
We use set notation (∈, ⊆, ∪, ∩, etc.) with analogous meaning also for multisets, e. g.,

m ∈ S :⇔ S(m) > 0

(S1 ∪ S2)(m) := S1(m) + S2(m)

(S1 ∩ S2)(m) := min{S1(m), S2(m)}

(S1 − S2)(m) :=

{

S1(m)− S2(m) if S1(m) ≥ S2(m)
0 otherwise

S1 ⊆ S2 :⇔ S1(m) ≤ S2(m) for all m ∈ M

A multiset S is called finite, if

|{m ∈ M | S(m) > 0 }| < ∞.

From now on we only consider finite multisets.

Multiset Orderings

Let (M,≻) be an abstract reduction system. The multiset extension of ≻ to multisets
over M is defined by

S1 ≻mul S2 if and only if

there exist multisets X and Y over M such that

∅ 6= X ⊆ S1,

S2 = (S1 −X) ∪ Y,

∀y ∈ Y ∃x ∈ X : x ≻ y

Lemma 1.9 (König’s Lemma) Every finitely branching tree with infinitely many
nodes contains an infinite path.

Theorem 1.10
(a) If ≻ is transitive, then ≻mul is transitive.
(b) If ≻ is irreflexive and transitive, then ≻mul is irreflexive.
(c) If ≻ is a well-founded ordering, then ≻mul is a well-founded ordering.
(d) If ≻ is a strict total ordering, then ≻mul is a strict total ordering.

Proof. see Baader and Nipkow, page 22–24. ✷

9

The multiset extension as defined above is due to Dershowitz and Manna (1979).

There are several other ways to characterize the multiset extension of a binary relation.
The following one is due to Huet and Oppen (1980):

Let (M,≻) be an abstract reduction system. The (Huet/Oppen) multiset extension of
≻ to multisets over M is defined by

S1 ≻
HO
mul S2 if and only if

S1 6= S2 and

∀m ∈ M :
(

S2(m) > S1(m)

⇒ ∃m′ ∈ M : m′ ≻ m and S1(m
′) > S2(m

′)
)

A third way to characterize the multiset extension of a binary relation ≻ is to define it
as the transitive closure of the relation ≻1

mul given by

S1 ≻
1
mul S2 if and only if

there exists x ∈ S1 and a multiset Y over M such that

S2 = (S1 − {x}) ∪ Y,

∀y ∈ Y : x ≻ y

For strict partial orderings all three characterizations of ≻mul are equivalent:

Theorem 1.11 If ≻ is a strict partial ordering, then
(a) ≻mul = ≻HO

mul,
(b) ≻mul = (≻1

mul)
+.

Proof. (a) see Baader and Nipkow, page 24–26. (b) Exercise. ✷

Note, however, that for an arbitrary binary relation ≻ all three relations ≻mul, ≻
HO
mul,

and (≻1
mul)

+ may be different.

1.5 Complexity Theory Prerequisites

A decision problem is a subset L ⊆ Σ∗ for some fixed finite alphabet Σ.

The function chr(L, x) denotes the characteristic function for some decision problem L

and is defined by chr(L, u) = 1 if u ∈ L and chr(L, u) = 0 otherwise.

10

P and NP

A decision problem is called solvable in polynomial time if its characteristic function
can be computed in polynomial time. The class P denotes all polynomial-time decision
problems.

We say that a decision problem L is in NP if there is a predicate Q(x, y) and a polynomial
p(n) such that for all u ∈ Σ∗ we have

(i) u ∈ L if and only if there is a v ∈ Σ∗ with |v| ≤ p(|u|) and Q(u, v) holds, and

(ii) the predicate Q is in P.

Reducibility, NP-Hardness, NP-Completeness

A decision problem L is polynomial-time reducible to a decision problem L′ if there is
a function g computable in polynomial time such that for all u ∈ Σ∗ we have u ∈ L iff
g(u) ∈ L′.

For example, if L is polynomial-time reducible to L′ and L′ ∈ P then L ∈ P.

A decision problem is NP-hard if every problem in NP is polynomial-time reducible to
it.

A decision problem is NP-complete if it is NP-hard and in NP.

11

2 Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• industry standard for many analysis/verification tasks (e. g., model checking),

• growing importance for discrete optimization problems

2.1 Syntax

• propositional variables

• logical connectives
⇒ Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R, S, to denote propositional variables.

Propositional Formulas

FΠ is the set of propositional formulas over Π defined inductively as follows:

F,G ::= ⊥ (falsum)
| ⊤ (verum)
| P , P ∈ Π (atomic formula)
| (¬F) (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)

12

Notational Conventions

As a notational convention we assume that ¬ binds strongest, and we remove outermost
parentheses, so ¬P ∨Q is actually a shorthand for ((¬P) ∨Q).

Instead of ((P ∧Q) ∧ R) we simply write P ∧Q ∧R (and analogously for ∨).

