We use set notation (€, C, U, N, etc.) with analogous meaning also for multisets, e. g.,

mes & Sim)>0
(S1USy)(m) = Si(m)+ Sa(m)
(S1NSy)(m) = min{S;(m), Se(m)}

(S1— S2)(m) = {(‘)gl(m) — Sz(m) i)ftlilzxji)sez Sa(m)

S1C Sy & Si(m) < Sy(m) for all m e M

A multiset S is called finite, if

{meM]|S(m)>0} < oo.

From now on we only consider finite multisets.

Multiset Orderings

Let (M, >) be an abstract reduction system. The multiset extension of > to multisets
over M is defined by

S1 = So if and only if
there exist multisets X and Y over M such that
D#XCS,
Sy = (51— X)UY,
VyeY dJreX:x >y

Lemma 1.9 (Ko6nig’s Lemma) Every finitely branching tree with infinitely many
nodes contains an infinite path.

Theorem 1.10

(a) If = is transitive, then > is transitive.

(b) If = is irreflexive and transitive, then >, is irreflexive.

(c) If = is a well-founded ordering, then >, is a well-founded ordering.
(d) If = is a strict total ordering, then >, is a strict total ordering.

Proof. see Baader and Nipkow, page 22-24. O

The multiset extension as defined above is due to Dershowitz and Manna (1979).

There are several other ways to characterize the multiset extension of a binary relation.
The following one is due to Huet and Oppen (1980):

Let (M, >) be an abstract reduction system. The (Huet/Oppen) multiset extension of
> to multisets over M is defined by

HO S, if and only if

S1 # S5 and
Vm € M: (S3(m) > Sy(m)
= Jm' € M: m' = m and Si(m’) > Sy(m))

51>-

A third way to characterize the multiset extension of a binary relation > is to define it
as the transitive closure of the relation > | given by

Sy =1 Sy if and only if
there exists x € S and a multiset Y over M such that
Sy = (51 —{z}H) UY,
VyeY:x -y

For strict partial orderings all three characterizations of >, are equivalent:

Theorem 1.11 If > is a strict partial ordering, then
(a) > mul — =HO

mul’

(b) > = (=) -
Proof. (a) see Baader and Nipkow, page 24-26. (b) Exercise. O

HO

Note, however, that for an arbitrary binary relation > all three relations >, >0

and (-1)" may be different.

mul

1.5 Complexity Theory Prerequisites

A decision problem is a subset L C >* for some fixed finite alphabet X.

The function chr(L, z) denotes the characteristic function for some decision problem L
and is defined by chr(L,u) =1 if v € L and chr(L,u) = 0 otherwise.

10

P and NP

A decision problem is called solvable in polynomial time if its characteristic function
can be computed in polynomial time. The class P denotes all polynomial-time decision
problems.

We say that a decision problem L is in NP if there is a predicate Q(z, y) and a polynomial
p(n) such that for all u € ¥* we have

(i) w € L if and only if there is a v € ¥* with |v| < p(|u|) and Q(u,v) holds, and
(i) the predicate @ is in P.

Reducibility, NP-Hardness, NP-Completeness

A decision problem L is polynomial-time reducible to a decision problem L’ if there is
a function g computable in polynomial time such that for all © € ¥* we have u € L iff
g(u) e L.

For example, if L is polynomial-time reducible to L' and L' € P then L € P.

A decision problem is NP-hard if every problem in NP is polynomial-time reducible to
it.

A decision problem is NP-complete if it is NP-hard and in NP.

11

2 Propositional Logic

Propositional logic
e logic of truth values
e decidable (but NP-complete)
e can be used to describe functions over a finite domain
e industry standard for many analysis/verification tasks (e.g., model checking),

e growing importance for discrete optimization problems

2.1 Syntax

e propositional variables

e logical connectives
= Boolean combinations

Propositional Variables

Let II be a set of propositional variables.

We use letters P, @, R, S, to denote propositional variables.
Propositional Formulas

Fp is the set of propositional formulas over II defined inductively as follows:

F.G ==

v
=
3
o
=

)
€ I (atomic formula)
(negation)
(conjunction)
)

)

)

1.
3
2a 7

< >

(disjunction
(implication
(equivalence

CIEEICE)
28

Tl

12

Notational Conventions

As a notational convention we assume that — binds strongest, and we remove outermost
parentheses, so =P V @ is actually a shorthand for ((=P) V Q).

Instead of ((P A Q) A R) we simply write P A Q A R (and analogously for V).

For all other logical connectives we will use parentheses when needed.

Formula Manipulation

Automated reasoning is very much formula manipulation. In order to precisely represent
the manipulation of a formula, we introduce positions.

