Automated Reasoning |

Marek Kosta Christoph Weidenbach

Summer Term 2012

What is Computer Science about?

Theory

Graphics

Data Bases
Programming Languages
Algorithms

Hardware

Bioinformatics

Verification

What is Automated Deduction about?

Generic Problem Solving by a Computer Program.

Introductory Example: Solving 4 x 4 Sudoku

Start

Introductory Example: Solving 4 x 4 Sudoku

2111413
314|112
412131
11324

Solution

Formal Model

Represent board by a function f(x, y) mapping cells to their

value.

3|1
1 2
Start
N = f(1,1) ~ 2 A F(1,2) ~ 1A
f(3,3) = 3Af(3,4) = 1A
f(4,1)~1ANf(4,3) =2

A I1s conjunction and T the empty conjunction.

Formal Model

A state is described by a triple (N; D; r) where
e M contains the equations for the starting Sudoku

e D a conjunction of further equations computed by the
algorithm

o rc{T, 1}
Initial state is (N; T; T).

Formal Model

A square f(x,y) where x,y € {1,2,3,4} is called defined by
N A D if there is an equation f(x,y) =~ z, z € {1,2,3,4} in N
or D. For otherwise f(x, y) it is called undefined.

Rule-Based Algorithm

Deduce
(N;D;T) = (N;DAf(x,y)=1,7T)

provided f(x, y) is undefined in N A D, for any x,y € {1,2,3,4}.

Conflict

(N;D; T) = (N;D;1)
provided for y # z (i) f(x,y) = f(x, z) for f(x,y), f(x, z)
defined in N A D for some x,y,z or (ii) f(y,x) = f(z,x)
for f(y,x), f(z,x) defined in N A D for some x,y,z or
(iii) f(x,y) = f(x",y") for f(x,y), f(x',y’) defined in N A D
and [x,x" € {1,2} or x,x" € {3,4}] and [y,y’ € {1,2} or
v,y €{3,4}] and x #x" or y £ y’.

Rule-Based Algorithm

Backtrack

(N; D! Nf(x,y) = zAD";1) = (N;D'ANf(x,y) ~
z+1;T)
provided z < 4 and D’ = T or D" contains only equations of

the form f(x’,y’) =~ 4.

Fail

(N;D; 1) = (N;T;1)
provided D # T and D contains only equations of the form
f(x,y) =~ 4.

10

Rule-Based Algorithm

Properties: Rules are applied don't care non-deterministically.

An algorithm (set of rules) is sound if whenever it declares

having found a solution it actually has computed a solution.
It is complete if it finds a solution if one exists.

It is terminating if it never runs forever.

11

Rule-Based Algorithm

Proposition 0.1 (Soundness):

The rules Deduce, Conflict, Backtrack and Fail are sound.
Starting from an initial state (N; T; T):

(i) for any final state (N; D; T), the equations in N A D are a

solution, and,
(i) for any final state (N; T; L) there is no solution to the initial

problem.

12

Rule-Based Algorithm

Proposition 0.2 (Completeness):

The rules Deduce, Conflict, Backtrack and Fail are complete.
For any solution N A D of the Sudoku there is a sequence of
rule applications such that (N; D; T) is a final state.

13

Rule-Based Algorithm

Proposition 0.3 (Termination):
The rules Deduce, Conflict, Backtrack and Fail terminate on

any input state (N; T;T).

14

Confluence

Another important property for don't care non-deterministic rule
based definitions of algorithms is confluence.

It means that whenever several sequences of rules are applicable
to a given states, the respective results can be rejoined by

further rule applications to a common problem state.

15

Confluence

Proposition 0.4 (Deduce and Conflict are Locally Confluent):
Given a state (N; D; T) out of which two different states
(N; D1; T) and (N; Dy; L) can be generated by Deduce and
Conflict in one step, respectively, then the two states can be
rejoined to a state (N; D’; x) via further rule applications.

16

Result

It works.

But: It looks like a lot of effort for a problem that one can solve
with a little bit of thinking.

Reason: Our approach is very general, it can actually be used to

“potentially solve” any problem in computer science.

17

Result

This difference is also important for automated reasoning:

e For problems that are well-known and frequently used, we
can develop optimal specialized methods.
= Algorithms & Data-structures

e For new/unknown/changing problems, we have to develop
generic methods that do “something useful”.
= this lecture: Logic 4+ Calculus 4+ Implementation

e Combining the two approaches
= Automated Reasoning Il (next semester): Logic modulo
Theory + Calculus 4+ Implementation

18

Topics of the Course

Preliminaries

math repetition

computer science repetition
orderings

induction (repetition)

rewrite systems

Propositional logic
logic: syntax, semantics
calculi: superposition, CDCL
iImplementation: 2-watched literal, clause learning

19

Topics of the Course

First-order predicate logic
logic: syntax, semantics, model theory
calculus: superposition
Implementation: sharing, indexing

First-order predicate logic with equality
equational logic: unit equations
calculus: term rewriting systems, Knuth-Bendix completion
iImplementation: dependency pairs
first-order logic with equality
calculus: superposition
Implementation: rewriting

20

Literature

Is a big problem, actually you are the “guinea-pigs” for a new
textbook.

Franz Baader and Tobias Nipkow: Term rewriting and all
that, Cambridge Univ. Press, 1998. (Textbook on equational

reasoning)

Armin Biere and Marijn Heule and Hans van Maaren and Toby
Walsh (editors): Handbook of Satisfiability, 10S Press, 2009.
(Be careful: Handbook, hard to read)

Alan Robinson and Andrei Voronkov (editors): Handbook of
Automated Reasoning, Vol | & Il, Elsevier, 2001. (Be careful:
Handbook, very hard to read)

21

Part 1: Preliminaries

math repetition

computer science repetition
orderings

induction (repetition)

rewrite systems

22

1.1 Mathematical Prerequisites

N =1{0,1,2,...} is the set of natural numbers
N7 is the set of positive natural numbers without 0

Z, QQ, R denote the integers, rational numbers and the real

numbers, respectively.

23

Multisets

Given a set M, a multi-set S over M is a mapping S: M — N,
where S specifies the number of occurrences of elements m of
the base set M within the multiset S.

We use the standard set notations €, C, C, U, N with
the analogous meaning for multisets, e.g., (51 U S;)(m) =

51(m) + S2(m).

We also write multi-sets in a set like notation, e.g., the multi-set
S = {1,2,2,4} denotes a multi-set over the set {1,2,3,4}
where S(1) =1, 5(2) =2, 5(3) =0, and 5(4) = 1.

A multi-set S over a set M is finite if {m € M | S(m) > 0} is
finite. In this lecture we only consider finite multi-sets.

24

Relations

An n-ary relation R over some set M is a subset of M": R C M".

For two n-ary relations R, @ over some set M, their union (U)
or intersection (N) is again an n-ary relation, where

RUQ = {(my,....mp) € M| (mg,...,my) € R or
(my,...,m,) € Q}

RNQ :=A{(m,....my) € M| (m,...,mp) € R and
(my,....,my) € Q} .

A relation @ is a subrelation of a relation R if @ C R.

25

Relations

The characteristic function of a relation R or sometimes
called predicate indicates membership. In addition of writing
(my,...,m,) € R wealso write R(my, ..., m,). So the predicate

R(my, ..., my,) holds or is true if in fact (my,..., m,) belongs
to the relation R.

26

Words

Given a nonempty alphabet X the set 2* of finite words over X
is defined by

(i) the empty word € € ¥*
(ii) for each letter a € ¥ also a € ¥*

(iii) if u,v € ¥* so uv € ¥* where uv denotes the concatenation
of uand v.

27

Words

The length |u| of a word u € X* is defined by
(i) |e] :=0,

(i) |a| := 1 for any a € X and

(iii) |uv|:= |u| + |v| for any u,v € ¥*.

28

1.2 Computer Science Prerequisites

A little bit on computational complexity theory.

Big O

Let f(n) and g(n) be functions from the naturals into the
non-negative reals. Then

O(f(n)) ={g(n)|3c>03ng €N"Vn>ngg(n) <c-f(n)}

We use V, reads “for all”, and d, reads “exists’, on the object

and meta level.

29

Decision Problem

A decision problem is a subset L C X>* for some fixed finite
alphabet . The function chr(L, x) denotes the characteristic

function for some decision problem L and is defined by
chr(L,u) =1if u e L and chr(L, u) = 0 otherwise.

A decision problem is solvable in polynomial-time iff its
characteristic function can be computed in polynomial-time.
The class P denotes all polynomial-time decision problems.

30

NP

A decision problem L is in NP iff there is a predicate Q(x, y)
and a polynomial p(n) such that for all u € ¥* we have

(i) u e Liff thereis an v € ¥* with |v| < p(|u|) and Q(u, v)
holds, and

(ii) the predicate Q is in P.

31

Reducible,NP-Hard, NP-Complete

A decision problem L is polynomial-time reducible to a decision
problem L’ if there is a function g € P such that for all v € ¥*
we have u € L iff g(u) € L.

For example, if L is reducible to L’ and L’ € P then L € P.

A decision problem is NP-hard if every problem in NP is
polynomial-time reducible to it.

A decision problem is NP-complete if it is NP-hard and in NP.

32

1.3 Ordering

Termination of rewrite systems and proof theory is strongly
related to the concept of (well-founded) orderings.

An ordering R is a binary relation on some set M.

33

Ordering

Relevant properties of orderings are: Depending on particular
properties such as

(reflexivity) Vx € M R(x, x)
(irreflexivity) Vx € M =R(x, x)
(antisymmetry) Vx,y € M(R(x,y) A R(y,x) = x =)
(transitivity) Vx,y,z€ M(R(x,y) N R(y,z) = R(x, z))
(totality) Vx,y € M(R(x,y)V R(y, x))

where = is the identity relation on M. The boolean connectives

A, V, and — read “and”, “or’, and “implies”, respectively.

34

Partial Ordering

A strict partial ordering > on a set M is a transitive and
irreflexive binary relation on M.

An a € M is called minimal, if there is no b in M such that
a~ b.

An a € M is called smallest, if b = a for all b € M different
from a.

Notation:
< for the inverse relation =1
~ for the reflexive closure (>~ U =) of >

35

Well-Foundedness

A strict partial ordering = on M is called well-founded
(Noetherian), if there is no infinite descending chain ag > a; >~
a = ... with a; € M.

36

Well-Foundedness and Termination

Let —, > be binary relations on the same set.

Lemma 1.1:

If > is a well-founded partial ordering and — C >, then — is
terminating.

Lemma 1.2:

If — is a terminating binary relation over A, then —7 is a
well-founded partial ordering.

37

Well-Founded Orderings: Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (My, >1), (M>, =2) be well-
founded orderings. Then let their lexicographic combination

== (=1, 72)lex
on M; x M, be defined as
(31, 32) — (bl, b2) i
a; =1 by or (a1 = by and ap > by)
(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).

38

Well-Founded Orderings: Examples

Length-based ordering on words. For alphabets 2 with a
well-founded ordering >y, the relation > defined as

/

w > w <=

lw| > |w'| or (Jw| = |w'| and w >5 jex W')
is a well-founded ordering on X* (Exercise).

Counterexamples:
(Z,>)
(N, <)

the lexicographic ordering on 2™

39

Basic Properties of Well-Founded Orderings

Lemma 1.3:
(M, =) is well-founded if and only if every) € M’ C M has a

minimal element.

Lemma 1.4:
(My, 1) and (M>, >=>) are well-founded if and only if (M; X
My, =) with = = (-1, =2)ex is well-founded.

40

Monotone Mappings

Let (My, >1) and (M, >5) be strict partial orderings. A
mapping ¢ : My — M, is called monotone, if a >1 b implies
©p(a) >2 o(b) for all a,b € M.

Lemma 1.5:
If © is a monotone mapping from (M;, >1) to (M, >5) and
(M5, >5) is well-founded, then (My, >1) is well-founded.

41

Multiset Orderings

Lemma 1.6 (Konig's Lemma):
Every finitely branching tree with infinitely many nodes contains

an infinite path.

42

Multiset Orderings

Let (M, =) be a strict partial ordering. The multiset extension
of > to multisets over M is defined by

51 mu 2 &
51 # Sy and
Vm e M: (S(m) > S1(m)
= Im’ € M: m" = m and 5;(m’") > S;(m"))

43

1.4 Induction

More or less all sets of objects in computer science or logic are
defined inductively. Typically, this is done in a bottom-up way,
where starting with some definite set, it is closed under a given

set of operations.

44

Induction

Example 1.7 (Inductive Sets):

1. The set of all Sudoku problem states, consists of the set of
start states (N; T; T) for consistent assignments N plus all
states that can be derived from the start states by the rules
Deduce, Conflict, Backtrack, and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all

numbers that can be computed from 0 by adding 1. This is
an infinite set.

3. The set of all strings 2* over a finite alphabet X~ where all
letters of 2 are contained in 2* and if v and v are words
out of 2* so is the word uv. This is an infinite set.

45

Induction

All the previous examples have in common that there is an
underlying well-founded ordering on the sets induced by the
construction. The minimal elements for the Sudoku are the
problem states (N; T; T), for the natural numbers it is 0 and for
the set of strings the empty word.

Now if we want to prove a property of an inductive set it

is sufficient to prove it (i) for the minimal element(s) and

(ii) assuming the property for an arbitrary set of elements, to
prove that it holds for all elements that can be constructed “in
one step” out those elements. This is the principle of Noetherian
Induction.

46

Induction

Theorem 1.8 (Noetherian Induction):

Let (M, >) be a well-founded ordering, let Q be a property of
elements of M.

If for all m € M the implication

if Q(m’) for all m" € M such that m >= m’?
then Q(m)."

is satisfied, then the property Q(m) holds for all m € M.

4induction hypothesis
binduction step

47

Induction

Theorem 1.9 (Properties Multi-Set Ordering):
(a) >mur is a strict partial ordering.

(b) > well-founded = >, well-founded.

(c) > total = >, total.

48

1.5 Rewrite Systems

A rewrite system is a pair (A, —), where
A is a set,

— C A X Ais a binary relation on A.

The relation — is usually written in infix notation, i.e., a — b
instead of (a, b) € —.

49

Rewrite Systems

Let -/ C Ax B and =" C B x C be two binary relations.
Then the binary relation (—’ o —=") C A x C is defined by

a(—"o—")c if and only if

a—" band b =" ¢ for some b € B.

50

Rewrite Systems

’ {(a,a)[acAj

-t = 5lo—

1
]

=t = Ui~

=" =Upzo—=' = =TU="
—= = —=U=0

— 1 =« ={(bc)|c— b}
& = U+

ot = (o)t

identity

| + 1-fold composition
transitive closure

reflexive transitive closure
reflexive closure

Inverse

symmetric closure
transitive symmetric closure

refl. trans. symmetric closure

51

Rewrite Systems

b € A is reducible, if there is a ¢ such that b — c.
b is in normal form (irreducible), if it is not reducible.

c is a normal form of b, if b —* ¢ and c is in normal form.

Notation: ¢ = b (if the normal form of b is unique).

52

Rewrite Systems

A relation — is called

terminating, if there is no infinite descending chain by —
by — b, —

normalizing, if every b € A has a normal form.

53

Rewrite Systems

Lemma 1.10:
If — is terminating, then it is normalizing.

Note: The reverse implication does not hold.

54

Confluence

Let (A, —) be a rewrite system.

b and c € A are joinable, if there is an a such that b —* a "+~ c.
Notation: b | c.

The relation — is called

Church-Rosser, if b <* ¢ implies b | c.

confluent, if b < a —* ¢ implies b | c.
locally confluent, if b < a — c implies b | c.

convergent, if it is confluent and terminating.

55

Confluence

For a rewrite system (M, —) consider a sequence of elements
a; that are pairwise connected by the symmetric closure, i.e.,
a1 <> a <> az... <> a,. We say that a; is a peak in such a

sequence, if actually a;_1 < a; — aj11.

56

Confluence

Theorem 1.11:
The following properties are equivalent:

(i) — has the Church-Rosser property.

(i) — is confluent.

57

Confluence

Lemma 1.12:
If — is confluent, then every element has at most one normal

form.

