Every BDD node can be interpreted as a mapping from valuations to truth values:
Traverse the BDD from the given node to a leaf node; for any node labelled with P take
the 0-edge or 1-edge depending on whether A(P) is 0 or 1.

= Compact representation of truth tables.

OBDDs

OBDD (Ordered BDD):
Let < be a total ordering of the propositional variables.

An OBDD w.r.t. < is a BDD where every edge from a non-leaf node leads either to
a leaf node or to a non-leaf node with a strictly larger label w.r.t. <.

OBDDs and formulas:

A leaf node @ represents L (or any unsatisfiable formula).

A leaf node represents T (or any valid formula).

If a non-leaf node v has the label P, and its 0-edge leads to a node representing
the formula Fj, and its 1-edge leads to a node representing the formula Fj, then v
represents the formula

F H if P then F} else Fj
H (PANF)V (=P AF)
):( (P—>F1)/\(—|P—)FQ)

Conversely:

Define F{P +— H} as the formula obtained from F' by replacing every occurrence of
Pin F by H.

For every formula F' and propositional variable P:
FH (PANF{P—>THV(EPAF{P— 1})

(Shannon expansion of F'| originally due to Boole).

Consequence: Every formula F' can be represented by an OBDD.
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Reduced OBDDs

An OBDD is called reduced, if it has

e no duplicated leaf nodes 010

e no duplicated interior nodes

e no redundant tests

Theorem 2.20 (Bryant 1986) Every OBDD can be converted into an equivalent re-
duced OBDD.

Assumptions from now on:
One fixed ordering >.
We consider only reduced OBDDs.
All OBDDs are sub-OBDDs of a single OBDD.
Implementation:
Bottom-up construction of reduced OBDDs is possible using a hash table.
Keys and values are triples (PropVar, Ptry, Ptry),

where Ptry and Ptry are pointers to the 0-successor and 1-successor hash table entry.

Theorem 2.21 (Bryant 1986) Ifv and v’ are two different nodes in a reduced OBDD,
then they represent non-equivalent formulas.

Proof. We use induction over the maximum of the numbers of nodes reachable from v
and o', respectively. Let F' and F’ be the formulas represented by v and v'.

Case 1: v and v’ are non-leaf nodes labelled by different propositional variables P and
P'. Without loss of generality, P < P’.

Let vy and v; be the 0-successor and the 1-successor of v, and let Fyy and F; be formulas
represented by vy and v;. We may assume without loss of generality that all propositional
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variables occurring in F’, Fy, and F; are larger than P. By reducedness, vy # v1, so
by induction, Fy H4 F;. Hence there must be a valuation A such that A(Fp) # A(Fy).
Define valuations Ay and A; by

Ao(P) =0 A(P)=1
A(Q) =AQ)  A(Q)=A(Q) forallQ#P

We know that the node v represents F' H (P A Fy) V (=P A Fp), so Ao(F) = Ao(Fo) =
A(Fpy) and A, (F) = Ay (Fy) = A(F}), and therefore Ag(F) # A;(F'). On the other hand,
P does not occur in F”, therefore Ay(F') = A;(F’). So we must have Ay(F) # Ao(F")
or Ay (F) # Ay (F'), which implies F' 4 F".

Case 2: v and v’ are non-leaf nodes labelled by the same propositional variable.
Case 3: v is a non-leaf node, v’ is a non-leaf node, or vice versa.
Case 4: v and v are different leaf nodes.

Analogously. O

Corollary 2.22 F' is valid, if and only if it is represented by . F' is unsatisfiable, if
and only if it is represented by @

Operations on OBDDs

Example:
Let o be a binary connective.

Let P be the smallest propositional variable that occurs in F' or G or both.
FoG H (PN(FoG){P— THV(-PA(FoG){Pw~ 1})

H (PAN(F{P— T}oG{P— T})
V(=PA(F{P+ L}oG{P+— 1})))

Note: F{P + T} is either represented by the same node as F' (if P does not occur
in F'), or by its 1-successor (otherwise).

= Obvious recursive function on OBDD nodes
(needs memoizing for efficient implementation).
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OBDD operations are not restricted to the connectives of propositional logic.
We can also compute operations of quantified boolean formulas

VP.FF H (F{P— THAN(F{P— 1})

dP.F H (F{P—T})V(F{P~ 1}

and images or preimages of propositional formulas w.r.t. boolean relations (needed for
typical verification tasks).

The size of the OBDD for F' o GG is bounded by mn, where F' has size m and G has
size n. (Size = number of nodes)

With memoization, the time for computing F o G is also at most O(mn).