A position is a word over N. The set of positions of a formula F is inductively defined

by

pos(F):={e}ift Fe{T,L}or Fell
pos(—F) :={e} U{1p|p € pos(F)}
pos(F o G) :=={e} U{1p|p € pos(F) }U{2p|p € pos(G)}
where o € {A,V, —, < }.
The prefix order < on positions is defined by p < ¢ if there is some p’ such that pp’ = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable,
they are “parallel”, see below.

By < we denote the strict part of <, that is, p < ¢ if p < ¢ but not ¢ < p.
By || we denote incomparable positions, that is, p || ¢ if neither p < ¢ nor ¢ < p.

We say that p is above q if p < q, p is strictly above q if p < q, and p and ¢ are parallel
if pllg

The size of a formula F is given by the cardinality of pos(F): |F| := |pos(F)].

The subformula of F' at position p € pos(F') is recursively defined by

Flc:=F
(—F)|1p == Flp
(Fy o IY)|ip := F;|, where i€ {1,2}
and o € {A,V,—, <}

13

Finally, the replacement of a subformula at position p € pos(F') by a formula G is
recursively defined by

F|Gl. =G
NGlip = ~(F[G]p)
(F1 0 15)[Glip == (F1[Glp 0 [3)
)NGlap := (F1 0 F2[G]))
where o € {A,V, —, <}

Example 2.1 The set of positions for the formula FF = (P — Q) — (P A —Q) is
pos(F) = {e,1,11,12,2,21, 22,221},

The subformula at position 22 is F|as = —Q and replacing this formula by P < Q
results in F[P <> Qlaa = (P = Q) = (PA (P < Q)).

Polarities

A further prerequisite for efficient formula manipulation is the polarity of a subformula
G of F. The polarity determines the number of “negations” starting from F' down to
G. It is 1 for an even number, —1 for an odd number and 0 if there is at least one
equivalence connective along the path.

The polarity of a subformula G = F|,, at position p is pol(F’, p), where pol is recursively
defined by

)
) = —pOl(F,p)
pol(F o Fy,ip) = pol(F;,p) if o € {A,V}
pol(Fy — F, 1p) := —pol(Fi,p)
pol(Fy — F»,2p) := pol(F3,p)
):=0

Example 2.2 Let FF = (P — Q) — (P A —=Q). Then pol(F,1) = pol(F,12) =
pol(F,221) = —1 and pol(F,e) = pol(F, 11) = pol(F, 2) = pol(F,21) = pol(F,22) = 1.

For the formula F' = (P A Q) < (P V Q) we get pol(F’,e) = 1 and pol(F’',p) = 0 for
all p € pos(F") different from e.

14

2.2 Semantics

In classical logic (dating back to Aristotle) there are “only” two truth values “true” and
“false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Tl-valuation is a map
A 11— {0,1}.

where {0, 1} is the set of truth values.

Truth Value of a Formula in 4

Given a II-valuation A, its extension to formulas A* : Fiy — {0, 1} is defined inductively
as follows:

A*(L)=0
A (T) =1
A*(P) = A(P)
A*(=F) =1—- A*(F)
A*(F A G) = min(A*(F), A*(Q))
A*(FV G) = max(A*(F), A*(Q))
A (F — G) =
) =

max(1 - A*(), A(@))
)

A (F < G) =if A(F) = A"(G) then 1 else 0

For simplicity, the extension A* of A is usually also denoted by A.

15

2.3 Models, Validity, and Satisfiability

Let F' be a II-formula.

We say that F' is true under A (A is a model of F'; F' is valid in A; F' holds under A),
written A = F, if A(F) = 1.

We say that F' is valid or that F' is a tautology, written = F, if A = F for all II-
valuations A.

F' is called satisfiable if there exists an A such that A = F. Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F' = G, if for all II-valuations
A we have

if AEF then AEQG,
or equivalently

A(F) < AG).

F and G are called equivalent, written F' H G, if for all TI-valuations .4 we have
AEF ifand only if AE G,

or equivalently

Proposition 2.3 F' |= G if and only if = (F — G).

Proof. (=) Suppose that F entails G. Let A be an arbitrary II-valuation. We have to
show that A = F — G. If A(F) =1, then A(G) =1 (since F' = G), and hence A(F —
G) = max(1 —1,1) = 1. Otherwise A(F') =0, then A(F — G) =max(1 -0, 4(G)) =1
independently of A(G). In both cases, A = F — G.

(<) Suppose that F' does not entail G. Then there exists a II-valuation A such that
A = F, but not A = G. Consequently, A(FF — G) = max(l — A(F), A(G)) =
max(1l —1,0) =0, so (F' — G) does not hold under A. O

16