Corollary 1.13:
If — is normalizing and confluent, then every element b has a

unique normal form.

Proposition 1.14:

If — is normalizing and confluent, then b <+* c if and only if

bl = cl.

58

Confluence and Local Confluence

Theorem 1.15 (“Newman's Lemma"):
If a terminating relation — is locally confluent, then it is

confluent.

59

Part 2: Propositional Logic

Propositional logic

logic of truth values

decidable (but NP-complete)

can be used to describe functions over a finite domain
industry standard for many analysis/verification tasks

growing importance for discrete optimization problems
(Automated Reasoning II)

60

2.1 Syntax

e propositional variables

e logical connectives

= Boolean connectives and constants

61

Propositional Variables

Let 2 be a set of propositional variables also called the signature

of the (propositional) logic.

We use letters P, Q, R, S, to denote propositional variables.

62

Propositional Formulas

PROP(X) is the set of propositional formulas over ¥ inductively
defined as follows:

o, = L (falsum)
T (verum)
P, PeX (atomic formula)
(—¢) (negation)
(@ A Y) (conjunction)
(& V) (disjunction)
(¢ —) (implication)
(¢ <) (equivalence)

Notational Conventions

As a notational convention we assume that — binds strongest,
and we remove outermost parenthesis, so =P V @ is actually a
shorthand for ((—P) V Q). For all other logical connectives we
will explicitly put parenthesis when needed. From the semantics
we will see that A and V are associative and commutative.
Therefore instead of ((P A Q) A R) we simply write PA Q A R.

Automated reasoning is very much formula manipulation. In
order to precisely represent the manipulation of a formula, we
introduce positions.

64

Formula Manipulation

A position is a word over N. The set of positions of a formula ¢

Is inductively defined by

pos(¢p) = et ifope{T,L}orpecl
pos(—¢) = {e}U{lp|p € pos(9)}
pos(¢ o 1) {e}U{lp | p € pos(p)f U{2p | p € pos(v)}

where o € {A,V, =, <}

65

Formula Manipulation

The prefix order < on positions is defined by p < g if there is
some p’ such that pp’ = q.

Note that the prefix order is partial, e.g., the positions 12 and

21 are not comparable, they are “parallel”, see below.

By < we denote the strict part of <, i.e., p < g if p < g but
not ¢ < p. By || we denote incomparable positions, i.e., p || g
if neither p < g, nor g < p. Then we say that p is above g if
p < g, p is strictly above g if p < g, and p and g are parallel if

Pl a.

66

Formula Manipulation

The size of a formula ¢ is given by the cardinality of pos(¢):
@] := | pos(9)].

The subformula of ¢ at position p € pos(¢) is recursively defined
by

¢‘e L= ¢
ﬂ¢‘1p = ¢‘P
(P10 d2)|ip = ¢i|lp where i € {1,2}

o€ {A,V,—, <}

67

Formula Manipulation

Finally, the replacement of a subformula at position p € pos(¢)
by a formula v is recursively defined by

olyle =
(=)[b]ip = —(2l¥]p)
(P10 @)Y = (d1][¢]p 0 ¢2)
(P10 @2)[]2p = (é10¢2[9]p)

where o € {A,V, =, <}

68

Formula Manipulation

Example 2.1:

The set of positions for the formula ¢ = (AAB) — (AV B) is
pos(¢) = {€,1,11,12,2,21,22}. The subformula at position 22
is B, ¢|o» = B and replacing this formula by A <+ B results in
¢[A <> Bloo=(AAB) — (AV (A < B)).

69

Formula Manipulation

A further prerequisite for efficient formula manipulation is the
polarity of a subformula ¢ of ¢. The polarity determines the
number of “negations” starting from ¢ down to 7). It is 1 for
an even number along the path, —1 for an odd number and 0O if

there is at least one equivalence connective along the path.

70

Formula Manipulation

The polarity of a subformula 3 of ¢ at position p, i € {1,2} is
recursively defined by

pol(¢,e) = 1
pol(—¢, 1p) = —pol(¢, p)
pol(¢1 0 ¢2,ip) = pol(¢i, p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) = pol(¢2, p)

pol(¢p1 <> ¢2,ip) = O

Formula Manipulation

Example 2.2:
We reuse the formula ¢ = (AA B) — (AV B) Then

pol(¢, 1) = pol(¢, 11) = —1 and pol(¢, 2) = pol(¢,22) = 1. For
the formula ¢’ = (AN B) < (AV B) we get pol(¢’,¢) =1 and
pol(¢’, p) = 0 for all other p € pos(¢’), p # .

72

2.2 Semantics

In classical logic (dating back to Aristoteles) there are “only”
two truth values “true” and “false” which we shall denote,

respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

73

Valuations

A propositional variable has no intrinsic meaning. The meaning
of a propositional variable has to be defined by a valuation.

A > -valuation is a map
AL — {01}

where {0, 1} is the set of truth values.

74

Truth Value of a Formula in A

Given a 2-valuation A, the function can be extended to
A : PROP(X) — {0,1} by:
A(L) =
A(T) =
A(-¢) =1 - A(9)
A(p A1p) = min({A(o), A(¥)})
Ao V1p) = max({A(¢), A(¥)})
A(p — 1) = max({(1 - A(¢)), A(¥)})
A(p < ¢) =if A(p) = A(v) then 1 else O

75

2.3 Models, Validity, and Satisfiability

¢ is valid in A (A is a model of ¢; ¢ holds under A):

Ao o Ag) =1

¢ is valid (or is a tautology):

= ¢ & AE ¢ for all X-valuations A

¢ is called satisfiable if there exists an A such that A = ¢.
Otherwise ¢ is called unsatisfiable (or contradictory).

76

Entailment and Equivalence

¢ entails (implies) @ (or v is a consequence of ¢), written
¢ = 1, if for all X-valuations A we have A |=¢ = AE .

@ and v are called equivalent, written ¢ Wy, it for all
> -valuations A we have A =¢ < A = 1.

Proposition 2.3:

¢ = 1 if and only if = (¢ —).

Proposition 2.4:

¢ = ¥ if and only if = (¢ <).

Entailment and Equivalence

Entailment is extended to sets of formulas N in the “natural

way :

N = ¢ if for all X-valuations A:
if A= forall ¢p € N, then A = ¢.

Note: formulas are always finite objects; but sets of formulas
may be infinite. Therefore, it is in general not possible to replace
a set of formulas by the conjunction of its elements.

78

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal
as explained by the following proposition.

Proposition 2.5:
¢ is valid if and only if —¢ is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it
iIs sufficient to design a checker for unsatisfiability.

79

Validity vs. Unsatisfiability

In a similar way, entailment N = ¢ can be reduced to

unsatisfiability:

Proposition 2.6:
N = ¢ if and only if N U {—¢} is unsatisfiable.

80

Checking Unsatisfiability

Every formula ¢ contains only finitely many propositional
variables. Obviously, A(¢) depends only on the values of those

finitely many variables in ¢ under A.

If ¢ contains n distinct propositional variables, then it is sufficient
to check 2" valuations to see whether ¢ is satisfiable or not.
= truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s
Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than
truth tables to check the satisfiability of a formula. (later more)

81

Truth Table

Let ¢ be a propositional formula over variables Py, ..., P, and
k = | pos(¢)|. Then a complete truth table for ¢ is a table with
n + k columns and 2" + 1 rows of the form

Pi|...| P, b p, | py
O |...]0 A1(¢‘p1) A1(¢‘Pk)
L] 1 An@l) | - | A (@ln)

such that the A; are exactly the 2" different valuations for
Py, ..., P, and either p; || pixj or pi > pitj, in particular p, =€
and ¢|,, =@ forall i,j >0, i+j < k.

82

Truth Table

Truth tables can be used to check validity, satisfiability or
unsatisfiability of a formula in a systematic way.

They have the nice property that if the rows are filled from left
to right, then in order to compute A;(¢|,) the values for A; of
@|p;h are already computed, h € {1, 2}.

83

Substitution Theorem

Proposition 2.7:

Let ¢1 and ¢, be equivalent formulas, and ¥[¢1], be a formula
in which ¢1 occurs as a subformula at position p.

Then 9[p1], is equivalent to ¥[¢2],.

84

Equivalences

Proposition 2.8:
The following equivalences are valid for all formulas ¢, ¥, x:

(PN @) < @ ldempotency A

(¢ V P) < ¢ ldempotency V
(o NY) < (Y A D) Commutativity A
(¢ V) < (YV o) Commutativity V

(dNA (Y AX)) < (¢ AY)AX) Associativity A
(oV(YVx)) < ((¢VY)Vx) Associativity V
(N (Y VX)) (@AY)V(dAx) Distributivity AV
(pV(WAX)) < (pVY)A(pVx) Distributivity VA

85

Equivalences

(@A (PV) < ¢
(pV (pNAY)) < &

Absorption AV
Absorption VA

(@ A=) < L
(pV—9) T

Introduction _L

Introduction T

86

Equivalences

(P V) < (g A)
(P AY) < (7o V)
=1 < 1
=l < T

De Morgan —V
De Morgan —A
Propagate = T
Propagate —_L

87

Equivalences

(PAT) < ¢
(pV L) o
(¢ =L)< o
(¢ L) <> ¢
(9 T)< o
(pVT)eT
(N L)+ L

Absorption TA
Absorption LV
Eliminate 1 —
Eliminate | <
Eliminate T <
Propagate T

Propagate L

88

Equivalences

(¢ = V) < (—o V) Eliminate —
(0 V) (¢ > Y)AN (Y — @) Eliminatel <
(¢ V) < (dAY)V (mp A=) Eliminate2 <

For simplification purposes the equivalences are typically applied

as left to right rules.

89

2.4 Normal Forms

We define conjunctions of formulas as follows:
Ao @i =T.
/\}:1 ¢i = P1.
/\7111 i = Nie1 @i A Pyt
and analogously disjunctions:
Vi ¢i= L.
\/}:1 ¢i = ¢1.
\/7211 i = Vie1 @i V dni1.

90

Literals and Clauses

A literal is either a propositional variable P or a negated

propositional variable —P.

A clause is a (possibly empty) disjunction of literals.

91

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal
form), if it is a conjunction of disjunctions of literals (or in other

words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a

disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

92

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of
DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and —P.

Conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary
literals P and —P.

On the other hand, checking the unsatisfiability of CNF formulas
or the validity of DNF formulas is known to be coNP-complete.

93

Conversion to CNF/DNF

Proposition 2.9:
For every formula there is an equivalent formula in CNF (and
also an equivalent formula in DNF).

Proof:
We consider the case of CNF and propose a naive algorithm.

Apply the following rules as long as possible (modulo associativity

and commutativity of A and V):

Step 1: Eliminate equivalences:

Pl(Y1 < ¥2)]lp =EcnE Ol(Y1 — ¥2) A (Y1 — ¥2)]p

94

Conversion to CNF/DNF

Step 2: Eliminate implications:
ol(1 — ¥2)lp =ECNE Ol(—1 V ¥2)]p

Step 3: Push negations downward:

P[=(1 V 2)lp =ECNF O[(—¥1 A —0)]p
d[=(v1 A2)lp =ECNE @[(—Y1 V —2)]p

Step 4: Eliminate multiple negations:

oY), =Eecne P[Y]p

95

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

Al(1 Av2) V xlp =eenE o[(¥1 VvV x) A (2 V X)]p

Step 6: Eliminate T and _L:

S S o

ol

= ECNF
= ECNF
= ECNF
= ECNF
= ECNF

—>ECNF

A S S S S

96

Conversion to CNF/DNF

Proving termination is easy for steps 2, 4, and 6; steps 1, 3, and
5 are a bit more complicated.

The resulting formula is equivalent to the original one and in
CNF.

The conversion of a formula to DNF works in the same way,

except that conjunctions have to be pushed downward in step 5.
[

97

Complexity

Conversion to CNF (or DNF) may produce a formula whose size

Is exponential in the size of the original one.

98

Negation Normal Form (NNF)

The formula after application of Step 4 is said to be in Negation
Normal Form, i.e., it does not contain —, <+ and negation

symbols only occur in front of propositional variables (atoms).

99

Satisfiability-preserving Transformations

The goal

“find a formula ¥ in CNF such that ¢ H ¥"

IS unpractical.

But if we relax the requirement to
“find a formula ¥ in CNF such that o = L. < ¢ = L

we can get an efficient transformation.

100

Satisfiability-preserving Transformations

Idea: A formula ¥|¢], is satisfiable if and only if Y)[P], A (P < ¢)
Is satisfiable where P is a new propositional variable that does
not occur in 1 and works as an abbreviation for ¢.

We can use this rule recursively for all subformulas in the original
formula (this introduces a linear number of new propositional

variables).

Conversion of the resulting formula to CNF increases the size
only by an additional factor (each formula P < ¢ gives rise to
at most one application of the distributivity law).

101

Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula into account.

For example if 1[¢p1 <> ¢2], and pol(y), p) = —1 then for CNF
transformation do Y[(¢1 A ¢2) V (md1 A —2)]p.

102

Optimized Transformations

Proposition 2.10:
Let P be a propositional variable not occurring in ¥[¢],.

If pol(x, p) = 1, then Y[¢], is satisfiable if and only if
V[P], A (P — ¢) is satisfiable.

If pol(¢, p) = —1, then [¢], is satisfiable if and only if
V[P], A (¢ — P) is satisfiable.

If pol(x), p) = 0, then [¢], is satisfiable if and only if
Y[P], A (P < ¢) is satisfiable.

Proof:

Exercise.

103

Optimized Transformations

The number of eventually generated clauses is a good indicator
for useful CNF transformations:

08 v(v) ()
d1 N\ $2 v(é1) + v(e2) v(¢1)v(¢2)
¢1V 92 v(¢1)v(¢2) v(¢1) + v(2)
P1 — P2 v(p1)v(¢2) v(¢1) + v(2)
O1 <> 2 | v(1)0(P2) + U(P1)v(@2) | v(d1)v(¢2) + D(91)0(e2)
01 (1) v(¢1)
P, 1,1 1 1

104

Optimized CNF

Step 1: Exhaustively apply modulo C of <, AC of A, V:

kP

AP AT)
ol(v L)
Ol(¢ < L)
Ol(< T)
Ol v T)
ol(A L),

—OCNF
= OCNF
—OCNF
—OCNF
= OCNF

—OCNF

o S

105

Optimized CNF

ol(v A)]

ol(v V),

Ol(th1 A (Y1 V 1h2))
Ol(1h1 V (Y1 Aiz))
ol(v A=),

ol(v vV =),

o=,

¢[~L]

—OCNF
—OCNF
= OCNF
= OCNF
—OCNF
—OCNF
—OCNF

—OCNF

A S S S S R C LS

106

Optimized CNF

A e S e

—OCNF
—OCNF
—OCNF

—OCNF

S & & S

107

Optimized CNF

Step 2: Introduce top-down fresh variables for beneficial

subformulas:

V[l =ocnF Y[Plp Adef(y, p, P)

where P is new to ¥|¢],, def(y, p, P) is defined polarity
dependent according to Proposition 2.10 and v(vy[¢],) >

V([P A def(y), p, P)).

Remark: Although computing v is not practical in general, the
test v(¢[d],) > v(¥[P], A def(y, p, P)) can be computed in

constant time.

108

Optimized CNF

Step 3: Eliminate equivalences polarity dependent:

P11 <> o)p =oenF O[(Y1 — ¥2) A (Y2 — Y1)l

if pol(¢, p) =1 or pol(¢, p) =0

Plh1 < 2]p =oenk O[(¥1 A 2) V (—h2 A 1)

if pol(¢, p) = —1

109

Optimized CNF

Step 4: Apply steps 2, 3, 4, 5 of =gcNF

Remark: The =gcnf algorithm is already close to a state of
the art algorithm. Missing are further redundancy tests and
simplification mechanisms we will discuss later on in this section.

