We use set notation $(\in, \subseteq, \cup, \cap, \text{etc.})$ with analogous meaning also for multisets, e.g.,

$$m \in S \quad :\Leftrightarrow \quad S(m) > 0$$

$$(S_1 \cup S_2)(m) \quad := \quad S_1(m) + S_2(m)$$

$$(S_1 \cap S_2)(m) \quad := \quad \min\{S_1(m), S_2(m)\}$$

$$(S_1 - S_2)(m) \quad := \quad \begin{cases} S_1(m) - S_2(m) & \text{if } S_1(m) \ge S_2(m) \\ 0 & \text{otherwise} \end{cases}$$

$$S_1 \subseteq S_2 \quad :\Leftrightarrow \quad S_1(m) \le S_2(m) \text{ for all } m \in M$$

A multiset S is called *finite*, if

 $|\{m \in M \mid S(m) > 0\}| < \infty.$

From now on we only consider finite multisets.

Multiset Orderings

Let (M, \succ) be an abstract reduction system. The multiset extension of \succ to multisets over M is defined by

 $S_1 \succ_{\text{mul}} S_2$ if and only if there exist multisets X and Y over M such that $\emptyset \neq X \subseteq S_1,$ $S_2 = (S_1 - X) \cup Y,$ $\forall y \in Y \; \exists x \in X \colon x \succ y$

Lemma 1.9 (König's Lemma) Every finitely branching tree with infinitely many nodes contains an infinite path.

Theorem 1.10

(a) If ≻ is transitive, then ≻_{mul} is transitive.
(b) If ≻ is irreflexive and transitive, then ≻_{mul} is irreflexive.
(c) If ≻ is a well-founded ordering, then ≻_{mul} is a well-founded ordering.
(d) If ≻ is a strict total ordering, then ≻_{mul} is a strict total ordering.

Proof. see Baader and Nipkow, page 22–24.

The multiset extension as defined above is due to Dershowitz and Manna (1979).

There are several other ways to characterize the multiset extension of a binary relation. The following one is due to Huet and Oppen (1980):

Let (M, \succ) be an abstract reduction system. The (Huet/Oppen) multiset extension of \succ to multisets over M is defined by

$$S_1 \succ_{\text{mul}}^{\text{HO}} S_2 \text{ if and only if}$$

$$S_1 \neq S_2 \text{ and}$$

$$\forall m \in M: \left(S_2(m) > S_1(m) \right)$$

$$\Rightarrow \exists m' \in M: m' \succ m \text{ and } S_1(m') > S_2(m')\right)$$

A third way to characterize the multiset extension of a binary relation \succ is to define it as the transitive closure of the relation \succ_{mul}^1 given by

$$S_1 \succ_{\text{mul}}^1 S_2$$
 if and only if
there exists $x \in S_1$ and a multiset Y over M such that
 $S_2 = (S_1 - \{x\}) \cup Y,$
 $\forall y \in Y : x \succ y$

For strict partial orderings all three characterizations of \succ_{mul} are equivalent:

Theorem 1.11 If \succ is a strict partial ordering, then (a) $\succ_{\text{mul}} = \succ_{\text{mul}}^{\text{HO}}$, (b) $\succ_{\text{mul}} = (\succ_{\text{mul}}^{1})^{+}$.

Proof. (a) see Baader and Nipkow, page 24–26. (b) Exercise.

Note, however, that for an arbitrary binary relation \succ all three relations \succ_{mul} , \succ_{mul}^{HO} , and $(\succ_{mul}^{1})^{+}$ may be different.

1.5 Complexity Theory Prerequisites

A decision problem is a subset $L \subseteq \Sigma^*$ for some fixed finite alphabet Σ .

The function $\operatorname{chr}(L, x)$ denotes the characteristic function for some decision problem L and is defined by $\operatorname{chr}(L, u) = 1$ if $u \in L$ and $\operatorname{chr}(L, u) = 0$ otherwise.

P and NP

A decision problem is called *solvable in polynomial time* if its characteristic function can be computed in polynomial time. The class P denotes all polynomial-time decision problems.

We say that a decision problem L is in NP if there is a predicate Q(x, y) and a polynomial p(n) such that for all $u \in \Sigma^*$ we have

- (i) $u \in L$ if and only if there is a $v \in \Sigma^*$ with $|v| \leq p(|u|)$ and Q(u, v) holds, and
- (ii) the predicate Q is in P.

