
Every BDD node can be interpreted as a mapping from valuations to truth values:
Traverse the BDD from the given node to a leaf node; for any node labelled with P take
the 0-edge or 1-edge depending on whether A(P ) is 0 or 1.

⇒ Compact representation of truth tables.

OBDDs

OBDD (Ordered BDD):

Let < be a total ordering of the propositional variables.

An OBDD w. r. t. < is a BDD where every edge from a non-leaf node leads either to
a leaf node or to a non-leaf node with a strictly larger label w. r. t. <.

OBDDs and formulas:

A leaf node 0 represents ⊥ (or any unsatisfiable formula).

A leaf node 1 represents ⊤ (or any valid formula).

If a non-leaf node v has the label P , and its 0-edge leads to a node representing
the formula F0, and its 1-edge leads to a node representing the formula F1, then v
represents the formula

F |=| if P then F1 else F0

|=| (P ∧ F1) ∨ (¬P ∧ F0)
|=| (P → F1) ∧ (¬P → F0)

Conversely:

Define F{P 7→ H} as the formula obtained from F by replacing every occurrence of
P in F by H .

For every formula F and propositional variable P :

F |=| (P ∧ F{P 7→ ⊤}) ∨ (¬P ∧ F{P 7→ ⊥})

(Shannon expansion of F , originally due to Boole).

Consequence: Every formula F can be represented by an OBDD.
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Reduced OBDDs

An OBDD is called reduced, if it has

• no duplicated leaf nodes 0 0

• no duplicated interior nodes P P

• no redundant tests P

Theorem 2.20 (Bryant 1986) Every OBDD can be converted into an equivalent re-
duced OBDD.

Assumptions from now on:

One fixed ordering >.

We consider only reduced OBDDs.

All OBDDs are sub-OBDDs of a single OBDD.

Implementation:

Bottom-up construction of reduced OBDDs is possible using a hash table.

Keys and values are triples (PropVar ,Ptr 0,Ptr 1),

where Ptr 0 and Ptr 1 are pointers to the 0-successor and 1-successor hash table entry.

Theorem 2.21 (Bryant 1986) If v and v′ are two different nodes in a reduced OBDD,
then they represent non-equivalent formulas.

Proof. We use induction over the maximum of the numbers of nodes reachable from v
and v′, respectively. Let F and F ′ be the formulas represented by v and v′.

Case 1: v and v′ are non-leaf nodes labelled by different propositional variables P and
P ′. Without loss of generality, P < P ′.

Let v0 and v1 be the 0-successor and the 1-successor of v, and let F0 and F1 be formulas
represented by v0 and v1. We may assume without loss of generality that all propositional
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variables occurring in F ′, F0, and F1 are larger than P . By reducedness, v0 6= v1, so
by induction, F0 6|=| F1. Hence there must be a valuation A such that A(F0) 6= A(F1).
Define valuations A0 and A1 by

A0(P ) = 0 A1(P ) = 1
A0(Q) = A(Q) A1(Q) = A(Q) for all Q 6= P

We know that the node v represents F |=| (P ∧ F1) ∨ (¬P ∧ F0), so A0(F ) = A0(F0) =
A(F0) and A1(F ) = A1(F1) = A(F1), and thereforeA0(F ) 6= A1(F ). On the other hand,
P does not occur in F ′, therefore A0(F

′) = A1(F
′). So we must have A0(F ) 6= A0(F

′)
or A1(F ) 6= A1(F

′), which implies F 6|=| F ′.

Case 2: v and v′ are non-leaf nodes labelled by the same propositional variable.
Case 3: v is a non-leaf node, v′ is a non-leaf node, or vice versa.
Case 4: v and v′ are different leaf nodes.

Analogously. ✷

Corollary 2.22 F is valid, if and only if it is represented by 1 . F is unsatisfiable, if

and only if it is represented by 0 .

Operations on OBDDs

Example:

Let ◦ be a binary connective.

Let P be the smallest propositional variable that occurs in F or G or both.

F ◦G |=| (P ∧ (F ◦G){P 7→ ⊤}) ∨ (¬P ∧ (F ◦G){P 7→ ⊥})

|=| (P ∧ (F{P 7→ ⊤} ◦G{P 7→ ⊤})
∨ (¬P ∧ (F{P 7→ ⊥} ◦G{P 7→ ⊥})))

Note: F{P 7→ ⊤} is either represented by the same node as F (if P does not occur
in F ), or by its 1-successor (otherwise).