110

2.5 Superposition for PROP(Y)

Superposition for PROP(X) is:
e resolution (Robinson 1965) +
e ordering restrictions (Bachmair & Ganzinger 1990) +
e abstract redundancy criterion (B&G 1990) +
e partial model construction (B & G 1990) +

e partial-model based inference restriction (Weidenbach)

111

Resolution for PROP(Y)

A calculus is a set of inference and reduction rules for a given
logic (here PROP(Y)).

We only consider calculi operating on a set of clauses N.
Inference rules add new clauses to N whereas reduction rules

remove clauses from N or replace clauses by “simpler” ones.

We are only interested in unsatisfiability, i.e., the considered
calculi test whether a clause set N is unsatisfiable. So, in order
to check validity of a formula ¢ we check unsatisfiability of the

clauses generated from —¢.

112

Resolution for PROP(Y)

For clauses we switch between the notation as a disjunction,
eg., PV QV PV =R, and the notation as a multiset, e.g.,
{P,Q, P,—=R}. This makes no difference as we consider V in the
context of clauses always modulo AC. Note that L, the empty

disjunction, corresponds to (), the empty multiset.

For literals we write L, possibly with subscript.. If L = P then
L = —Pandif L= —P then L = P, so the bar flips the negation

of a literal.

Clauses are typically denoted by letters C, D, possibly with

subscript.

113

Resolution for PROP(Y)

The resolution calculus consists of the inference rules resolution
and factoring:

Resolution Factoring
GvP GV-—-P T CVLVL
GV G CvLi

where C;, G, C always stand for clauses, all inference/reduction
rules are applied with respect to AC of V. Given a clause set
N the schema above the inference bar is mapped to N and the
resulting clauses below the bar are then added to N.

114

Resolution for PROP(Y)

and the reduction rules subsumption and tautology deletion:

Subsumption Tautology Deletion

G G » CVPV-P
G

R

where for subsumption we assume C; € (. Given a clause set
N the schema above the reduction bar is mapped to N and the

resulting clauses below the bar replace the clauses above the bar
in V.

Clauses that can be removed are called redundant.

115

Resolution for PROP(Y)

So, if we consider clause sets N as states, W is disjoint union, we
get the rules

Resolution
(NL‘H{Cl\/P,Cz\/—IP}) = (NU{Cl\/P,CQ\/—'P}U
{Cl \V; CQ})

Factoring
(Nw{CVLVL}) = (NU{CVLVLIU{CVL})

116

Resolution for PROP(Y)

Subsumption
(Nu{G, Gy) = (NU{G})

provided C; C G

Tautology Deletion
(Nw{CVPV-P}) = (N)

We need more structure than just (N) in order to define a useful

rewrite system. We fix this later on.

117

Resolution for PROP(Y)

Theorem 2.11:
The resolution calculus is sound and complete:
N is unsatisfiable iff N =* {1}

Proof:
Will be a consequence of soundness and completeness of

superposition. O

118

Ordering restrictions

Let < be a total ordering on 2.

We lift < to a total ordering on literals by <C<; and P <; =P
and =P <; Q for all P < Q.

We further lift <; to a total ordering on clauses <¢ by
considering the multiset extension of <; for clauses.

Eventually, we overload < with <; and <.

We define N=¢ ={D e N| D < C}.

119

Ordering restrictions

Eventually we will restrict inferences to maximal literals with
respect to <.

120

Abstract Redundancy

A clause C is redundant with respect to a clause set N if
N=¢ = C.

Tautologies are redundant. Subsumed clauses are redundant if
C Is strict.

Remark: Note that for finite N, N=¢ |= C can be decided for

PROP(X) but is as hard as testing unsatisfiability for a clause
set V.

121

Partial Model Construction

Given a clause set N and an ordering < we can construct a
(partial) model Nz for N as follows:

Nc = UD<C 0p

)
{P} if D= D’V P, P strictly maximal and Np }= D

0 otherwise

122

Partial Model Construction

Clauses C with d¢ # () are called productive. Some properties

of the partial model construction.
Proposition 2.12:
1. For every D with (CV —P) < D we have dp # {P}.
2. If ¢ = {P} then Nc Udc = C.
3. If Nc = D then for all ¢’ with C < C” we have N¢» =D

and in particular Nz = D.

123

Notation: N, N=¢, N7, N¢

Please properly distinguish:

e /N is a set of clauses interpreted as the conjunction of all

clauses.

o N=C is of set of clauses from N strictly smaller than C with

respect to <.

o Nz, N¢ are sets of atoms, often called Herbrand Interpreta-
tions. Nz is the overall (partial) model for N, whereas N¢
Is generated from all clauses from N strictly smaller than C.

e Validity is defined by Nz = P if P € Nz and Nz = =P if
P & Nz, accordingly for Nc.

124

Superposition

The superposition calculus consists of the inference rules
superposition left and factoring:

Superposition Left
(N {C VP GV-P}) = (NU{GVP CV-P}U
{Cl V CQ})

where P is strictly maximal in C(; V P and =P is maximal in
G Vv =P

Factoring
(N&J{C\/P\/P}) — (NU{C\/P\/P}U{C\/P})
where P is maximalin CV PV P

125

Superposition

examples for specific redundancy rules are

Subsumption
(INW{C, G}) = (NU{G})

provided C; C G

Tautology Deletion
(Nw{CVPV-P}) = (N)

Subsumption Resolution
(INw{G VL GVLY) = (NU{GVLG})

where Cl g C2

126

Superposition

Theorem 2.13:
If from a clause set N all possible superposition inferences are
redundant and L ¢ N then N is satisfiable and Nz = N.

127

Superposition

So the proof actually tells us that at any point in time we need
only to consider either a superposition left inference between
a minimal false clause and a productive clause or a factoring

inference on a minimal false clause.

128

A Superposition Theorem Prover STP

3 clause sets:
N(ew) containing new inferred clauses
U(sable) containing reduced new inferred clauses
clauses get into W/(orked) O(ff) once their inferences have
been computed

Strategy:
Inferences will only be computed when there are no
possibilities for simplification

129

Rewrite Rules for STP

Tautology Deletion
(NW{C}; U;WO) =gs1p (N;U; WO)

if C is a tautology

Forward Subsumption
(NW{C}; U, WO) =stp (N;U;WO)

if some D € (UU WO) subsumes C

Backward Subsumption U
(NU{C}; Uw{D}; WO) =srp (NU{C}; U; WO)

if C strictly subsumes D (C C D)

130

Rewrite Rules for STP

Backward Subsumption WO
(Nw{C}, U;WOWwW{D}) =stp (NU{C}, U; WO)

if C strictly subsumes D (C C D)

Forward Subsumption Resolution
(Nw{CG VL};UWO) =srp (NU{G};U; WO)

if there exists G, V L € (U U WO) such that G, C G
Backward Subsumption Resolution U

(NHJ{Cl\/L};UH‘J{CQ \/Z},WO) —>STP (NU{Cl\/
L}; Uy {Cz}; WO)

if C; C G

131

Rewrite Rules for STP

Backward Subsumption Resolution WO
(NHJ{Cl\/L};U; WOH‘J{CQ\/Z}) —>STP (NU{Cl\/
L}, UWOW{G})

if C; C G

Clause Processing
(INW{C}; U, WO) =s1p (N;UU{C}; WO)

Inference Computation

(@,U&J{C},WO) —>STP (N; U; WOU{C})
where N is the set of clauses derived by superposition inferences
from C and clauses in WO.

132

Soundness and Completeness

Theorem 2.14:

NEL < (N;0;0) =%p (N U{L} U, WO)

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem

Proving appeared in the Handbook of Automated Reasoning,
2001

133

Termination

Theorem 2.15:

For finite N and a strategy where the reduction rules Tautology
Deletion, the two Subsumption and two Subsumption Resolution
rules are always exhaustively applied before Clause Processing

and Inference Computation, the rewrite relation =g7p is
terminating on (N; ;D).

Proof: think of it (more later on).

134

Fairness

Problem:
If N is inconsistent, then (N; 0;0) =%t (N'U{L}; U; WO).

Does this imply that every derivation starting from an

inconsistent set N eventually produces L 7

No: a clause could be kept in U without ever being used for

an inference.

135

Fairness

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises
is ever deleted), then it must be computed eventually.

One possible way to guarantee fairness: Implement U as a
queue (there are other techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If
N is inconsistent, then every fair derivation will eventually
produce L.

136

2.0 The CDCL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite
set NV of clauses), check whether it is satisfiable (and optionally:
output one solution, if it is satisfiable).

Assumption:
Clauses contain neither duplicated literals nor complementary
literals.

CDCL: Conflict Driven Clause Learning

137

Satisfiability of Clause Sets

A = N if and only if A = C for all clauses C in N.

A E C if and only if A |= L for some literal L € C.

138

Partial Valuations

Since we will construct satisfying valuations incrementally,
we consider partial valuations (that is, partial mappings

A: Y —{0,1}).

Every partial valuation A corresponds to a set M of literals that
does not contain complementary literals, and vice versa:

A(L) is true, if L € M.
A(L) is false, if L € M.
A(L) is undefined, if neither L € M nor L € M.

We will use A and M interchangeably. Note that truth of a
literal with respect to M is defined differently than for Nz.

139

Partial Valuations

A clause is true under a partial valuation A (or under a

set M of literals) if one of its literals is true; it is false (or
“conflicting”) if all its literals are false; otherwise it is undefined

(or “unresolved”).

140

Unit Clauses

Observation:
Let A be a partial valuation. If the set N contains a clause C,

such that all literals but one in C are false under A, then the

following properties are equivalent:

e there is a valuation that is a model of N and extends A.

e there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause: L is called a unit literal.

141

Pure Literals

One more observation:
Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in
the unresolved clauses in N, then the following properties are

equivalent:

e there is a valuation that is a model of N and extends A.

e there is a valuation that is a model of N and extends A and
assigns 1 (0) to P.

P is called a pure literal.

142

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true under M) return true;
elsif (some clause in N is false under M) return false;
elsif (N contains unit clause P) return DPLL(M U {P}, N);
elsif (N contains unit clause =P) return DPLL(M U {=P}, N);
elsif (N contains pure literal P) return DPLL(M U {P}, N);
elsif (N contains pure literal =P) return DPLL(M U {=P}, N);
else {

let P be some undefined variable in N:;

if (DPLL(M U {—=P}, N)) return true;

else return DPLL(M U {P}, N);

143

The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with an empty literal set and the clause
set V.

144

2.7 From DPLL to CDCL

In practice, there are several changes to the procedure:

The pure literal check is only done while preprocessing
(otherwise is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one
level).

CDCL = DPLL + Information is reused by learning 4+ Restart
+ Specific Data Structures

145

Branching Heuristics

Choosing the right undefined variable to branch is important for
efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be

recomputed too frequently.

In general: choose variables that occur frequently, prefer

variables from recent conflicts.

146

The Deduction Algorithm

For applying the unit rule, we need to know the number of
literals in a clause that are not false.

Maintaining this number is expensive, however.

147

The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P, keep a list of all clauses in which P is
watched and a list of all clauses in which =P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses
in which P (or =P) is watched and watch another literal (that
is true or undefined) in this clause if possible.

Watched literal information need not be restored upon
backtracking.

148

Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further
branches.
Method: Learning:

If a conflicting clause is found, derive a new clause from the

conflict and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;
therefore it may become necessary to delete some of them

afterwards to save space.

149

Backjumping

Related technique:
non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip
over that backtrack level.

150

Restart

Runtimes of DPLL-style procedures depend extremely on the
choice of branching variables.

If no solution is found within a certain time limit, it can be
useful to restart from scratch with an adopted variable selection

heuristics, but learned clauses are kept.

In particular, after learning a unit clause a restart is done.

151

Formalizing DPLL with Refinements

The DPLL procedure is modeled by a transition relation =pp| L

on a set of states.
States:

o fail

e (M;N)

where M is a list of annotated literals and N is a set of clauses.

We use + to right add a literal or a list of literals to M
Annotated literal:
e [: deduced literal, due to unit propagation.

e [9: decision literal (guessed literal).

152

Formalizing DPLL with Refinements

Unit Propagate:

(M;NU{CV L}) =pprL (M+L,NU{CVL})

if C is false under M and L is undefined under M.
Decide:

(M; N) =ppL (M+ L% N)

if L is undefined under M and contained in N.
Fail:

(M; NU{C}) =ppLL fail

if C is false under M and M contains no decision literals.

153

Formalizing DPLL with Refinements

Backjump:
(M + L9+ M";N) =ppL (M +L";N)
if there is some “backjump clause” C V L’ such that
NE=CvL,
C is false under M’, and
[’ is undefined under M’.

154

Formalizing DPLL with Refinements

We will see later that the Backjump rule is always applicable,
If the list of literals M contains at least one decision literal and
some clause in N is false under M.

There are many possible backjump clauses. One candidate:
L; V...V L, where the L; are all the decision literals in
M + L9 + M’. (But usually there are better choices.)

155

Formalizing DPLL with Refinements

Lemma 2.16:
If we reach a state (M; N) starting from (nil; NV), then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from N and decision
literals occurring before L in M.

156

Formalizing DPLL with Refinements

Lemma 2.17:
Every derivation starting from (nil; N) terminates.

157

Formalizing DPLL with Refinements

Lemma 2.18:
Suppose that we reach a state (M; N) starting from (nil; N)
such that some clause D € N is false under M. Then:

(1) If M does not contain any decision literal, then “Fail” is

applicable.

(2) Otherwise, “Backjump” is applicable.

158

Formalizing DPLL with Refinements

Theorem 2.19:

(1) If we reach a final state (M; N) starting from (nil; N), then
N is satisfiable and M is a model of N.

(2) If we reach a final state fail starting from (nil; N), then N is
unsatisfiable.

159

Getting Better Backjump Clauses

Suppose that we have reached a state (M; N) such that some
clause C € N (or following from N) is false under M.

Consequently, every literal of C is the complement of some
literal in M.

(1) If every literal in C is the complement of a decision literal
of M, then C is a backjump clause.
(2) Otherwise, C = C’ V L, such that L is a deduced literal.

For every deduced literal L, there is a clause D V L, such
that N =DV L and D is false under M.

Then N =DV C’"and DV C’ is also false under M. DV C’
is a resolvent of C’V L and DV L.

160

Getting Better Backjump Clauses

By repeating this process, we will eventually obtain a clause
that consists only of complements of decision literals and can be
used in the "Backjump” rule.

Moreover, such a clause is a good candidate for learning.

161

Learning Clauses

The DPLL system can be extended by two rules to learn and to

forget clauses:

Learn:
(M; N) =ppr. (M;NU{C})
if N = C.

Forget:

(M; NW {C}) —DPLL (M; /V)
N = C.

162

Learning Clauses

If we ensure that no clause is learned infinitely often, then

termination is guaranteed.

The other properties of the basic DPLL system hold also for the

extended system.

163

Restart

Part of the CDCL system the restart rule:
Restart:
(M; N) =~ DPLL (niI;N)

The restart rule is typically applied after a certain number of
clauses have been learned or a unit is derived. It is closely

coupled with the variable order heuristic.

If Restart is only applied finitely often, termination is guaranteed.

164

Variable Order Heuristic

For every propositional variable P; there is a positive score k;.
At start k; may for example be the number of occurrences of P;
in V.

The variable order is then the descending ordering of the P;

according to the k;.

The scores k; are adjusted during a CDCL run.

165

Variable Order Heuristic

e Every time a learned clause is computed after a conflict,
the involved propositional variables obtain a bonus b, i.e.,

ki = k; + b.
e After each restart, the variable order is recomputed, using

the new scores.

e After each jth restart, the scores a leveled: k; = k;/I for

some /.

The purpose of these mechanisms is to keep the search focused.
Parameter b directs the search around the conflict, parameter

J decides how many learned clauses are “sufficient” to move in
“speed " of parameter [away from this conflict.

166

Preprocessing

Before DPLL search, and computation of the variable order
heuristics, a number of preprocessing steps are performed:

(i) Subsumption
Non-strict version.
(ii) Purity Deletion

Delete all clauses containing a literal L where L does not

occur In the clause set.

(iii) Subsumption Resolution

167

Preprocessing

(iv) Tautology Deletion

(v) Literal Elimination

do all possible resolution steps on a literal L and then throw
away all clauses containing L or L; repeat this as long as |N|

does not grow.