Reducibility, NP-Hardness, NP-Completeness

A decision problem L is polynomial-time reducible to a decision problem L' if there is a function g computable in polynomial time such that for all $u \in \Sigma^*$ we have $u \in L$ iff $g(u) \in L'$.

For example, if L is polynomial-time reducible to L' and $L' \in P$ then $L \in P$.

A decision problem is *NP-hard* if every problem in NP is polynomial-time reducible to it.

A decision problem is NP-complete if it is NP-hard and in NP.

2 Propositional Logic

Propositional logic

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- industry standard for many analysis/verification tasks (e.g., model checking),
- growing importance for discrete optimization problems

2.1 Syntax

- propositional variables
- logical connectives
 ⇒ Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S, to denote propositional variables.

Propositional Formulas

 F_{Π} is the set of propositional formulas over Π defined inductively as follows:

F, G	::=	\perp	(falsum)
		Т	(verum)
		$P, P \in \Pi$	(atomic formula)
		$(\neg F)$	(negation)
		$(F \wedge G)$	(conjunction)
		$(F \lor G)$	(disjunction)
		$(F \to G)$	(implication)
		$(F \leftrightarrow G)$	(equivalence)

Notational Conventions

As a notational convention we assume that \neg binds strongest, and we remove outermost parentheses, so $\neg P \lor Q$ is actually a shorthand for $((\neg P) \lor Q)$.

Instead of $((P \land Q) \land R)$ we simply write $P \land Q \land R$ (and analogously for \lor).

For all other logical connectives we will use parentheses when needed.

Formula Manipulation

Automated reasoning is very much formula manipulation. In order to precisely represent the manipulation of a formula, we introduce positions.

A position is a word over \mathbb{N} . The set of positions of a formula F is inductively defined by

$$pos(F) := \{\varepsilon\} \text{ if } F \in \{\top, \bot\} \text{ or } F \in \Pi$$
$$pos(\neg F) := \{\varepsilon\} \cup \{1p \mid p \in pos(F)\}$$
$$pos(F \circ G) := \{\varepsilon\} \cup \{1p \mid p \in pos(F)\} \cup \{2p \mid p \in pos(G)\}$$
$$where \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}.$$

The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that pp' = q.

Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

By < we denote the strict part of \leq , that is, p < q if $p \leq q$ but not $q \leq p$.

By || we denote incomparable positions, that is, p || q if neither $p \leq q$ nor $q \leq p$.

We say that p is above q if $p \le q$, p is strictly above q if p < q, and p and q are parallel if $p \parallel q$.

The size of a formula F is given by the cardinality of pos(F): |F| := |pos(F)|.

The subformula of F at position $p \in pos(F)$ is recursively defined by

$$F|_{\varepsilon} := F$$

$$(\neg F)|_{1p} := F|_p$$

$$(F_1 \circ F_2)|_{ip} := F_i|_p \text{ where } i \in \{1, 2\}$$

and $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

Finally, the replacement of a subformula at position $p \in pos(F)$ by a formula G is recursively defined by

$$F[G]_{\varepsilon} := G$$

$$(\neg F)[G]_{1p} := \neg (F[G]_p)$$

$$(F_1 \circ F_2)[G]_{1p} := (F_1[G]_p \circ F_2)$$

$$(F_1 \circ F_2)[G]_{2p} := (F_1 \circ F_2[G]_p)$$
where $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}.$

Example 2.1 The set of positions for the formula $F = (P \rightarrow Q) \rightarrow (P \land \neg Q)$ is $pos(F) = \{\varepsilon, 1, 11, 12, 2, 21, 22, 221\}.$

The subformula at position 22 is $F|_{22} = \neg Q$ and replacing this formula by $P \leftrightarrow Q$ results in $F[P \leftrightarrow Q]_{22} = (P \rightarrow Q) \rightarrow (P \land (P \leftrightarrow Q))$.

Polarities

A further prerequisite for efficient formula manipulation is the polarity of a subformula G of F. The polarity determines the number of "negations" starting from F down to G. It is 1 for an even number, -1 for an odd number and 0 if there is at least one equivalence connective along the path.