⇒ Obvious recursive function on OBDD nodes
(needs memoizing for efficient implementation).
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OBDD operations are not restricted to the connectives of propositional logic.

We can also compute operations of quantified boolean formulas

∀P. F |=| (F{P 7→ ⊤}) ∧ (F{P 7→ ⊥})

∃P. F |=| (F{P 7→ ⊤}) ∨ (F{P 7→ ⊥})

and images or preimages of propositional formulas w. r. t. boolean relations (needed for
typical verification tasks).

The size of the OBDD for F ◦ G is bounded by mn, where F has size m and G has
size n. (Size = number of nodes)

With memoization, the time for computing F ◦G is also at most O(mn).

The size of an OBDD for a given formula depends crucially on the chosen ordering of
the propositional variables:

Let F = (P1 ∧ P2) ∨ (P3 ∧ P4) ∨ · · · ∨ (P2n−1 ∧ P2n).

P1 < P2 < P3 < P4 < · · · < P2n−1 < P2n: 2n+ 2 nodes.

P1 < P3 < · · · < P2n−1 < P2 < P4 < · · · < P2n: 2n+1 nodes.

Even worse: There are (practically relevant!) formulas for which the OBDD has expo-
nential size for every ordering of the propositional variables.

Example: middle bit of binary multiplication.

Literature

Randal E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation; IEEE
Transactions on Computers, 35(8):677-691, 1986.

Randal E. Bryant: Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams; ACM Computing Surveys, 24(3), September 1992, pp. 293-318.

Michael Huth and Mark Ryan: Logic in Computer Science: Modelling and Reasoning
about Systems, Chapter 6.1/6.2; Cambridge Univ. Press, 2000.
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2.10 FRAIGs

Goal:

Efficient manipulation of (equivalence classes of) propositional formulas.

Smaller representation than OBDDs.

Method: Minimized graph representation of boolean circuits.

FRAIG (Functionally Reduced And-Inverter Graph):

Labelled DAG (directed acyclic graph).

Leaf nodes:

labelled with propositional variables.

Non-leaf nodes (interior nodes):

labelled with ∧ (two outgoing edges) or ¬ (one outgoing edge).

Reducedness (i. e., no two different nodes represent equivalent formulas) must be estab-
lished explicitly, using

structural hashing,
simulation vectors,
CDCL,
OBDDs.

⇒ Semi-canonical representation of formulas.

Literature

A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton: FRAIGs: A unifying
representation for logic synthesis and verification; ERL Technical Report, EECS Dept.,
UC Berkeley, March 2005.

2.11 Other Calculi

Ordered resolution
Tableau calculus
Hilbert calculus
Sequent calculus
Natural deduction

see next chapter
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3 First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)
⇒ terms, atomic formulas

• logical connectives (domain-independent)
⇒ Boolean combinations, quantifiers

Signatures

A signature Σ = (Ω,Π) fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written arity(P ) = m.

Function symbols are also called operator symbols.
If n = 0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.

We will usually use

b, c, d for constant symbols,

f , g, h for non-constant function symbols,

P , Q, R, S for predicate symbols.
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Convention: We will usually write f/n ∈ Ω instead of f ∈ Ω, arity(f) = n (analogously
for predicate symbols).

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote
variables.

Terms

Terms over Σ and X (Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)
| f(s1, ..., sn) , f/n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any variable
is called a ground term. By TΣ we denote the set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced parentheses which we
may also view as marked, ordered trees. The markings are function symbols or variables.
The nodes correspond to the subterms of the term. A node v that is marked with
a function symbol f of arity n has exactly n subtrees representing the n immediate
subterms of v.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A,B ::= P (s1, . . . , sm) , P/m ∈ Π (non-equational atom)
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of first-order
logic with equality . Admitting equality does not really increase the expressiveness of
first-order logic (see next chapter). But deductive systems where equality is treated
specifically are much more efficient.
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Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C,D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F,G,H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

∀x1, . . . , xn F and ∃x1, . . . , xn F abbreviate ∀x1 . . .∀xn F and ∃x1 . . .∃xn F .

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s+ t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t+ v for ≤ (∗(s, u),+(t, v))
−s for −(s)
s! for !(s)
|s| for | |(s)
0 for 0()
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