168

Further Information

The ideas described so far have been implemented in all modern
SAT solvers: zChaff, miniSAT,picoSAT. Because of clause
learning the algorithm is now called CDCL: Conflict Driven
Clause Learning.

It has been shown in 2009 that CDCL can polynomially simulate
resolution, a long standing open question:

Knot Pipatsrisawat, Adnan Darwiche: On the Power of
Clause-Learning SAT Solvers with Restarts. CP 2009, 654-668

169

Literature

Lintao Zhang and Sharad Malik: The Quest for Efficient Boolean
Satisfiability Solvers; Proc. CADE-18, LNAI 2392, pp. 295-312,
Springer, 2002.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT
and SAT Modulo Theories: From an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T), pp. 937977,
Journal of the ACM, 53(6), 2006.

Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh
(eds.): Handbook of Satisfiability; 10S Press, 2009

Daniel Le Berre's slides at VTSA'09: http://www.mpi-inf.
mpg .de/vtsal9/.

170

2.8 Example: Sudoku

Idea: p{=true iff

the value of

square I,/ is d

For example:

pg 5 — true

Ol (N[l | B~ ||IW|IDN|H
oo
W

171

Coding Sudoku by Propositional Clauses

e Concrete values result in units: pf{j
e For ever F 1 9
y square (/,j) we generate piiV...Vpj

e For every square (i, /) and pair of values d < d’ we generate
d 4
TPij Y TP

e For every value d and column / we generate pf{l V...V pﬂg

(Analogously for rows and 3 x 3 boxes)

e For every value d, column /i, and pair of rows j < j’ we
generate ﬂpﬂj V ﬂpﬂj,
(Analogously for rows and 3 x 3 boxes)

172

Constraint Propagation is Unit Propagation

7 3 4 7 2
8 5 1
9 8 6

From ﬂpfj V ﬂpg’J and pfj we obtain by unit propagating ﬂpg’J
and further from péj V p52,,7 V p§,7 V pgj V...V pf—;)j we get
P57V pszV pss V...V pes (and finally pf-).

173

2.9 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a

fixed ordering on propositional variables,
= canonical representation of formulas.
see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in
Computer Science: Modelling and Reasoning about Systems,
Cambridge Univ. Press, 2000.

174

Other Calculi

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.
= semi-canonical representation of formulas.

Implementation needs DPLL (and OBDDs) as subroutines.

175

Other Calculi

Tableau calculus
Hilbert calculus
Sequent calculus
Natural deduction

176

2.10 Superposition Versus CDCL

We establish a relationship between Superposition and CDCL.
For CDCL we assume eager propagation and false clause
detection.

Superposition: Is based on an ordering <. It computes a
model assumption Nz. Either Nz is a model, N contains the
empty clause, or there is an inference on the minimal false
clause with respect to <.

CDCL: Is based on a variable selection heuristic. |t computes
a model assumption via decision variables and propagation.
Either this assumption is a model of N, N contains the empty
clause, or there is a backjump clause that is learned.

177

Superposition Versus CDCL

Proposition 2.20:

Let (Ly + Lo + ...+ Lg; N) be a CDCL state. Some of the
L; may be decision literals and the corresponding propositional
variables are Pq, ..., Pr. Furthermore, let us assume that
L1+ ...+ Lg_1 is a partial valuation that does not falsify any
clause in N whereas L; + L, + ...+ L, falsifies some clause
CV L, e N. Then

(a) Ly is a propagated literal.

(b) The resolvent between C V L, and the clause propagating
L, is a superposition inference and the conclusion is not
redundant with respect to the ordering P; < P> ... < Pk.

178

Superposition Versus CDCL

Proposition 2.21:
The 1UIP backjump clause is not redundant.

Proof:

By Proposition 2.20 a one resolution step 1UIP backjump clause
has this property. The argument in the proof of Proposition 2.20
can be repeated until we reach the first decision literal L, by
resolving away Ly, Lx_1,...,Lma1. O

179

Superposition Versus CDCL

Proposition 2.22:

Let (L; + Ly + ... + Lg; N) be a CDCL state. We assume
that all decision literals among the L; are negative and

let the corresponding propositional variables be Py, ..., P.
Furthermore, let us assume that L + ... 4+ L, is a partial
valuation that does not falsify any clause in N. Then N_;Pk“ —
{P1,..., P} N{Ly,..., Lx} with ordering P; < P> ... < Py,

180

Part 3: First-Order Logic

First-order logic
e formalizes fundamental mathematical concepts
e is expressive (Turing-complete)

e is not too expressive (e.g. not axiomatizable: natural

numbers, uncountable sets)
e has a rich structure of decidable fragments
e has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

181

3.1 Syntax

Syntax:

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical connectives (domain-independent)
= Boolean combinations, quantifiers

182

Signature

A signature ~ = (€2, 1) fixes an alphabet of non-logical symbols,
where

e () is a set of function symbols f with arity n > 0, written
arity(f) = n,

e [1is a set of predicate symbols P with arity m > 0, written
arity(P) = m.

Function symbols are also called operator symbols.
If n =0 then f is also called a constant (symbol).

If m =0 then P is also called a propositional variable.

183

Signature

We will usually use
b, c, d for constant symbols,
f, g, h for non-constant function symbols,
P, Q, R, S for predicate symbols.

Convention: We will usually write f/n € Q instead of f € £,
arity(f) = n (analogously for predicate symbols).

184

Signature

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in

programming languages); not so interesting from a logical point
of view.

185

Variables

Predicate logic admits the formulation of abstract, schematic
assertions. (Object) variables are the technical tool for

schematization.

We assume that X is a given countably infinite set of symbols

which we use to denote variables.

186

Context-Free Grammars

We define many of our notions on the bases of context-free
grammars. Recall that a context-free grammar G = (N, T, P, S)

consists of:
e a set of non-terminal symbols N
e a set of terminal symbols T
e aset Pofrules A::=w where Ac Nand we (NUT)*
e a start symbol S where S € N

For rules A ::= wy, A ::= wr we write A ::= wy | wp

187

Terms

Terms over & and X (X-terms) are formed according to these
syntactic rules:

s, tuv = x xeX (variable)
| f(s1,....sn) . f/neQ (functional term)

By Ty (X) we denote the set of X-terms (over X). A term

not containing any variable is called a ground term. By Ty we
denote the set of 2-ground terms.

188

Terms

In other words, terms are formal expressions with well-balanced
brackets which we may also view as marked, ordered trees.
The markings are function symbols or variables. The nodes
correspond to the subterms of the term. A node v that is
marked with a function symbol f of arity n has exactly n
subtrees representing the n immediate subterms of v.

189

Atoms

Atoms (also called atomic formulas) over ¥ are formed according

to this syntax:

A B = P(si,...,Sm) , P/me&Tl (non-equational atom)
{ | (s~ t) (equation)

Whenever we admit equations as atomic formulas we are in
the realm of first-order logic with equality. Admitting equality
does not really increase the expressiveness of first-order logic,
(cf. exercises). But deductive systems where equality is treated
specifically are much more efficient.

190

Literals

L = A (positive literal)

| —=A (negative literal)

191

Clauses

cC,D = 1 (empty clause)
| LiV...VL,, k>1 (non-empty clause)

192

General First-Order Formulas

Fs(X) is the set of first-order formulas over ¥ defined as follows:

oY, x = L

(¢ V)
(¢ — ¥)
(¢ <)

(falsum)
(verum)
A (atomic formula)

(negation)
(conjunction)
(disjunction
(implication
(equivalence
Vx ¢ (universal quantification

Ix ¢ (existential quantification

193

Notational Conventions

We omit brackets according to the conventions for propositional
logic.

Furthermore, Vxq, ..., x, ¢ (3x1, ..., x, ¢) abbreviates Vxj...Vx, ¢
(Ix1 ... 3x, @).

194

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual

operator precedences.

Examples:

S+t*xu for

sxu<t+v for <

—5S for

0 for

195

Example: Peano Arithmetic

Ypa = (2pa, Mpa)

Q,DA = {O/O, —|—/2, */2, S/].}

[lpa = {S/Q, </2}

+, *x, <, <infix; x >, + >, < >, <

Examples of formulas over this signature are:

Vx,y(x <y < dz(x+ z = y))
IxVy(x +y=y)

Vx,y(xxs(y) =~ x*y + x)
Vx, y (s(x) = s(y) = x ~ y)
Vxdy(x < y A—dz(x < zAz<y))

196

Remarks About the Example

We observe that the symbols <, <, 0, s are redundant as they
can be defined in first-order logic with equality just with the
help of +. The first formula defines <, while the second defines
zero. The last formula, respectively, defines s.

Eliminating the existential quantifiers by Skolemization
(cf. below) reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the
quantification structure and the complexity of the signature.

197

Positions in Terms and Formulas

The set of positions is extended from propositional logic to

first-order logic:
The Positions of a term s (formula ¢):
pos(x) = €},
pos(f(sy,..., sn))={etulU_{ip]| p € pos(s) }.

(

(P(t1,---, t,)) = {e} WU {ip | p € pos(t)},
pos(Vx¢) = {e} U{1lp | p € pos(9) },

(

O
O
n
L
X

-

N

|

—~
Q)

——
C

~
—

o
fo;
M
O
O
n

~—~~

-

N

—

198

Positions in Terms and Formulas

The prefix order <, the subformula (subterm) operator, the
formula (term) replacement operator and the size operator are
extended accordingly. See the definitions in the propositional

logic section.

199

Bound and Free Variables

In Qx¢, Q € {3, V}, we call ¢ the scope of the quantifier Qx.
An occurrence of a variable x is called bound, if it is inside the
scope of a quantifier @x. Any other occurrence of a variable is

called free.

Formulas without free variables are also called closed formulas

or sentential forms.

Formulas without variables are called ground.

200

Bound and Free Variables

Example:

scope

A
r N\

scope

vy (VX PG) = Q)

The occurrence of y is bound, as is the first occurrence of x.

The second occurrence of x is a free occurrence.

201

Substitutions

Substitution is a fundamental operation on terms and formulas
that occurs in all inference systems for first-order logic.

In general, substitutions are mappings
g: X — Tg(X)
such that the domain of o, that is, the set
dom(o) ={x € X | o(x) # x },

iIs finite. The set of variables introduced by o, that is, the set of
variables occurring in one of the terms o(x), with x € dom(o),
is denoted by codom(o).

202

Substitutions

Substitutions are often written as {x; ~ sy, ..., X, — S, }, with
x; pairwise distinct, and then denote the mapping

si, fy=x
{X]_%S]_,...,anéSn}(y): .
y, otherwise

We also write xo for o(x).

The modification of a substitution o at x is defined as follows:

oo)= YT

o(y), otherwise
\

203

Why Substitution is Complicated

We define the application of a substitution ¢ to a term t or
formula ¢ by structural induction over the syntactic structure of
t or ¢ by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex: We
need to make sure that the (free) variables in the codomain
of o are not captured upon placing them into the scope of a
quantifier Qy, hence the bound variable must be renamed into

a “fresh”, that is, previously unused, variable z.

Why this definition of substitution is well-defined will be
discussed below.

204

Application of a Substitution

"Homomorphic” extension of o to terms and formulas:

f(s1,---, sn)o = f(sio,..., Sno)
lo=_1
lTo=T

P(s1,..., sn)o = P(si0o, ..., Sn0)

(u=v)o = (uo =~ vo)

—¢o = =(¢o)
(¢pp)o = (¢o po) ; for each binary connective p
(Rx ¢)o = Qz (¢ o|x +— z]) ; with z a fresh variable

205

Structural Induction

Proposition 3.1:

Let G = (N, T,P,S) be a context-free grammar (possibly
infinite) and let g be a property of T* (the words over the
alphabet T of terminal symbols of G).

g holds for all words w € L(G), whenever one can prove the
following two properties:

206

Structural Induction

1. (base cases)
g(w’) holds for each w’ € T* such that X ::= w’ is a rule
in P.

2. (step cases)
If X = woXowy ... wpyXpWnhit is in P with X; € N,
w; € T*, n >0, then for all w/ € L(G, X;), whenever g(w/)
holds for 0 < i < n, then also g(wow{ws ... w,w/ wyi1)
holds.

Here L(G, X;) C T* denotes the language generated by the

grammar G from the nonterminal X;.

207

Structural Recursion

Proposition 3.2:

Let G = (N, T,P,S) be a unambiguous (why?) context-
free grammar. A function f is well-defined on L(G) (that is,
unambiguously defined) whenever these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w’/ € T* for each rule
X :=w’in P.

2. (step cases)
If X := woXowy ... w,XpWshe1 is a rule in P then
f(wowjwy ... wawiwpy1) is well-defined, assuming that
each of the f(w/) is well-defined.

208

Substitution Reuvisited

Q: Does Proposition 3.2 justify that our homomorphic extension
apply : Fs(X) x (X = Tg(X)) — Fg(X),

with apply(¢, o) denoted by ¢, of a substitution is well-defined?

A: We have two problems here. One is that “fresh” is
(deliberately) left unspecified. That can be easily fixed by
adding an extra variable counter argument to the apply function.

209

Substitution Reuvisited

The second problem is that Proposition 3.2 applies to unary
functions only. The standard solution to this problem is to
curryfy, that is, to consider the binary function as a unary

function producing a unary (residual) function as a result:
apply : Fs(X) — (X = Tg(X)) — Fx(X))

where we have denoted (apply(¢))(o) as ¢o.

210

3.2 Semantics

To give semantics to a logical system means to define a notion
of truth for the formulas. The concept of truth that we will now

define for first-order logic goes back to Tarski.

As In the propositional case, we use a two-valued logic with
truth values “true” and “false” denoted by 1 and 0, respectively.

211

Structures

A > -algebra (also called Y -interpretation or X -structure) is a

triple

A= (Ua, (fa:Ux— Ua)f/nca, (P4 S UZ)P/men)
where U4 # 0 is a set, called the universe of A.

By >-Alg we denote the class of all 2-algebras.

212

Assignments

A variable has no intrinsic meaning. The meaning of a variable
has to be defined externally (explicitly or implicitly in a given
context) by an assignment.

A (variable) assignment, also called a valuation (over a given
2 -algebra A), isamap : X — Uy.

Variable assignments are the semantic counterparts of substitu-

tions.

213

Value of a Term in A with Respect to

By structural induction we define
A(B) : Te(X) = Ua
as follows:

A(B)(x) = B(x), x € X
AB)f(s1, ... 8n)) = fa(A(B)(s1), ... A(B)(sn)), f/n e

214

Value of a Term in A with Respect to

In the scope of a quantifier we need to evaluate terms with respect
to modified assignments. To that end, let S[x — a] : X — Uy,
for x € X and a € A, denote the assignment

B gy =42 T

\ B(y) otherwise

215

Truth Value of a Formula in A with Respect to

A(B) : Fg(X) — {0, 1} is defined inductively as follows:

A(B)(L) =0
AB)(T) =1
AB)P(s1, ..., sn)) =1 < (A(B)(s1), ..., A(B)(sn)) € Pa
AB)s=t)=1 < A(B)(s) = A(B)(t)
AB)=9) =1 & A(S)(¢) =0
A(B)(opy) = B,(A(B)(¢), A(B) (%))
with B, the Boolean function associated with p

A(B)(¥x) = min{ A(B]x — a])(¢)}
A(B)(Fx¢) = max(A(B]x — a])(9) }

216

Example

The “Standard” Interpretation for Peano Arithmetic:

Uv = {0,1,2,...}

Oy = 0

sN : n—n—+1

+n ¢ (m,m)—n+m

s ¢ (n,m)— nxm

<y = {(n,m)| nless than or equal to m}
<y = {(n,m)|nlessthan m}

Note that N is just one out of many possible 2 pa-interpretations.