The *polarity* of a subformula $G = F|_p$ at position p is pol(F, p), where pol is recursively defined by

$$pol(F, \varepsilon) := 1$$

$$pol(\neg F, 1p) := -pol(F, p)$$

$$pol(F_1 \circ F_2, ip) := pol(F_i, p) \text{ if } \circ \in \{\land, \lor\}$$

$$pol(F_1 \to F_2, 1p) := -pol(F_1, p)$$

$$pol(F_1 \to F_2, 2p) := pol(F_2, p)$$

$$pol(F_1 \leftrightarrow F_2, ip) := 0$$

Example 2.2 Let $F = (P \to Q) \to (P \land \neg Q)$. Then pol(F, 1) = pol(F, 12) = pol(F, 221) = -1 and $pol(F, \varepsilon) = pol(F, 11) = pol(F, 2) = pol(F, 21) = pol(F, 22) = 1$.

For the formula $F' = (P \land Q) \leftrightarrow (P \lor Q)$ we get $pol(F', \varepsilon) = 1$ and pol(F', p) = 0 for all $p \in pos(F')$ different from ε .

2.2 Semantics

In *classical logic* (dating back to Aristotle) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0.

There are *multi-valued logics* having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π -valuation is a map

 $\mathcal{A}:\Pi\to\{0,1\}.$

where $\{0, 1\}$ is the set of truth values.

Truth Value of a Formula in $\ensuremath{\mathcal{A}}$

Given a Π -valuation \mathcal{A} , its extension to formulas $\mathcal{A}^* : F_{\Pi} \to \{0, 1\}$ is defined inductively as follows:

$$\begin{aligned} \mathcal{A}^*(\bot) &= 0\\ \mathcal{A}^*(\top) &= 1\\ \mathcal{A}^*(P) &= \mathcal{A}(P)\\ \mathcal{A}^*(\neg F) &= 1 - \mathcal{A}^*(F)\\ \mathcal{A}^*(F \wedge G) &= \min(\mathcal{A}^*(F), \mathcal{A}^*(G))\\ \mathcal{A}^*(F \vee G) &= \max(\mathcal{A}^*(F), \mathcal{A}^*(G))\\ \mathcal{A}^*(F \to G) &= \max(1 - \mathcal{A}^*(F), \mathcal{A}^*(G))\\ \mathcal{A}^*(F \leftrightarrow G) &= \text{if } \mathcal{A}^*(F) &= \mathcal{A}^*(G) \text{ then } 1 \text{ else } 0 \end{aligned}$$

For simplicity, the extension \mathcal{A}^* of \mathcal{A} is usually also denoted by \mathcal{A} .

2.3 Models, Validity, and Satisfiability

Let F be a Π -formula.

We say that F is true under \mathcal{A} (\mathcal{A} is a model of F; F is valid in \mathcal{A} ; F holds under \mathcal{A}), written $\mathcal{A} \models F$, if $\mathcal{A}(F) = 1$.

We say that F is valid or that F is a tautology, written $\models F$, if $\mathcal{A} \models F$ for all Π -valuations \mathcal{A} .

F is called satisfiable if there exists an \mathcal{A} such that $\mathcal{A} \models F$. Otherwise F is called unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} we have

if $\mathcal{A} \models F$ then $\mathcal{A} \models G$,

or equivalently

$$\mathcal{A}(F) \le \mathcal{A}(G)$$

F and G are called equivalent, written $F \models G$, if for all Π -valuations \mathcal{A} we have

 $\mathcal{A} \models F$ if and only if $\mathcal{A} \models G$,

or equivalently

$$\mathcal{A}(F) = \mathcal{A}(G).$$

Proposition 2.3 $F \models G$ if and only if $\models (F \rightarrow G)$.

Proof. (\Rightarrow) Suppose that F entails G. Let \mathcal{A} be an arbitrary Π -valuation. We have to show that $\mathcal{A} \models F \rightarrow G$. If $\mathcal{A}(F) = 1$, then $\mathcal{A}(G) = 1$ (since $F \models G$), and hence $\mathcal{A}(F \rightarrow G) = \max(1-1,1) = 1$. Otherwise $\mathcal{A}(F) = 0$, then $\mathcal{A}(F \rightarrow G) = \max(1-0,\mathcal{A}(G)) = 1$ independently of $\mathcal{A}(G)$. In both cases, $\mathcal{A} \models F \rightarrow G$.

(\Leftarrow) Suppose that F does not entail G. Then there exists a Π -valuation \mathcal{A} such that $\mathcal{A} \models F$, but not $\mathcal{A} \models G$. Consequently, $\mathcal{A}(F \rightarrow G) = \max(1 - \mathcal{A}(F), \mathcal{A}(G)) = \max(1 - 1, 0) = 0$, so $(F \rightarrow G)$ does not hold under \mathcal{A} . \Box