For all other logical connectives we will use parentheses when needed.

Formula Manipulation

Automated reasoning is very much formula manipulation. In order to precisely represent
the manipulation of a formula, we introduce positions.

A position is a word over N. The set of positions of a formula F is inductively defined
by

pos(F) := {ε} if F ∈ {⊤,⊥} or F ∈ Π
pos(¬F) := {ε} ∪ { 1p | p ∈ pos(F) }

pos(F ◦G) := {ε} ∪ { 1p | p ∈ pos(F) } ∪ { 2p | p ∈ pos(G) }
where ◦ ∈ {∧,∨,→,↔}.

The prefix order ≤ on positions is defined by p ≤ q if there is some p′ such that pp′ = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable,
they are “parallel”, see below.

By < we denote the strict part of ≤, that is, p < q if p ≤ q but not q ≤ p.

By ‖ we denote incomparable positions, that is, p ‖ q if neither p ≤ q nor q ≤ p.

We say that p is above q if p ≤ q, p is strictly above q if p < q, and p and q are parallel
if p ‖ q.

The size of a formula F is given by the cardinality of pos(F): |F | := |pos(F)|.

The subformula of F at position p ∈ pos(F) is recursively defined by

F |ε := F

(¬F)|1p := F |p
(F1 ◦ F2)|ip := Fi|p where i ∈ {1, 2}

and ◦ ∈ {∧,∨,→,↔}.

13

Finally, the replacement of a subformula at position p ∈ pos(F) by a formula G is
recursively defined by

F [G]ε := G

(¬F)[G]1p := ¬(F [G]p)
(F1 ◦ F2)[G]1p := (F1[G]p ◦ F2)
(F1 ◦ F2)[G]2p := (F1 ◦ F2[G]p)

where ◦ ∈ {∧,∨,→,↔}.

Example 2.1 The set of positions for the formula F = (P → Q) → (P ∧ ¬Q) is
pos(F) = {ε, 1, 11, 12, 2, 21, 22, 221}.

The subformula at position 22 is F |22 = ¬Q and replacing this formula by P ↔ Q

results in F [P ↔ Q]22 = (P → Q) → (P ∧ (P ↔ Q)).

Polarities

A further prerequisite for efficient formula manipulation is the polarity of a subformula
G of F . The polarity determines the number of “negations” starting from F down to
G. It is 1 for an even number, −1 for an odd number and 0 if there is at least one
equivalence connective along the path.

The polarity of a subformula G = F |p at position p is pol(F, p), where pol is recursively
defined by

pol(F, ε) := 1
pol(¬F, 1p) := −pol(F, p)

pol(F1 ◦ F2, ip) := pol(Fi, p) if ◦ ∈ {∧,∨}
pol(F1 → F2, 1p) := −pol(F1, p)
pol(F1 → F2, 2p) := pol(F2, p)
pol(F1 ↔ F2, ip) := 0

Example 2.2 Let F = (P → Q) → (P ∧ ¬Q). Then pol(F, 1) = pol(F, 12) =
pol(F, 221) = −1 and pol(F, ε) = pol(F, 11) = pol(F, 2) = pol(F, 21) = pol(F, 22) = 1.

For the formula F ′ = (P ∧ Q) ↔ (P ∨ Q) we get pol(F ′, ε) = 1 and pol(F ′, p) = 0 for
all p ∈ pos(F ′) different from ε.

14

2.2 Semantics

In classical logic (dating back to Aristotle) there are “only” two truth values “true” and
“false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

Truth Value of a Formula in A

Given a Π-valuation A, its extension to formulas A∗ : FΠ → {0, 1} is defined inductively
as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F) = 1−A∗(F)

A∗(F ∧G) = min(A∗(F),A∗(G))

A∗(F ∨G) = max(A∗(F),A∗(G))

A∗(F → G) = max(1−A∗(F),A∗(G))

A∗(F ↔ G) = if A∗(F) = A∗(G) then 1 else 0

For simplicity, the extension A∗ of A is usually also denoted by A.

15

2.3 Models, Validity, and Satisfiability

Let F be a Π-formula.

We say that F is true under A (A is a model of F ; F is valid in A; F holds under A),
written A |= F , if A(F) = 1.

We say that F is valid or that F is a tautology , written |= F , if A |= F for all Π-
valuations A.

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all Π-valuations
A we have

if A |= F then A |= G,

or equivalently

A(F) ≤ A(G).

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have

A |= F if and only if A |= G,

or equivalently

A(F) = A(G).

Proposition 2.3 F |= G if and only if |= (F → G).

Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = max(1− 1, 1) = 1. Otherwise A(F) = 0, then A(F → G) = max(1− 0,A(G)) = 1
independently of A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = max(1 − A(F),A(G)) =
max(1− 1, 0) = 0, so (F → G) does not hold under A. ✷

16