217

Example

Values over N for Sample Terms and Formulas:

Under the assignment 3 : x — 1,y — 3 we obtain

N(58)(s(x) + s(0)) =
N(B)(x +y ~ s(y)) =
N(B)(Vx,y(x +y =y +x)) =
N(B)(Vz z < y) =
N(B)(VxJy x < y) =

_ O = = W

218

3.3 Models, Validity, and Satisfiability

¢ is valid in A under assignment j3:
Ao o APB)9) =1

¢ is valid in A (A is a model of ¢):
Ao & A BEQ forall e X — Uy
¢ is valid (or is a tautology):
—¢ = AEo¢ forall Aec X-Alg

¢ is called satisfiable iff there exist A and 3 such that A, 5 = ¢.
Otherwise ¢ is called unsatisfiable.

219

Substitution Lemma

The following propositions, to be proved by structural induction,
hold for all >-algebras A, assignments (3, and substitutions o.

Lemma 3.3:
For any X2 -term t

A(B)(to) = A(B oo)(t),
where oo : X — A is the assignment o o(x) = A(8)(x0).

Proposition 3.4:
For any X-formula ¢, A(8)(¢o) = A(B o g)(¢).

220

Substitution Lemma

Corollary 3.5:
A BE¢c < A Booc k=@

These theorems basically express that the syntactic concept
of substitution corresponds to the semantic concept of an

assignment.

221

Entailment and Equivalence

¢ entails (implies) @ (or v is a consequence of ¢), written
¢ = 1, if for all A € L-Alg and 8 € X — U4, whenever

A, B E ¢, then A, B = 1.

¢ and v are called equivalent, written ¢ |= 1, if for all A € X-Alg
and S e X > Uygwehave A, =¢ < A [BFE1.

222

Entailment and Equivalence

Proposition 3.6:
¢ entails v iff (¢ — 1) is valid

Proposition 3.7:
¢ and 1) are equivalent iff (¢ <> 1) is valid.

Extension to sets of formulas N in the “natural way’, e.g.,
N = ¢

< forall A € L-Algand g€ X = Uy: if A, B = 9, for all
Y € N, then A, B = ¢.

223

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal
as explained by the following proposition.

Proposition 3.8:
Let ¢ and 1) be formulas, let N be a set of formulas. Then

(i) ¢ is valid if and only if —¢ is unsatisfiable.
(i) ¢ = if and only if ¢ A =) is unsatisfiable.
(iii) N = if and only if NU{—=1} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it
Is sufficient to design a checker for unsatisfiability.

224

Theory of a Structure

Let A € 2-Alg. The (first-order) theory of A is defined as
Th(A)={y e F(X) | A}

Problem of axiomatizability:

For which structures A can one axiomatize Th(.A), that is, can
one write down a formula ¢ (or a recursively enumerable set ¢

of formulas) such that

Th(A) ={vy | o =¥ }?

Analogously for sets of structures.

225

Two Interesting Theories

Let Y pres = ({0/0,s/1,+/2}, 0) and Z, = (Z,0,s,+) its
standard interpretation on the integers. Th(Z.) is called
Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of 7Z, considers the natural

numbers N as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen,
JCSS, 16(3):323-332, 1978), and in 2EXPSPACE, using
automata-theoretic methods (and there is a constant ¢ > 0 such

that Th(Z.) € NTIME(22")).

226

Two Interesting Theories

However, N, = (N, 0, s, +, %), the standard interpretation of
Ypa = ({0/0,s/1,4/2,%/2},0), has as theory the so-called
Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with
regard to the computational complexity of theories.

227

3.4 Algorithmic Problems

Validity(¢): = o ?

Satisfiability(¢): ¢ satisfiable?

Entailment(¢,)): does ¢ entail 17

Model(A,9): A= ¢7

Solve(A,¢): find an assignment 3 such that A, 8 = ¢.
Solve(¢): find a substitution o such that = ¢o.

Abduce(¢): find ¥ with “certain properties” such that ¢ = ¢.

228

Godel’s Famous Theorems

1. For most signatures 2, validity is undecidable for 2-formulas.
(Later by Turing: Encode Turing machines as ¥ -formulas.)

2. For each signature X2, the set of valid 2-formulas is
recursively enumerable. (We will prove this by giving
complete deduction systems.)

3. For ¥ =¥ ps and N, = (N, 0, s, 4, *), the theory Th(N,) is
not recursively enumerable.

These complexity results motivate the study of subclasses of
formulas (fragments) of first-order logic

Q@: Can you think of any fragments of first-order logic for which
validity is decidable?

229

Some Decidable Fragments

Some decidable fragments:

e Monadic class: no function symbols, all predicates unary;
validity is NEXP TIME-complete.

e Variable-free formulas without equality: satisfiability is

NP-complete. (why?)

e Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

e Finite model checking is decidable in time polynomial in the

size of the structure and the formula.

230

Plan

Lift superposition from propositional logic to first-order logic.

231

3.5 Normal Forms and Skolemization

Study of normal forms motivated by
e reduction of logical concepts,
e efficient data structures for theorem proving,
e satisfiability preserving transformations (renaming),
e Skolem’s and Herbrand's theorem.
The main problem in first-order logic is the treatment of

quantifiers. The subsequent normal form transformations are

intended to eliminate many of them.

232

Prenex Normal Form (Traditional)

Prenex formulas have the form

lel « .. Qan ¢1

where ¢ is quantifier-free and Q; € {V, 3}; we call Q1x1 ... Qnx,
the quantifier prefix and ¢ the matrix of the formula.

233

Prenex Normal Form (Traditional)

Computing prenex normal form by the rewrite system = p:

ol(v1 < 2)lp =, Ol(Y1 = 2) A(th2 = ¥1)]p
P[-Qx1], =p O[Qx1],
ol((Qx1) p2)lp, =p OlQy(V1{x =y} p ¥2)lp, p € {A V}
Al((Qx1) =)], =p S[Qy(Vi{x — y} = 12)]p,
oY1 p (Qx2))l, =P A[Qy(Y1 p Y2{x = y})]p, p €{AV, =}

Here y is always assumed to be some fresh variable and Q@

denotes the quantifier dual to @, i.e., V =4 and J=V.

234

Skolemization

Intuition: replacement of dy by a concrete choice function
computing y from all the arguments y depends on.

Transformation =5 (to be applied outermost, not in

subformulas):
VX1, ..., Xpdy ¢ =s Vxg,....xnd{y — f(x1,..., %)}

where f /n is a new function symbol (Skolem function).

235

Skolemization

Together: ¢ =% ¢ =% X
N~ —~—
prenex prenex, no 3
Theorem 3.9:

Let ¢, 1, and x as defined above and closed. Then
(i) ¢ and v are equivalent.
(ii) x = v but the converse is not true in general.

(iii) 1 satisfiable (X-Alg) < x satisfiable (¥’-Alg) where
Y/ = (QUSKF, M), if £ = (Q,1N).

236

The Complete Picture

¢ = Qiy1--- Quyn ¥ (¥ quantifier-free)
=% VX1, .o r Xm X (m < n, x quantifier-free)
k n;
| e i=1 j=1
eave out ——
clauses C;
&

N ={C,..., C}iscalled the clausal (normal) form (CNF) of ¢.
Note: the variables in the clauses are implicitly universally
quantified.

237

The Complete Picture

Theorem 3.10:

Let ¢ be closed. Then ¢’ = ¢. (The converse is not true in
general.)

Theorem 3.11:

Let ¢ be closed. Then ¢ is satisfiable iff ¢’ is satisfiable iff N is
satisfiable

238

Optimization

The normal form algorithm described so far leaves lots of room
for optimization. Note that we only can preserve satisfiability

anyway due to Skolemization.

e size of the CNF is exponential when done naively; the
transformations we introduced already for propositional

logic avoid this exponential growth;
e we want to preserve the original formula structure;

e we want small arity of Skolem functions (see next section).

239

3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving
can be obtained using the following steps:

e rename beneficial subformulas

e produce a negation normal form (NNF)
e apply miniscoping

e rename all variables

e skolemize

240

Formula renaming

We extend the machinery from propositional to first-order logic:

v(Vx ¢) = v(Ix ¢) = v(¢) and D(Vx ¢) = v(Ix p) = U(¢).

Introduce top-down fresh predicates for beneficial subformulas:
V[olp =oene Y[P(x, .., Xn)]p A def(1, p, P)

where {xi,..., X,} are the free variables in ¢, P/n is a

predicate new to ¥[¢],, v(¥[0],) > v(¥[P], A def(y, p, P)),
and def(¢), p, P) is defined polarity dependent analogous to the

propositional case:

def(vy, p, P) :=Vxq, ..., Xp [¥]p o P(x1, ..., Xn)]

where o € {—, <>, +}.

241

Negation Normal Form (NNF)

Apply the rewrite system =-NNEF:

Plhr < 2]p =NNF O[(Y1 = 2) A (V2 — Y1),

if pol(¢, p) =1 or pol(¢, p) =0

Plhr < 2]p =NNF P[(W1 A 2) V (b2 A 1)),

if pol(¢, p) = —1

242

Negation Normal Form (NNF)

P~ Qx)]
Ol=(¥1 V 1h2)
d[=(11 A h2))]

Plthr — 2]

P~y

=~ NNF
=~ NNF
=~ NNF
=~ NNF

= NNF

S S O S S

Qx]p
:_'wl A\ _'w2]p
)1 V],
:_'wl \% ¢2]p

V]

243

Miniscoping

Apply the rewrite relation = 5. For the rules below we assume

that x occurs freely in 11, 13, but x does not occur freely in 5:

Pl @x (1 N 12)
P @x (V2 V 12)]
P[Vx (Y1 A p3)
(

¢[3Ix (¢1 V 3)

p

p

p

¢

¢
¢
¢

(@x91) Ao
(@x 1) V o]
(Vx 1) A (Vxabs)],

(3x 1) V (3x¥3)],

244

Variable Renaming

Rename all variables in ¢ such that there are no two different
positions p, g with ¢|, = Qx¥1 and ¢|; = Q' x Y».

245

Standard Skolemization

Apply the rewrite rule:

olAIxY]p, =sk Pl{ix = f(y1, ... ¥n)}p

where p has minimal length,
{vi,..., Yn} are the free variables in 9x 1,

f/nis a new function symbol to ¢

246

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We
assume that {2 contains at least one constant symbol.

A Herbrand interpretation (over ¥) is a X-algebra A such that
e Uy = Tx (= the set of ground terms over)

o fu:(s1,.-.,Sn)— f(s1,...,5n), f/ne 2

247

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions
are fixed to be the term constructors. Only predicate symbols
P/m € Tl may be freely interpreted as relations P4 C TY.

Proposition 3.12:
Every set of ground atoms / uniquely determines a Herbrand

interpretation A via

(s1,...,5,) € P4 &= P(s1,...,sn) €1

Thus we shall identify Herbrand interpretations (over ¥) with

sets of 2-ground atoms.

248

Herbrand Interpretations

Example: Xps = ({0/0,s/1,+/2}, {</2,</2})
N as Herbrand interpretation over 2 pjes:
I={ 0<0, 0<5(0), 0<5s(s(0)), ...,
0+0<0, 0+0<5(0), ...,
.., (s(0)+0)+s(0) <s(0)+ (s(0) + s(0))

s(0) + 0 < s(0) + 0 + 0 + s(0)
.

249

Existence of Herbrand Models

A Herbrand interpretation / is called a Herbrand model of ¢, if
| = ¢.

Theorem 3.13 (Herbrand):

Let N be a set of 2-clauses.

N satisfiable < N has a Herbrand model (over ¥)
< Gx(N) has a Herbrand model (over ¥)

where Gy (N) = { Co ground clause | C e N, o : X — Tx } is
the set of ground instances of .

[The proof will be given below in the context of the completeness
proof for superposition.]

250

Example of a Gy

For > p,.c One obtains for

C=(x<y)V(y<s))
the following ground instances:

(0<0)V(0<s(0))
(s(0) <0) V(0 < s(s(0)))

(s(0) +s(0) < s(0)+0) Vv (s(0)+0 < s(s(0) +s(0)))

251

3.8 Inference Systems and Proofs

Inference systems [(proof calculi) are sets of tuples

(é1,- -2 &n Gnt1), n =0,

called inferences, and written

premises
N

¢1 ¢n .

¢n—|—1
N——
conclusion

Clausal inference system: premises and conclusions are clauses.
One also considers inference systems over other data structures.

252

Inference Systems

Inference systems [are short hands for rewrite systems over sets
of formulas. If N is a set of formulas, then

premises
N

gbl an

¢n—|—1
N——
conclusion

Is a shorthand for

Nu{qbl---qbn} =T

If side condition

side condition

N U {¢1

cor Ont Ui}

253

Proofs

A proof in I of a formula ¢ from a a set of formulas N (called

assumptions) is a sequence ¢1, ..., ¢k of formulas where
(i) ¢k = ¢,
(ii) for all 1 < i < k: ¢; € N, or else there exists an inference
Pi -+ Pi,
%

in [, such that 0 < j; </, for 1 < < n;.

254

Soundness and Completeness

Provability -r of ¢ from N in I N ¢ if there exists a proof

[of ¢ from N.

[is called sound

P1 ... @
¢

[is called complete

T implies ¢1, ...,

N ¢ implies Nr ¢

[is called refutationally complete

N = L implies N L

255

Soundness and Completeness

Proposition 3.14:
(i) Let I be sound. Then N Fr ¢ implies N = ¢

(i) N Fr ¢ implies there exist finitely many clauses
D1, .-, ¢, € N such that ¢, ..., On 1 @

256

Proofs as Trees

1

markings formulas

Iy

leaves assumptions and axioms

Iy

other nodes Inferences: conclusion ancestor

premises = direct descendants

P(f(c)) v Q(b) —P(f(c)) v =P(f(c)) V Q(b)
—P(f(c)) v Q(b) v Q(b)
P(f(c)) v Q(b) —P(f(c)) v Q(b)
Q(b) vV Q(b)
Q(b) —P(f(c)) vV = Q(b)
P(f(c)) —P(f(c))
1

257

3.9 Ground Superposition

We observe that propositional clauses and ground clauses are
essentially the same, as long as we do not consider equational

atoms.

In this section we only deal with ground clauses and recall partly
the material from Section 2.5 for first-order ground clauses.

258

The Resolution Calculus Res

Resolution inference rule:

DV A —AV C
Dv C

Terminology: DV C: resolvent; A: resolved atom

For Superposition (Sup): A strictly maximal, =A maximal

(Positive) factorization inference rule:

CVAVA
CVA

For Superposition (Sup): A maximal

259

The Resolution Calculus Res

These are schematic inference rules: for each substitution of the
schematic variables C, D, and A, by ground clauses and ground

atoms, respectively, we obtain an inference.

We treat "V' as associative and commutative, hence A and —A
can occur anywhere in the clauses; moreover, when we write
C V A, etc., this includes unit clauses, that is, C = L.

260

Sample Refutation

1. =P(f(c))V—=P(f(c))V Q(b) (given)
2. P(f(c)) Vv Q(b) (given)
3. —P(g(b,c))V-Q(b) (given)
4. P(g(b,c)) (given)
5. =P(f(c)) VvV Q(b) V Q(b) (Res. 2. into 1.)
6. —P(f(c))V Q(b) (Fact. 5.)
7. Q(b)V Q(b) (Res. 2. into 6.)
8. Q(b) (Fact. 7.)
9. —=P(g(b,c)) (Res. 8. into 3.)
10. L (Res. 4. into 9.)

261

Soundness of Resolution

Theorem 3.15:
Propositional resolution is sound.

Proof:
Let B € 2-Alg. To be shown:

(i) for resolution: B=EDVA, B = CV-A = BEDVC
(ii) for factorization: B=CVAVA = BECVA

(i): Assume premises are valid in B. Two cases need to be
considered:

If Bl= A, then B=C, hence B=DV C.

Otherwise, B = —A, then B = D, and again B =DV C.

(ii): even simpler. O

262

Soundness of Resolution

Note: In propositional logic (ground clauses) we have:

1. BE L V...V L, iff there exists i: B = L;.

2. BEAor B [E -A.

This does not hold for formulas with variables!

263

Closure of Clause Sets under Res

Res(N) = { C | C is conclusion of an inference in Res
with premises in N}

Res®(N) = N
Res" ™1 (N) = Res(Res"(N)) U Res"(N), for n > 0
Res*(N) = U,>q Res"(N)

N is called saturated (w.r.t. resolution), if Res(N) C N.