The size of an OBDD for a given formula depends crucially on the chosen ordering of
the propositional variables:

Let FF = (Pl/\PQ)\/(Pg/\P4)\/\/(Pgn_l/\PQn)
P1<P2<P3<P4<"'<P2n,1<P2nI 2n+2nodes.
P1<P3<"'<P2n_1<P2<P4<"'<P2nZ 2"*1 nodes.

Even worse: There are (practically relevant!) formulas for which the OBDD has expo-
nential size for every ordering of the propositional variables.

Example: middle bit of binary multiplication.

Literature

Randal E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation; IEEE
Transactions on Computers, 35(8):677-691, 1986.

Randal E. Bryant: Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams; ACM Computing Surveys, 24(3), September 1992, pp. 293-318.

Michael Huth and Mark Ryan: Logic in Computer Science: Modelling and Reasoning
about Systems, Chapter 6.1/6.2; Cambridge Univ. Press, 2000.
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2.10 FRAIGs

Goal:
Efficient manipulation of (equivalence classes of) propositional formulas.
Smaller representation than OBDDs.

Method: Minimized graph representation of boolean circuits.

FRAIG (Functionally Reduced And-Inverter Graph):
Labelled DAG (directed acyclic graph).
Leaf nodes:
labelled with propositional variables.
Non-leaf nodes (interior nodes):

labelled with A (two outgoing edges) or — (one outgoing edge).

Reducedness (i.e., no two different nodes represent equivalent formulas) must be estab-
lished explicitly, using

structural hashing,
simulation vectors,
CDCL,

OBDDs.

= Semi-canonical representation of formulas.

Literature

A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton: FRAIGs: A unifying
representation for logic synthesis and verification; ERL Technical Report, EECS Dept.,
UC Berkeley, March 2005.

2.11 Other Calculi

Ordered resolution
Tableau calculus
Hilbert calculus
Sequent calculus
Natural deduction

see next chapter
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3 First-Order Logic

First-order logic
e formalizes fundamental mathematical concepts

e is expressive (Turing-complete)

is not too expressive (e.g. not axiomatizable: natural numbers, uncountable sets)
e has a rich structure of decidable fragments
e has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical connectives (domain-independent)
= Boolean combinations, quantifiers

Signatures

A signature ¥ = (€, 1I) fixes an alphabet of non-logical symbols, where
e (O is a set of function symbols f with arity n > 0, written arity(f) = n,
e Il is a set of predicate symbols P with arity m > 0, written arity(P) = m.

Function symbols are also called operator symbols.
If n =0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use
b, ¢, d for constant symbols,
f, g, h for non-constant function symbols,

P, Q, R, S for predicate symbols.
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Convention: We will usually write f/n € € instead of f € Q, arity(f) = n (analogously
for predicate symbols).

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.

Terms

Terms over ¥ and X (X-terms) are formed according to these syntactic rules:

s,t,u,v = x ,reX (variable)
| f(s1,.580) , f/mn € (functional term)

By Tx(X) we denote the set of X-terms (over X). A term not containing any variable
is called a ground term. By Ty, we denote the set of ¥-ground terms.

In other words, terms are formal expressions with well-balanced parentheses which we
may also view as marked, ordered trees. The markings are function symbols or variables.
The nodes correspond to the subterms of the term. A node v that is marked with
a function symbol f of arity n has exactly n subtrees representing the n immediate
subterms of v.

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this syntax:
A B = P(s1,...,8m) , P/me€ll (non-equational atom)
| (s=1) (equation)
Whenever we admit equations as atomic formulas we are in the realm of first-order
logic with equality. Admitting equality does not really increase the expressiveness of

first-order logic (see next chapter). But deductive systems where equality is treated
specifically are much more efficient.
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Literals

L == A (positive literal)
|  —A  (negative literal)

Clauses

c,D == 1 (empty clause)
|  L1V...VLg k>1 (non-empty clause)

General First-Order Formulas

Fyx(X) is the set of first-order formulas over ¥ defined as follows:

F.GH == 1 (falsum)
| T (verum)
| A (atomic formula)
| -F (negation)
|  (FAG) (conjunction)
| (FVGQG) (disjunction)
| (F—G) (implication)
| (F+<G) (equivalence)
| VaF (universal quantification)
= (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.
Vai,...,x, ' and dxq,...,z, F abbreviate Vz;...Vx,F and dx,...dz, F.
We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+txu for +(s, *(t,u))

sxu<t+ov for < (x(s,u),+(t,v))
—$ for —(s)
s! for I(s)
sl for ()
0 for ()
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