{A} be a Herbrand model of $G_{\Sigma}(N)$. We have to show that $\mathcal{A} \models \forall \vec{x} \ C$ for all clauses $\forall \vec{x} \ C$ in N. This is equivalent to $\mathcal{A} \models C$, which in turn is equivalent to $\mathcal{A}(\beta)(C) = 1$ for all assignments β .

Choose $\beta: X \to U_{\mathcal{A}}$ arbitrarily. Since \mathcal{A} is a Herbrand interpretation, $\beta(x)$ is a ground term for every variable x, so there is a substitution σ such that $x\sigma = \beta(x)$ for all variables x occurring in C. Now let γ be an arbitrary assignment, then for every variable occurring in C we have $(\gamma \circ \sigma)(x) = \mathcal{A}(\gamma)(x\sigma) = x\sigma = \beta(x)$ and consequently $\mathcal{A}(\beta)(C) =$ $\mathcal{A}(\gamma \circ \sigma)(C) = \mathcal{A}(\gamma)(C\sigma)$. Since $C\sigma \in G_{\Sigma}(N)$ and \mathcal{A} is a Herbrand model of $G_{\Sigma}(N)$, we get $\mathcal{A}(\gamma)(C\sigma) = 1$, so \mathcal{A} is a model of C.

Theorem 3.35 (Herbrand) A set N of Σ -clauses is satisfiable if and only if it has a Herbrand model over Σ .

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let $N \not\models \bot$. Since resolution is sound, this implies that $\bot \not\in Res^*(N)$. Obviously, a ground instance of a clause has the same number of literals as the clause itself, so we can conclude that $\bot \not\in G_{\Sigma}(Res^*(N))$. Since $Res^*(N)$ is saturated, $G_{\Sigma}(Res^*(N))$ is saturated as well by Cor. 3.31. Now $I_{G_{\Sigma}(Res^*(N))}$ is a Herbrand interpretation over Σ and by Thm. 3.18 it is a model of $G_{\Sigma}(Res^*(N))$. By Lemma 3.34, every Herbrand model of $G_{\Sigma}(Res^*(N))$ is a model of $Res^*(N)$. Now $N \subseteq Res^*(N)$, so $I_{G_{\Sigma}(Res^*(N))} \models N$.

Corollary 3.36 A set N of Σ -clauses is satisfiable if and only if its set of ground instances $G_{\Sigma}(N)$ is satisfiable.

Proof. The " \Rightarrow " part follows directly from Lemma 3.33. For the " \Leftarrow " part assume that $G_{\Sigma}(N)$ is satisfiable. By Thm. 3.35 $G_{\Sigma}(N)$ has a Herbrand model. By Lemma 3.34, every Herbrand model of $G_{\Sigma}(N)$ is a model of N.

Refutational Completeness of General Resolution

Theorem 3.37 Let N be a set of general clauses that is saturated w.r.t. Res. Then $N \models \bot$ if and only if $\bot \in N$.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part assume that N is saturated, that is, $Res(N) \subseteq N$. By Corollary 3.31, $G_{\Sigma}(N)$ is saturated as well, i.e., $Res(G_{\Sigma}(N)) \subseteq$ $G_{\Sigma}(N)$. By Cor. 3.36, $N \models \bot$ implies $G_{\Sigma}(N) \models \bot$. By the refutational completeness of ground resolution, $G_{\Sigma}(N) \models \bot$ implies $\bot \in G_{\Sigma}(N)$, so $\bot \in N$.

3.12 Theoretical Consequences

We get some classical results on properties of first-order logic as easy corollaries.

The Theorem of Löwenheim-Skolem

Theorem 3.38 (Löwenheim–Skolem) Let Σ be a countable signature and let S be a set of closed Σ -formulas. Then S is satisfiable iff S has a model over a countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at most countably many new Skolem functions to Σ' . As Σ' is countable, so is $T_{\Sigma'}$, the universe of Herbrand-interpretations over Σ' . Now apply Theorem 3.35.

There exist more refined versions of this theorem. For instance, one can show that, if S has some infinite model, then S has a model with a universe of cardinality κ for every κ that is larger than or equal to the cardinality of the signature Σ .

Compactness of Predicate Logic

Theorem 3.39 (Compactness Theorem for First-Order Logic) Let S be a set of closed first-order formulas. S is unsatisfiable \Leftrightarrow some finite subset $S' \subseteq S$ is unsatisfiable.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let *S* be unsatisfiable and let *N* be the set of clauses obtained by Skolemization and CNF transformation of the formulas in *S*. Clearly $Res^*(N)$ is unsatisfiable. By Theorem 3.37, $\perp \in Res^*(N)$, and therefore $\perp \in Res^n(N)$ for some $n \in \mathbb{N}$. Consequently, \perp has a finite resolution proof *B* of depth $\leq n$. Choose *S'* as the subset of formulas in *S* such that the corresponding clauses contain the assumptions (leaves) of *B*.

3.13 Ordered Resolution with Selection

Motivation: Search space for *Res very* large.

Ideas for improvement:

- In the completeness proof (Model Existence Theorem 3.18) one only needs to resolve and factor maximal atoms
 ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 ⇒ ordering restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed

 \Rightarrow choose a negative literal don't-care-nondeterministically

 \Rightarrow selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms \Rightarrow If we impose ordering restrictions on ground inferences, the proof remains correct:

(Ground) Ordered Resolution:

$$\frac{D \lor A \qquad C \lor \neg A}{D \lor C}$$

if $A \succ L$ for all L in D and $\neg A \succeq L$ for all L in C.

(Ground) Ordered Factorization:

$$\frac{C \lor A \lor A}{C \lor A}$$

if $A \succeq L$ for all L in C.

Problem: How to extend this to non-ground inferences?

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances.

An ordering \succ on atoms (or terms) is called *stable under substitutions*, if $A \succ B$ implies $A\sigma \succ B\sigma$.

Note:

- We can not require that $A \succ B$ iff $A\sigma \succ B\sigma$.
- We can not require that \succ is total on non-ground atoms.

Consequence: In the ordering restrictions for non-ground inferences, we have to replace \succ by $\not\preceq$ and \succeq by $\not\prec$.

Ordered Resolution:

$$\frac{D \lor B \qquad C \lor \neg A}{(D \lor C)\sigma}$$

if $\sigma = mgu(A, B)$ and $B\sigma \not\preceq L\sigma$ for all L in D and $\neg A\sigma \not\prec L\sigma$ for all L in C.

Ordered Factorization:

$$\frac{C \lor A \lor B}{(C \lor A)\sigma}$$

if $\sigma = mgu(A, B)$ and $A\sigma \not\prec L\sigma$ for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.

A selection function is a mapping

sel : $C \mapsto$ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X:

$$\boxed{\neg A} \lor \neg A \lor B$$
$$\boxed{\neg B_0} \lor \boxed{\neg B_1} \lor A$$

Intuition:

- If a clause has at least one selected literal, compute only inferences that involve a selected literal.
- If a clause has no selected literals, compute only inferences that involve a maximal literal.