264

Closure of Clause Sets under Res

Proposition 3.16:
(i) Res*(N) is saturated.

(i) Res is refutationally complete, iff for each set N of ground
clauses:

N = L iff L € Res*(N)

265

Construction of Interpretations

Done the same way as for propositional logic: ground atoms
play the rble of propositional variables.

266

Model Existence Theorem

Theorem 3.17 (Bachmair & Ganzinger 1990):
Let > be a clause ordering, let N be saturated w.r.t. Res (or
Sup), and suppose that L. ¢ N. Then N7 = N.

Corollary 3.18:
Let N be saturated w.r.t. Res. Then N =1 & | € N.

267

Compactness of Propositional Logic

Theorem 3.19 (Compactness):
Let N be a set of propositional (or first-order ground) formulas.
Then N is unsatisfiable, if and only if some finite subset M C N

Is unsatisfiable.

Proof:

“<": trivial. "=": Let N be unsatisfiable.

= Res*(N) unsatisfiable

= 1 € Res*(N) by refutational completeness of resolution

= dn>0: 1L € Res"(N)

= 1 has a finite resolution proof P;

choose M as the set of assumptions in P. O

268

3.10 General Resolution

Propositional (ground) resolution:
refutationally complete,

In its most naive version: not guaranteed to terminate for
satisfiable sets of clauses, (improved versions do terminate,
however)

inferior to the DPLL procedure.

But: in contrast to the DPLL procedure, resolution can be easily
extended to non-ground clauses.

269

General Resolution through Instantiation

|ldea: instantiate clauses appropriately:

P(z',Zz") Vv —Q(z2) =P(a, y) P(x’, b) V Q(f(x’, x))

a/2', f(a b)/z1J aly / \[b/y] J[a/x', b/x]

P(a,a) vV -Q(f(a, b)) —P(a,a) —P(a b) P(a, b) Vv Q(f(a, b))

SN

—Q(f(a, b)) Q(f(a, b))

| |
~

270

General Resolution through Instantiation

Problems:
More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that
inferences become possible).

|dea:

Do not instantiate more than necessary to get complementary
literals.

271

General Resolution through Instantiation

P(z',Zz") Vv —Q(z2) =P(a, y) P(x’, b) V Q(f(x’, x))

[a/qu aly / \[b/y] J[a/x'l

P(a,a)V—-Q(z) —P(a,a) —P(a,b) P(ab)V Q(f(a x))

NSNS

~Q(2) Q(f(s.)
#(2.%)/2]| |
~Q(f(a,) Q(f(a,x)

—

L

272

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they
arise from taking the (ground) instances of finitely many
general clauses (with variables) effective and efficient.

Idea (Robinson 1965):
e Resolution for general clauses:

e Equality of ground atoms is generalized to unifiability of

general atoms;

e Only compute most general (minimal) unifiers (mgu).

273

Lifting Principle

Significance: The advantage of the method in (Robinson 1965)
compared with (Gilmore 1960) is that unification enumerates
only those instances of clauses that participate in an
inference. Moreover, clauses are not right away instantiated
into ground clauses. Rather they are instantiated only as
far as required for an inference. Inferences with non-ground
clauses in general represent infinite sets of ground inferences
which are computed simultaneously in a single step.

274

Resolution for General Clauses

General binary resolution Res:

DV B CVv-A
(DV C)o

if 0 = mgu(A, B) [resolution]

CVAVBEB
(CV Ao

if o = mgu(A, B) [factorization]

275

Resolution for General Clauses

For inferences with more than one premise, we assume that the
variables in the premises are (bijectively) renamed such that
they become different to any variable in the other premises. We
do not formalize this. Which names one uses for variables is

otherwise irrelevant.

276

Unification

Let E ={s1 = t1,...,S, = tn} (s;, tj terms or atoms) a multiset
of equality problems. A substitution o is called a unifier of E if

sio=tioforall 1 </ <n.

If a unifier of E exists, then E is called unifiable.

277

Unification

A substitution o is called more general than a substitution T,
denoted by o < 7, if there exists a substitution p such that
poo =T, where (poo)(x) := (xo)p is the composition of &
and p as mappings. (Note that p o o has a finite domain as

required for a substitution.)

If a unifier of E is more general than any other unifier of E, then
we speak of a most general unifier of E, denoted by mgu(E).

278

Unification

Proposition 3.20:
(i) < is a quasi-ordering on substitutions, and o is associative.

(i) If o <7 and 7 < o (we write 0 ~ 7 in this case), then xo
and x7 are equal up to (bijective) variable renaming, for

any x in X.

A substitution ¢ is called idempotent, if c oo = 0.

Proposition 3.21:
o is idempotent iff dom(o) N codom(o) = (.

279

Rule-Based Naive Standard Unification

t=t E
f(ty,..., tn), E
)=g(---) E
x=t, E
x=t, E
t=x, E

E

S1 = t1,..., s, = t,, E
1

x=t, E{x— t}

if x € var(E), x & var(t)

1
if x # t,x € var(t)
x=tE

iftg X

280

SU: Main Properties

If E = x1 = u1,...,xx = ug, with x; pairwise distinct,
x; & var(u;j), then E is called an (equational problem in) solved
form representing the solution og = {x1 — w1, ..., Xk — U}

Proposition 3.22:
If E is a solved form then og is an mgu of E.

281

SU: Main Properties

Theorem 3.23:
1. If E =gy E’ then o is a unifier of E iff o is a unifier of E’

2. If E =5y L then E is not unifiable.

3. If E ="y E’ with E’ in solved form, then ogs is an mgu of E.

Proof:

(1) We have to show this for each of the rules. Let's treat the
case for the 4th rule here. Suppose ¢ is a unifier of x = t, that is,
xo = to. Thus, 0 o {x — t} = g[x — to] = o[x — x0] = 0.
Therefore, for any equation u = v in E: uo = vo, iff

u{x — t}oc = v{x — t}o. (2) and (3) follow by induction from
(1) using Proposition 3.22. O

282

Main Unification Theorem

Theorem 3.24:
E is unifiable if and only if there is a most general unifier o of E,

such that o is idempotent and dom(o) U codom(o) C var(E).

283

Rule-Based Polynomial Unification

Problem: using = sy, an exponential growth of terms is possible.

The following unification algorithm avoids this problem, at least
iIf the final solved form is represented as a DAG.

284

Rule-Based Polynomial Unification

t=t,E =py E
f(s1,....sn) =Ff(ts,..., th),E =py s1=t1,...,5p =1ty E
f(ig(...),E =py L

x=y,E =py x=y E{x—y}
if x € var(E),x #vy

X1 = t1,..., X, =th, E =py L

iIf there are positions p; with

ti/pi = Xit1, tn/Pn = X1
and some p; # €

285

Rule-Based Polynomial Unification

x=tE =py L

if x # t,x € var(t)

t=x,E =py x=tE
iftgZ X

xX=t,x=s5,E =py x=t,t=sE
if t,s € X and |t]| < |5

286

Properties of PU

Theorem 3.25:
1. If E =py E’ then o is a unifier of E iff o is a unifier of E’
2. If E ='py L then E is not unifiable.

3. If E ="py E’ with E’ in solved form, then o/ is an mgu of E.

Note: The solved form of = p is different form the solved form
obtained from =sy. In order to obtain the unifier og/, we have
to sort the list of equality problems x; = t; in such a way that x;
does not occur in t; for j < i, and then we have to compose the

substitutions {x; +— t;} o -+ o {xx — tx}.

287

Lifting Lemma

Lemma 3.26:
Let C and D be variable-disjoint clauses. If
D C
Lo |
Do Cp i nal uti
o [propositional resolution]
then there exists a substitution 7 such that
D C .
[general resolution]
CII

| 7
C'=C"r

288

Lifting Lemma

An analogous lifting lemma holds for factorization.

289

Saturation of Sets of General Clauses

Corollary 3.27:

Let N be a set of general clauses saturated under Res, i.e.,
Res(N) C N. Then also Gx(N) is saturated, that is,

Res(Gs(N)) C Gs(N).

290

Saturation of Sets of General Clauses

Proof:

W.l.o.g. we may assume that clauses in N are pairwise variable-
disjoint. (Otherwise make them disjoint, and this renaming
process changes neither Res(N) nor Gg(N).)

Let C’ € Res(Gg(N)), meaning (i) there exist resolvable ground
instances Do and Cp of N with resolvent C’, or else (ii) C’ is a
factor of a ground instance Co of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a
resolvent C”” with C”"t = C’, for a suitable substitution 7. As
C’” € N by assumption, we obtain that C’ € G (N).

Case (ii): Similar. O

201

Herbrand’s Theorem

Lemma 3.28:
Let N be a set of >-clauses, let A be an interpretation. Then

A E N implies A = Gz (N).

Lemma 3.29:
Let N be a set of > -clauses, let A be a Herbrand interpretation.

Then A = Gs(N) implies A = N.

292

Herbrand’s Theorem

Theorem 3.30 (Herbrand):
A set N of X -clauses is satisfiable if and only if it has a Herbrand
model over 2.

Proof:
The "<" part is trivial. For the “=" part let N (= 1.
N L = | & Res*(N) (resolution is sound)

= | & Gx(Res*(N))

= Gy (Res™(N))z = Gx(Res™(N)) (Thm. 3.17; Cor. 3.27)
= Gy (Res™(N))z = Res™(N) (Lemma 3.29)

= Gy (Res*(N))z E N (N C Res™(N)) O

293

The Theorem of Lowenheim-Skolem

Theorem 3.31 (Lowenheim—Skolem):
Let > be a countable signature and let S be a set of closed
> -formulas. Then S is satisfiable iff S has a model over a

countable universe.

Proof:

If both X and ¥ are countable, then $ can be at most countably
infinite. Now generate, maintaining satisfiability, a set N of
clauses from S. This extends X by at most countably many
new Skolem functions to ¥/. As Y’/ is countable, so is Ty,

the universe of Herbrand-interpretations over ¥’. Now apply
Theorem 3.30. L]

294

Refutational Completeness of General Resolution

Theorem 3.32:
Let N be a set of general clauses where Res(N) C N. Then

N=ls1el

Proof:
Let Res(N) C N. By Corollary 3.27: Res(Gs(N)) C Gs(N)

N=1ls Ge(N)EL (Lemma 3.28/3.29; Theorem 3.30)
< |1 € Gg(N) (propositional resolution sound and complete)
S 1lelN O

295

Compactness of Predicate Logic

Theorem 3.33 (Compactness Theorem for First-Order Logic):
Let S be a set of first-order formulas. S is unsatisfiable iff some
finite subset S’ C S is unsatisfiable.

Proof:

The “«<" part is trivial. For the “=" part let S be unsatisfiable
and let N be the set of clauses obtained by Skolemization and
CNF transformation of the formulas in S. Clearly Res*(N) is
unsatisfiable. By Theorem 3.32, L € Res*(N), and therefore
1 € Res"(N) for some n € N. Consequently, 1 has a finite
resolution proof B of depth < n. Choose S’ as the subset of
formulas in S such that the corresponding clauses contain the
assumptions (leaves) of B. O

296

3.11 First-Order Superposition with Selection

Motivation: Search space for Res very large.

|deas for improvement:

1. In the completeness proof (Model Existence Theorem 2.13)
one only needs to resolve and factor maximal atoms
= if the calculus is restricted to inferences involving
maximal atoms, the proof remains correct
= ordering restrictions

2. In the proof, it does not really matter with which negative
literal an inference is performed
= choose a negative literal don't-care-nondeterministically

= selection

297

Selection Functions

A selection function is a mapping

sel : C +— set of occurrences of negative literals in C

Example of selection with selected literals indicated as

—A

- B

V

—B;

V-AV B

VA

X |

298

Selection Functions

Intuition:

e If a clause has at least one selected literal, compute only
Inferences that involve a selected literal.

e If a clause has no selected literals, compute only inferences
that involve a maximal literal.

299

Orderings for Terms, Atoms, Clauses

For first-order logic an ordering on the signature symbols is not
sufficient to compare atoms, e.g., how to compare P(a) and
P(b)?

We propose the Knuth-Bendix Ordering for terms, atoms (with

variables) which is then lifted as in the propositional case to

literals and clauses.

300

The Knuth-Bendix Ordering (Simple)

Let > = (€2, 1) be a finite signature, let > be a total ordering
(“precedence”) on QUI, let w: QUIMUX — R* be a weight
function, satisfying w(x) = wy € R™ for all variables x € X and

w(c) > wy for all constants ¢ € Q.

The weight function w can be extended to terms (atoms) as

follows:

301

The Knuth-Bendix Ordering (Simple)

The Knuth-Bendix ordering >y, on Tg(X) (atoms) induced by
> and w is defined by: s >ypo t iff

(1) #(x,s) > #(x, t) for all variables x and w(s) > w(t), or
(2) #(x,s) > #(x, t) for all variables x, w(s) = w(t), and

where #(s, t) = [{p | t, = s}

302

The Knuth-Bendix Ordering (Simple)

Proposition 3.34:
The Knuth-Bendix ordering >ypo IS

(1) a strict partial well-founded ordering on terms (atoms).

(2) stable under substitution: if s b, t then so —ypo to for
any o.

(3) total on ground terms (ground atoms).

303

Superposition Calculus Sup’,

The superposition calculus SupZ, is parameterized by
e a selection function sel

e and a total and well-founded atom ordering .

304

Superposition Calculus Sup’,

In the completeness proof, we talk about (strictly) maximal

literals of ground clauses.

In the non-ground calculus, we have to consider those literals
that correspond to (strictly) maximal literals of ground instances:

A literal L is called [strictly] maximal in a clause C if and
only if there exists a ground substitution o such that Lo is

[strictly] maximal in Co (i.e., if for no other L in C: Lo < L'o
[Lo < L'a]).

305

Superposition Calculus Sup’,

DV E CVv-A

(DV C) [Superposition Left with Selection]
o

if the following conditions are satisfied:
(i) o = mgu(A, B);
(i) Bo strictly maximal in Do V Bo;
(iii) nothing is selected in D V B by sel;

(iv) either —A is selected, or else nothing is selected in C VvV —A

and =Ac 1s maximal in Co V —Ao.

306

Superposition Calculus Sup’,

CVAVEB
(CV Ao

if the following conditions are satisfied:

[Factoring]

(i) o = mgu(A, B);

(i) Ao is maximal in Co V Ao V Bo;

(iii) nothing is selected in CV AV B by sel.

307

Special Case: Propositional Logic

For ground clauses the superposition inference rule simplifies to

DV P CVv-P
Dv C

if the following conditions are satisfied:

(i) P> D;
(ii) nothing is selected in D V P by sel;

(iii) =P is selected in C V =P, or else nothing is selected in
CV =P and =P = max(C).

Note: For positive literals, P > D is the same as P > max(D).

308

Special Case: Propositional Logic

Analogously, the factoring rule simplifies to

CVPVP
CVvP

if the following conditions are satisfied:

(i) P is the largest literal in CV PV P;

(i) nothing is selected in CVV PV P by sel.

309

Search Spaces Become Smaller

1 PVvQ we assume P = @ and sel as
2 PV|—=Q indicated by | X || The max-
3 —PVQ imal literal in a clause is de-
4 —-PV|-Q picted in red.

5 QVAQ Res 1, 3

6 @ Fact 5

7 P Res 60, 4

8 P Res 6, 2

9 L Res 8, 7

With this ordering and selection function the refutation proceeds
strictly deterministically in this example. Generally, proof search will
still be non-deterministic but the search space will be much smaller
than with unrestricted resolution.

310

Avoiding Rotation Redundancy

From
GGVvVP GV-PVQ
GVGVQR CG3V-Q
G VG VG

we can obtain by rotation

GV-PVE GV-Q
Ci VP GV aPV G
CGiVvVG VG

another proof of the same clause. In large proofs many rotations
are possible. However, if P = Q, then the second proof does
not fulfill the orderings restrictions.

311

Avoiding Rotation Redundancy

Conclusion: In the presence of orderings restrictions (however
one chooses >) no rotations are possible. In other words,
orderings identify exactly one representant in any class of

rotation-equivalent proofs.

