Herbrand’s Theorem

Lemma 3.33 Let N be a set of X-clauses, let A be an interpretation. Then A = N
implies A = Gx(N).

Lemma 3.34 Let N be a set of X-clauses, let A be a Herbrand interpretation. Then
A = Gx(N) implies A = N.

Proof. Let A be a Herbrand model of Gx(N). We have to show that A = VZ C for
all clauses VZ C' in N. This is equivalent to A = C, which in turn is equivalent to
A(B)(C) =1 for all assignments 3.

Choose 3 : X — Uy arbitrarily. Since A is a Herbrand interpretation, §(x) is a ground
term for every variable x, so there is a substitution o such that zo = f(x) for all
variables x occurring in C'. Now let v be an arbitrary assignment, then for every variable
occurring in C' we have (yoo)(z) = A(v)(xzo) = xo = (x) and consequently A(5)(C) =
A(yo0)(C) = A(v)(Co). Since Co € Gg(N) and A is a Herbrand model of Gx(N),
we get A(7)(Co) =1, so A is a model of C'. O

Theorem 3.35 (Herbrand) A set N of ¥-clauses is satisfiable if and only if it has a
Herbrand model over .

Proof. The “«<” part is trivial. For the “=" part let N [~ L. Since resolution is sound,
this implies that L ¢ Res*(IN). Obviously, a ground instance of a clause has the same
number of literals as the clause itself, so we can conclude that L & Gx(Res*(IV)). Since
Res™(N) is saturated, G's,(Res"(N)) is saturated as well by Cor. 3.31. Now gy (res(n))
is a Herbrand interpretation over ¥ and by Thm. 3.18 it is a model of Gg(Res*(N)).
By Lemma 3.34, every Herbrand model of Gx(Res*(N)) is a model of Res*(N). Now
N C R@S*<N), SO IGE(Res*(N)) ): N. O

Corollary 3.36 A set N of X-clauses is satisfiable if and only if its set of ground
instances Gx,(N) is satisfiable.

Proof. The “=" part follows directly from Lemma 3.33. For the “<” part assume that
Gx(N) is satisfiable. By Thm. 3.35 Gx(N) has a Herbrand model. By Lemma 3.34,
every Herbrand model of Gy (V) is a model of N. O
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Refutational Completeness of General Resolution

Theorem 3.37 Let N be a set of general clauses that is saturated w.r.t. Res. Then
N = 1L ifand only if L € N.

Proof. The “«<” part is trivial. For the “=" part assume that N is saturated, that
is, Res(N) C N. By Corollary 3.31, Gg(N) is saturated as well, i.e., Res(Gx(NV)) C
Gx(N). By Cor. 3.36, N = L implies Gx(N) = L. By the refutational completeness of
ground resolution, Gx(N) = L implies L € Gx(N), so L € N. O

3.12 Theoretical Consequences

We get some classical results on properties of first-order logic as easy corollaries.

The Theorem of Lowenheim-Skolem

Theorem 3.38 (Lowenheim—Skolem) Let ¥ be a countable signature and let S be
a set of closed Y-formulas. Then S is satisfiable iff S has a model over a countable
universe.

Proof. If both X and X are countable, then S can be at most countably infinite. Now
generate, maintaining satisfiability, a set N of clauses from S. This extends ¥ by at
most countably many new Skolem functions to ¥'. As Y’ is countable, so is Tsy, the
universe of Herbrand-interpretations over ¥'. Now apply Theorem 3.35. O

There exist more refined versions of this theorem. For instance, one can show that, if .S
has some infinite model, then S has a model with a universe of cardinality « for every
k that is larger than or equal to the cardinalty of the signature .

Compactness of Predicate Logic

Theorem 3.39 (Compactness Theorem for First-Order Logic) Let S be a set of
closed first-order formulas. S is unsatisfiable < some finite subset S’ C S is unsatisfiable.

Proof. The “<” part is trivial. For the “=" part let S be unsatisfiable and let N be
the set of clauses obtained by Skolemization and CNF transformation of the formulas
in S. Clearly Res*(N) is unsatisfiable. By Theorem 3.37, L € Res*(N), and therefore
1 € Res"(N) for some n € N. Consequently, L has a finite resolution proof B of
depth < n. Choose S’ as the subset of formulas in S such that the corresponding clauses
contain the assumptions (leaves) of B. O
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3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.
Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.18) one only needs to
resolve and factor maximal atoms
= if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
= ordering restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
= choose a negative literal don’t-care-nondeterministically
= selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal atoms
= If we impose ordering restrictions on ground inferences, the proof remains correct:

(Ground) Ordered Resolution:

DvA cv-A
DvC

if A= L forall Lin D and -A > L for all L in C.
(Ground) Ordered Factorization:

CVAVA
CVA

if A= L forall Lin C.

Problem: How to extend this to non-ground inferences?
In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances.
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An ordering > on atoms (or terms) is called stable under substitutions, if A > B implies
Ao > Bo.

Note:
e We can not require that A = B iff Ac > Bo.
e We can not require that > is total on non-ground atoms.

Consequence: In the ordering restrictions for non-ground inferences, we have to replace

> by £ and > by 4.
Ordered Resolution:

DV B cv-A
(DVC)o

if o = mgu(A, B) and Bo A Lo for all L in D and —Ac A Lo for all L in C.
Ordered Factorization:

CVAVB
(CV Ao

if 0 = mgu(A, B) and Ao £ Lo for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for individual clauses.

A selection function is a mapping

sel : C' — set of occurrences of negative literals in C'

Example of selection with selected literals indicated as :

—A|v-AVB

Intuition:

e If a clause has at least one selected literal, compute only inferences that involve a
selected literal.

e [f a clause has no selected literals, compute only inferences that involve a maximal
literal.

80