312

Lifting Lemma for Sup_,

Lemma 3.35:
Let D and C be variable-disjoint clauses. If

D C
IESY
Do Cp

[propositional inference in SupZ]

Cl
and if sel(Do) >~ sel(D), sel(Cp) ~ sel(C) (that is, “corresponding”
literals are selected), then there exists a substitution 7 such that

D C
CII

| 7

C'=C"r

[inference in SupZ]

313

Lifting Lemma for Sup_,

An analogous lifting lemma holds for factorization.

314

Saturation of General Clause Sets

Corollary 3.36:

Let N be a set of general clauses saturated under SupZ,, i.e.,
SupZ,(N) C N. Then there exists a selection function sel” such
that sel |y = sel’ |y and Gs(N) is also saturated, i.e.,

Supy (Gs(N)) C Gs(N).

sel’

Proof:

We first define the selection function sel” such that sel’(C) =
sel(C) for all clauses C € Gs(N) N N. For C € Gg(N) \ N we
choose a fixed but arbitrary clause D € N with C € Gx(D) and
define sel’(C) to be those occurrences of literals that are ground
instances of the occurrences selected by sel in D. Then proceed
as in the proof of Cor. 3.27 using the above lifting lemma. O]

315

Soundness and Refutational Completeness

Theorem 3.37:
Let > be an atom ordering and sel a selection function such that
SupZ(N) € N. Then

N=lsleN

Proof:

The “«<" part is trivial. For the “=" part consider the
propositional level: Construct a candidate interpretation Nz as
for superposition without selection, except that clauses C in N
that have selected literals are not productive, even when they
are false in N¢ and when their maximal atom occurs only once
and positively. The result then follows by Corollary 3.36. O]

316

Craig-Interpolation

A theoretical application of superposition is Craig-Interpolation:

Theorem 3.38 (Craig 1957):

Let ¢ and v be two propositional formulas such that ¢ = .
Then there exists a formula x (called the interpolant for ¢ =),
such that y contains only prop. variables occurring both in ¢
and in 7, and such that ¢ = x and x = .

317

Craig-Interpolation

Proof:

Translate ¢ and —) into CNF. let N and M, resp., denote the
resulting clause set. Choose an atom ordering > for which the prop.
variables that occur in ¢ but not in 7 are maximal. Saturate N into
N* w.r.t. SupZ, with an empty selection function sel . Then saturate
N* UM w.r.t. SupZ, to derive 1. As N* is already saturated, due to
the ordering restrictions only inferences need to be considered where
premises, if they are from N™, only contain symbols that also occur
in 0. The conjunction of these premises is an interpolant x. The
theorem also holds for first-order formulas. For universal formulas
the above proof can be easily extended. In the general case, a proof
based on superposition technology is more complicated because of

Skolemization.]

318

Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether? Under which
circumstances are clauses unnecessary? (Conjecture: e.g., if
they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal
counterexample nor productive, then we do not need it.

319

A Formal Notion of Redundancy

Recall: Let N be a set of ground clauses and C a ground
clause (not necessarily in N). C is called redundant w.r.t. N,
if there exist Cy,...,C, € N, n > 0, such that C; < C and
Ci,...,.C, = C.

Redundancy for general clauses: C is called redundant w.r.t. N,
if all ground instances Co of C are redundant w.r.t. Gz(N).

Note: The same ordering < is used for ordering restrictions and
for redundancy (and for the completeness proof).

320

Examples of Redundancy

Proposition 3.39:
Recall the redundancy criteria:

= C) = C redundant w.r.t. any set \.

e (tautology (i.e.,
Tautology Deletion

e CoCD = Dredundantw.r.t. NU{C}.

Subsumption

e CoCD = DVLloredundantw.r.t. NU{CV L, D}.

Subsumption Resolution

321

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. SupZ,)

= SupZ (N \ Red(N)) C N U Red(N)

Theorem 3.40:
Let N be saturated up to redundancy. Then

N=els1leN

322

Saturation up to Redundancy

Proof (Sketch):
(i) Ground case:

e consider the construction of the candidate interpretation
Nz for SupZ,

e redundant clauses are not productive

e redundant clauses in N are not minimal counterexamples
—
for N7

The premises of “essential’ inferences are either minimal
counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theo-
rem 3.37. O]

323

Monotonicity Properties of Redundancy

Theorem 3.41:

(i) NC M = Red(N) C Red(M)

(i) M C Red(N) = Red(N) C Red(N \ M)
We conclude that redundancy is preserved when, during a
theorem proving process, one adds (derives) new clauses or

deletes redundant clauses. Recall that Red(/N) may include

clauses that are not in \V.

324

A First-Order Superposition Theorem Prover

Straightfotward extension of the propositional STP prover.

3 clause sets:
N(ew) containing new inferred clauses
U(sable) containing reduced new inferred clauses
clauses get into W/(orked) O(ff) once their inferences have
been computed

Strategy:
Inferences will only be computed when there are no
possibilities for simplification

325

Rewrite Rules for FSTP

Tautology Deletion
(NW{C}; U;WO) =rstp (N;U; WO)

if C is a tautology

Forward Subsumption
(NW{C}; U;WO) =rstp (N;U; WO)

if some D € (UU WO) subsumes C, Do C C

Backward Subsumption U
(NHJ{C};UEFJ{D}; WO) —FSTP (NU{C};U; WO)

if C strictly subsumes D (Co C D)

326

Rewrite Rules for FSTP

Backward Subsumption WO
(NW{C}, U;WOW{D}) =rstp (NU{C}; U, WO)

if C strictly subsumes D (Co C D)

Forward Subsumption Resolution
(NW{C VvV L}; U WO) =prrp (NU{G};U; WO)

if &V L' ¢ (UUWO) such that Go C Cy and L'o =L
Backward Subsumption Resolution U

(N {CGVL},UW{G VL, WO) = (NU{CGV
L}; Uy {Cz}; WO)

if C10' C C2 and L'o :I

327

Rewrite Rules for FSTP

Backward Subsumption Resolution WO
(NH‘J{Cl\/L’};U; WOH‘J{CQ\/L}) —FSTP (NU{Cl\/
L}, U WO W{G})

if C10' g C2 and L,O' :Z

Clause Processing
(NW{C};, U;WO) =prstp (N;UU{C}; WO)

Inference Computation

(@,U&J{C},WO) —FSTP (N; U: WOU{C})
where N is the set of clauses derived by first-order superposition
inferences from C and clauses in WO.

328

Implementation

Although first-order and propositional subsumption just differ in
the matcher o, propositional subsumption between two clauses

C and D can be decided in O(n), n = |C| + |D| whereas

first-order subsumption is NP-complete.

329

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair,
Ganzinger: Resolution Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C.
If we perform an inference with C, then one of the selected
literals is eliminated.

Suppose that the remaining selected literals of C are again
selected in the conclusion. Then we must eliminate the
remaining selected literals one by one by further resolution
steps.

330

Hyperresolution

Hyperresolution replaces these successive steps by a single
inference. As for Sup’,, the calculus is parameterized by an

atom ordering > and a selection function sel.

331

Hyperresolution

Di.vB, ... D,VB, CV-ALV...V-A,
(DyV...VD,V C)o

with o = mgu(A1 = By,..., A, = Bn), if
(i) Bjo strictly maximal in Do, 1 < i < n;
(ii) nothing is selected in D;;

(iii) the indicated occurrences of the —A; are exactly the ones
selected by sel, or else nothing is selected in the right
premise and n =1 and = A0 is maximal in Co.

Similarly to superposition (resolution), hyperresolution has to be

complemented by a factorization inference.

332

Hyperresolution

As we have seen, hyperresolution can be simulated by iterated
binary superposition.

However this yields intermediate clauses which HR might not

derive, and many of them might not be extendable into a full
HR inference.

333

3.12 Summary: Superposition Theorem Proving

e Superposition is a machine calculus.

e Subtle interleaving of enumerating instances and proving
inconsistency through the use of unification.

e Parameters: atom ordering > and selection function sel.
On the non-ground level, ordering constraints can (only) be
solved approximatively.

e Completeness proof by constructing candidate interpreta-
tions from productive clauses C V A, A = C; inferences with

those reduce counterexamples.

334

Summary: Superposition Theorem Proving

e [ocal restrictions of inferences via > and sel

= fewer proof variants.

e Global restrictions of the search space via elimination of
redundancy
= computing with “smaller” clause sets;
= termination on many decidable fragments.

e However: not good enough for dealing with orderings,
equality and more specific algebraic theories (lattices,
abelian groups, rings, fields) or arithmetic
= further specialization of inference systems required.

335

Other Inference Systems

e [ableaux

e Instantiation-based methods
Resolution-based instance generation
Disconnection calculus

e Natural deduction
e Sequent calculus/Gentzen calculus

e Hilbert calculus

336

Other Inference Systems

One major problem with all those calculi concerning automation
Is that they contain a rule either guessing instances or limiting
the use of formulas. So the procedure has to guess instances

and/or the number of copies of formulas. For example rules like:

Universal Quantification
SU{Vx ¢} = SU{Vxo}Up{x— t}

for some ground term t € Ty

Existential Quantification

SU{dx¢} = SU{Ixo}Up{x— a}

for some constant a new to ¢

337

Part 4: First-Order Logic with Equality

Equality is the most important relation in mathematics and

functional programming.

In principle, problems in first-order logic with equality can be
handled by any prover for first-order logic without equality:

338

4.1 Handling Equality Naively

Proposition 4.1:

Let ¢ be a closed first-order formula with equality. Let ~ ¢ 1 be
a new predicate symbol. The set Eq(X) contains the formulas

Vx (x ~ x)
VX, y (x ~y =y ~X)
VX, y,z(x ~y ANy ~zZ— x~ Z)
VX,V (xg ~ Y1 A AXp~yn— f(xq,..., Xn) ~ f(y1, ..., Yn))
VX, ¥y (x1 ~ i AN AXm ~ Ym AP, ..., Xm) = Py, - Ym))

for every f € Q and P € M. Let ¢ be the formula that one
obtains from ¢ if every occurrence of = is replaced by ~. Then
¢ is satisfiable if and only if Eq(X)U {¢} is satisfiable.

339

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with
equality can in principle be solved by SFTP.

But this is unfortunately not efficient, mainly due to the

transitivity axiom.

340

Handling Equality Naively

Equality is theoretically difficult: First-order functional program-

ming is Turing-complete.

But: SFTP cannot even solve equational problems that are

Intuitively easy.

Consequence: to handle equality efficiently, knowledge must be

integrated into the theorem prover.

341

Roadmap

How to proceed:

Term rewrite systems

Expressing semantic consequence syntactically
Knuth-Bendix-Completion

Entailment for equations

(Superposition for first-order clauses with equality)

342

4.2 Term Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation —g C Ty (X) x Tx(X) is defined by

s —»p t iff thereexist (I~ r)e€ E, p€ pos(s),
and 0 : X — Tx(X),
such that s|, = /o and t = s[ro],.

An instance of the lhs (left-hand side) of an equation is
called a redex (reducible expression). Contracting a redex
means replacing it with the corresponding instance of the rhs
(right-hand side) of the rule.

343

Term Rewrite Systems

An equation | = r is also called a rewrite rule, if / is not a
variable and vars(/) D vars(r).

Notation: | — r.

A set of rewrite rules is called a term rewrite system (TRS).

344

Term Rewrite Systems

We say that a set of equations E or a TRS R is terminating, if
the rewrite relation —g or — has this property.

(Analogously for other properties of (abstrac) rewrite systems).

Note: If E is terminating, then it is a TRS.

345

Rewrite Relations

Corollary 4.2:
If E is convergent (i.e., terminating and confluent), then s ~g t

if and only if s <% tif and only if s|g = t]E.

Corollary 4.3:
If E is finite and convergent, then =~ is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally

confluent.

346

Rewrite Relations

Problems:
Show local confluence of E.
Show termination of E.

Transform E into an equivalent set of equations that is locally

confluent and terminating.

347

E-Algebras

Let E be a set of universally quantified equations. A model of
E is also called an E-algebra.

If E =VX(s~t), ie, VX(s~t)is valid in all E-algebras, we

write this also as s ~¢ t.

Goal:
Use the rewrite relation — g to express the semantic consequence
relation syntactically:

s~ tifandonly if s <7 t.

348

E-Algebras

Let E be a set of equations over Ty (X). The following inference
system allows to derive consequences of E:

349

E-Algebras

A
t~t
t~ t’
i
t! ~ t
t%t, t,%t”
i
t%t”
- 1 ~ t] th
f(t].r 1tn) ~ f(t{1
t~t
Z

for any substitution o

for any f/n

(Reflexivity)

(Symmetry)

(Transitivity)

(Congruence)

(Instance)

350

E-Algebras

Lemma 4.4:
The following properties are equivalent:

(i) s<Et
(i) E =* s = t is derivable.
where E =* s = t is an abbreviation for E =* E’ and
s~teE’
Ap ... Ag

B
are abbreviations for rewrite rules E W {Ay,..., Ax} =
EU{A;, ... A B}

Recall that the before inference rules of the form 7

351

E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

Fort € Te(X) let [t] ={t/ € Tx(X) | E="t~ t'} be the
congruence class of t.

Define a ¥-algebra Ty (X)/E (abbreviated by 7) as follows:
Ur = 1lt] |t e T(X)).
fr([t), ..., [ta]) = [f(t1, ..., t,)] for f € Q.

352

E-Algebras

Lemma 4.5:

Lemma 4.6:
T = Tx(X)/E is an E-algebra.

Lemma 4.7:
Let X be a countably infinite set of variables; let s, t € Tx(X).
If Tx(X)/E =VX(s ~ t), then E =* s ~ t is derivable.

353

E-Algebras

Theorem 4.8 (“Birkhoff’s Theorem"):

Let X be a countably infinite set of variables, let E be a set of
(universally quantified) equations. Then the following properties
are equivalent for all s, t € Tx(X):

(i) s <F t.
(ii)) E =" s = t is derivable.
(iii) s~g t,i.e., E =VX(s =~ t).

(iv) Ts(X)/E = V(s ~ t).

354

Universal Algebra

Ts(X)/E = Tg(X)/~g = Tg(X)/<E is called the free
E-algebra with generating set X/~ ={[x] | x € X }:

Every mapping ¢ : X /~g — B for some E-algebra B can be
extended to a homomorphism ¢ : Tx(X)/E — B.

Ts(0)/E = Ts(0)/~g = Tx(0)/+>% is called the initial
E-algebra.

355

Universal Algebra

Q

e={(s,t)| El=s~t}is called the equational theory of E.

L ={(s,t)| Tx(D)/E = s~ t} is called the inductive theory
E.

Q

O
*’

Example:

Let E = {Vx(x+ 0~ x), VxVy(x+s(y) = s(x+y))}. Then
Xx+y=~Ety+x but x+ysey+x

356

4.3 Critical Pairs

Showing local confluence (Sketch):

Problem: If t; < ty — tp, does there exist a term s such
that t; —>>E S E*% tr ?

If the two rewrite steps happen in different subtrees (disjoint

redexes): yes.

If the two rewrite steps happen below each other (overlap at

or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable

position: needs further investigation.

357

Critical Pairs

Showing local confluence (Sketch):

Question:
Are there rewrite rules [— r and b — r such that some

subterm /1|, and /, have a common instance (/|,)o1 = hoy?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have

common variables, then only a single substitution is necessary:

(/1 ‘p)O' — /20'.

Further observation:
The mgu of /1|, and k subsumes all unifiers o of /1|, and k.

358

Critical Pairs

Let /; — r; (i = 1,2) be two rewrite rules in a TRS R whose
variables have been renamed such that vars(/y) Nvars(h) = 0.
(Remember that vars(/;) 2 vars(r;).)

Let p € pos(/) be a position such that /|, is not a variable and

o is an mgu of /|, and h.
Then o < ho — (ho)[rno],.

(no, (ho)[ro]p) is called a critical pair of R.

The critical pair is joinable (or: converges), if rno Lr (ho)[rol,.

359

Critical Pairs

Theorem 4.9 (“Critical Pair Theorem”):
A TRS R is locally confluent if and only if all its critical pairs
are joinable.

Proof:
“only if": obvious, since joinability of a critical pair is a special

case of local confluence.

360

Critical Pairs

“if": Suppose s rewrites to t; and t, using rewrite rules
I — r; € R at positions p; € pos(s), where i = 1,2. Without
loss of generality, we can assume that the two rules are variable

disjoint, hence s|, = ;0 and t; = s[r;0],,.

We distinguish between two cases: Either p; and p, are in
disjoint subtrees (p; || p2), or one is a prefix of the other

(w.o.l.o.g., p1 < p2).

361

Critical Pairs

Case 1: p1 || p2.

Then s = s[h0]p,[0]s,, and therefore t; = s[r 0], k0], and
by = 5[/1(9]P1[r29],02'

Let ty = s[r 6], [0]s. Then clearly t; —g tp using b — r> and
to —R to using { — r.

362

Critical Pairs

Case 2: p1 < p».
Case 2.1: py = p1q1 G2, where /1|4, is some variable x.

In other words, the second rewrite step takes place at or below
a variable in the first rule. Suppose that x occurs m times in f;
and n times in r; (where m > 1 and n > 0).

Then t; —% to by applying b — r» at all positions p; ¢’ go,
where g’ is a position of x in r.

Conversely, t» —% to by applying b — r> at all positions
p1qq>, where g is a position of x in /; different from ¢g;, and
by applying 1 — r1 at p; with the substitution 6’, where
0" = O0[x — (x0)[r0]4,]-

363

Critical Pairs

Case 2.2: po = p1 p, where p is a non-variable position of /.

Then s|,, = h0 and s|,, = (s|p,)|p = (h0)|p = (h|p)0, so 0 is a
unifier of h, and /1 |,.

Let o be the mgu of h and /|,, then § = 7 00 and
(no, (ho)[rno]p) is a critical pair.

By assumption, it is joinable, so rno —5 v <5 (ho)|[no],.

Consequently, t1 = s[nf], = s|noTt], —% s[vT]y and
tr = s|Rblp, = s[(h0)[rblpl, = sl(hoT)[roT]plp =

s|((ho)lralp)Tle — & slvTlp-

This completes the proof of the Critical Pair Theorem. O

364

Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)
itself must be considered — except if the overlap is at the root

(i.,e., p=-¢).

365

Critical Pairs

Corollary 4.10:
A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Corollary 4.11:

For a finite terminating TRS, confluence is decidable.

366

4.4 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions
starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

367

Termination

Proposition 4.12:

Both termination problems for TRSs are undecidable in general.

Consequence:

Decidable criteria for termination are not complete.

368

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at
finitely many rules I — r € R, rather than at infinitely many
possible replacement steps s —g s’.

369

Reduction Orderings

A binary relation 3 over Tg(X) is called compatible
with X-operations, if s 1s” implies f(t1,...,s,...,t,) O
f(ty,...,s ..., ty) forall f € Q and s,s", t; € Tg(X).

Lemma 4.13:
The relation 1 is compatible with > -operations, if and only
if s 3 s” implies t[s], O t[s’], for all 5,s’,t € Tx(X) and

p € pos(t).

Note: compatible with 2-operations = compatible with contexts.

370

Reduction Orderings

A binary relation 3 over Tx(X) is called stable under
substitutions, if s 71 s” implies so 3 s’o for all s,s" € Tx(X)

and substitutions o.

371

Reduction Orderings

A binary relation 1 is called a rewrite relation, if it is compatible
with 2-operations and stable under substitutions.

Example: If R is a TRS, then — is a rewrite relation.

A strict partial ordering over Ty (X) that is a rewrite relation is

called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

372

Reduction Orderings

Theorem 4.14:
A TRS R terminates if and only if there exists a reduction

ordering > such that / > r for every rule | — r € R.

373

Two Different Scenarios

Depending on the application, the TRS whose termination we

want to show can be
(i) fixed and known in advance, or

(ii) evolving (e.g., generated by some saturation process).

Methods for case (ii) are also usable for case (i).
Many methods for case (i) are not usable for case (ii).

We will first consider case (ii);
additional techniques for case (i) will be considered later.

374

The Interpretation Method

Proving termination by interpretation:

Let A be a 2-algebra; let > be a well-founded strict partial
ordering on Iits universe.

Define the ordering = 4 over Tx(X) by s =4 t iff A(B)(s) =
A(B)(t) for all assignments 5 : X — Uy.

Is > 4 a reduction ordering?

375

The Interpretation Method

Lemma 4.15:
> 4 Is stable under substitutions.

376

The Interpretation Method

A function f : U} — Uy is called monotone (w.r.t. >), if
a > a’ implies f(by,...,a,...,by) = f(b1,...,3",...,b,) for all
a,a, b, e Uy.

Lemma 4.16:

If the interpretation f4 of every function symbol f is monotone
w.r.t. >, then > 4 iIs compatible with 2 -operations.

Theorem 4.17:

If the interpretation f4 of every function symbol f is monotone
w.r.t. >, then > 4 Is a reduction ordering.

377

Polynomial Orderings

Polynomial orderings:
Instance of the interpretation method:
The carrier set U4 is N or some subset of N.

To every function symbol f with arity n we associate a
polynomial Ps(Xy,..., X,) € N[Xy,..., X,] with coefficients
iIn N and indeterminates Xi,..., X,. Then we define
fa(ai,...,an) = Pr(a1,...,a,) for a; € Uy4.

378

Polynomial Orderings

Requirement 1:

If a{,..., an € Uy, then fy(ay, ..., an) € Uy. (Otherwise, A
would not be a X -algebra.)

379

Polynomial Orderings

Requirement 2:

f4 must be monotone (w.r.t. >).

From now on:
Us={neN|n>1}
If arity(f) = 0, then Ps is a constant > 1.

If arity(f) = n > 1, then P¢ is a polynomial P(Xy,..., X,),
such that every X; occurs in some monomial with exponent

at least 1 and non-zero coefficient.

= Requirements 1 and 2 are satisfied.

380

Polynomial Orderings

The mapping from function symbols to polynomials can be
extended to terms: A term t containing the variables xq, ..., x,
yields a polynomial P; with indeterminates Xi, ..., X, (where

X; corresponds to B(x;)).

Example:

0 =1b/0, f/1, g/3}
Py =3, Pr(Xi)= X2 Pg(X1, Xo, X3) = X1 + XoXs.

Let t = g(f(b), f(x),y), then P,(X,Y) =9+ X?Y.

381

Polynomial Orderings

Clearly, [= r ift P, > P, iff P — P, > 0.

Question: Can we check P; — P, > 0 automatically?

382

Polynomial Orderings

Hilbert's 10th Problem:

Given a polynomial P € Z[Xy, ..., X,] with integer coeffi-
cients, is P = 0 for some n-tuple of natural numbers?

Theorem 4.18:
Hilbert's 10th Problem is undecidable.

Proposition 4.19:
Given a polynomial interpretation and two terms /, r, it is
undecidable whether P, > P,.

Proof:
By reduction of Hilbert's 10th Problem. O

383

Polynomial Orderings

One easy case:

If we restrict to linear polynomials, deciding whether
P, — P, > 0 is trivial:

> kiaj + k >0 forall a1,...,a, > 1 if and only if
ki >0forallie{l,..., nt,
and Zk,'—I—k>0

384

Polynomial Orderings

Another possible solution:

Test whether Pi(ay,..., an) > Pi(ay,..., an) for all

This is decidable (but hard). Since U4y C{x e R |x>1}, it
implies P, > P,.

Alternatively:

Use fast overapproximations.

385

Simplification Orderings

The proper subterm ordering > is defined by s > t if and only if
s|, = t for some position p # ¢ of s.

386

Simplification Orderings

A rewrite ordering >~ over Tyx(X) is called simplification
ordering, if it has the subterm property: s > t implies s > t for
all s, t € Tx(X).

Example:

Let Remp be the rewrite system Rep = { f(Xx1, ..., Xp) = X; |
feQ 1<i<n=arity(f)}.

Define >emp = %J}g

emb

and Demp = =% (“homeomorphic

embedding relation™).

>emb IS @ simplification ordering.

387

Simplification Orderings

Lemma 4.20:

If > is a simplification ordering, then s >¢mp t implies s > t and
S Demb t IMmplies s > t.

388

Simplification Orderings

Goal:

Show that every simplification ordering is well-founded (and

therefore a reduction ordering).
Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification

orderings and the definition of embedding have to be modified.

389

Simplification Orderings

Theorem 4.21 (“Kruskal's Theorem™):

Let X be a finite signature, let X be a finite set of variables.
Then for every infinite sequence ty, t», t3,... there are indices
J > i such that tj Bemp ti. (Demb is called a well-partial-ordering

(wpo).)

Proof:
See Baader and Nipkow, page 113-115. O

390

Simplification Orderings

Theorem 4.22 (Dershowitz):
If X is a finite signature, then every simplification ordering > on
Tsx(X) is well-founded (and therefore a reduction ordering).

391

Simplification Orderings

There are reduction orderings that are not simplification
orderings and terminating TRSs that are not contained in any

simplification ordering.

Example:

Let R = {f(f(x)) — f(g(f(x)))}-

R terminates and %75 Is therefore a reduction ordering.

Assume that — g were contained in a simplification ordering .

Then f(f(x)) —r f(g(f(x))) implies f(f(x)) > f(g(f(x))).
and f(g(f(x))) Bemb f(f(x)) implies f(g(f(x))) = f(f(x)),
hence f(f(x)) = f(f(x)).

392

Path Orderings

Let 2 = (2,11) be a finite signature, let > be a strict partial
ordering (“precedence”) on Q.

The lexicographic path ordering >|,, on Tx(X) induced by > is
defined by: s >, t iff

(1) t € vars(s) and t #£ s, or

(2) s ="f(s1,..., Sm), t =g(t1, ..., t,), and
(@) s;i =ipo t for some i, or
(b) f > g and s >, t; for all j, or

(c) f =g, 5 >ipo tj forall j, and (s1,...,5m) (>ipo)iex
(tl, e tn).

393

Path Orderings

Lemma 4.23:
S >Ipo t implies vars(s) D vars(t).

Theorem 4.24:
>Ipo IS @ simplification ordering on Tx(X).

Theorem 4.25:

If the precedence > is total, then the lexicographic path
ordering +|,, is total on ground terms, i.e., for all s,t € Tx(0):
S > lpo LV LT >po SVS=TL.

394

Path Orderings

Recapitulation:

Let = = (2,11) be a finite signature, let > be a strict partial
ordering (“precedence”) on . The lexicographic path ordering
>1po ON Tx(X) induced by > is defined by: s >, t iff

(1) t € vars(s) and t #£ s, or

(2) s ="f(s1,..., Sm), t =g(ty, ..., t,), and
(@) si =ipo t for some i, or

(b) f > g and s >, t; for all j, or

395

Path Orderings

There are several possibilities to compare subterms in (2)(c):

e compare list of subterms lexicographically left-to-right
(“lexicographic path ordering (Ipo)”, Kamin and Lévy)

e compare list of subterms lexicographically right-to-left (or
according to some permutation)

e compare multiset of subterms using the multiset extension
(“multiset path ordering (mpo)”, Dershowitz)

e to each function symbol f with arity(n) > 1 associate a
status € {mul} U{lex; | 7:{1,...,n} = {1,...,n}} and
compare according to that status (“recursive path ordering
(rpo) with status”)

396

The Knuth-Bendix Ordering

Let 2 = (2,11) be a finite signature, let > be a strict partial
ordering (“precedence”) on Q, let w : QU X — RJ be a weight
function, such that the following admissibility conditions are
satisfied:

w(x) = wg € RT for all variables x € X; w(c) > wy for all
constants ¢ € ().

If w(f) =0 for some f € Q with arity(f) = 1, then f > g for
all g € Q.

The weight function w can be extended to terms as follows:

w(t)= > wix)-#(x,t)+ Y w(f)-#(f.1).

x€vars(t) feQ

397

The Knuth-Bendix Ordering

The Knuth-Bendix ordering >ypo on Tx(X) induced by > and
w i1s defined by: S >kbo t Iff

(1) #(x,s) > #(x, t) for all variables x and w(s) > w(t), or
(2) #(x,s) > #(x, t) for all variables x, w(s) = w(t), and

(a) t =x, s = f"(x) for some n>1, or

398

The Knuth-Bendix Ordering

Theorem 4.26:

The Knuth-Bendix ordering induced by > and w is a simplifica-
tion ordering on Tx(X).

Proof:
Baader and Nipkow, pages 125—-129. O

399

Remark

If T £ (), then all the term orderings described in this section
can also be used to compare non-equational atoms by treating
predicate symbols like function symbols.

Defining a weight w(f) = 0 for some unary function symbol
f was in particular introduced for the application of KBO to

equational systems defining groups.

400

4.5 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an
equivalent convergent set R of rewrite rules.

(If R is finite: decision procedure for E.)

How to ensure termination?

Fix a reduction ordering > and construct R in such a way
that =g C >~ (i.e., | = r for every | — r € R).

How to ensure confluence?

Check that all critical pairs are joinable.

401

Knuth-Bendix Completion: Inference Rules

The completion procedure is itself presented as a set of

rewrite rules working on a pair of equations E and rules R:
(Eo; Ro) —> (El; Rl) = (EQ; R2) = ...

At the beginning, E = Ej is the input set and R = Ry is empty.
At the end, E should be empty; then R is the result.

For each step (E; R) = (E’; R"), the equational theories of
EUR and E' UR’ agree: =g r = XE'UR’.

402

Knuth-Bendix Completion: Inference Rules

Notations:

The formula s =~ t denotes either s~ t or t ~ s.

CP(R) denotes the set of all critical pairs between rules in R.

403

Knuth-Bendix Completion: Inference Rules

Orient
(EH‘J{Sé t};R) —>KBC (E;RU{S% t})

if s =t

Note: There are equations s = t that cannot be oriented, i.e.,

neither s > t nor t > s.

404

Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented — but we don’'t need them

anyway:

Delete
(EW{s~s};R) =«ksc (E;R)

405

Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional

equations:
Deduce
(E;R) =kec (EU{s=t};R)
if (s,t) € CP(R)
Note: If (s,t) € CP(R) then s <~ u —g t and hence

REs~t.

406

Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary, but
very useful (e.g., to get rid of joinable critical pairs and to deal

with equations that cannot be oriented):
Simplify-Eq

(Ew{s~t}R) =ksc (EU{u~t}R)

ifs%Ru

407

Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule
(E;RW{s —>t}) =kec (E;RU{s— u})

if t >p u

Simplification of the left-hand side may influence orientability
and orientation. Therefore, it yields an equation:

L-Simplify-Rule
(E;RW{s —>t}) =kec (EU{u=xt};R

if s —-r v using arule | — r € R such that s 1 / (see next
slide).

408

Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of s — t may only be simplified
using a rule [— r, if | — r cannot be simplified using s — t,
that is, if s 7/, where the encompassment quasi-ordering g IS
defined by

s J 1 if s|, =Io for some p and o

and J = J\ L is the strict part of .

Lemma 4.27:
1 is a well-founded strict partial ordering.

409

Knuth-Bendix Completion: Inference Rules

Lemma 4.28:
If (E;R) =ksc (E’; R"), then ~pur = ~g/ur-.

Lemma 4.29:
If (E;R) =kgc (E’;R") and —r C >, then —g/ C .

410

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations,
different things can happen:

(1) We reach a state where no more inference rules are
applicable and E is not empty.
= Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs
between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some
definitions.

411

Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) (Eg; Ry) =«kac (E1; R1) =«kBc
(Ez; Ry) =ksc -.. with Ry = () is called a run of the completion
procedure with input Eg and >.

For a run, Exc = U;>q Ei and R = U5 R

The sets of persistent equations or rules of the run are
E.=Uisoj»i B and Ry =Uiso (> K-

Note: If the run is finite and ends with E,, R, then E, = E,
and R, = R,,.

412

Knuth-Bendix Completion: Correctness Proof

A run is called fair, if CP(R,) C E (i.e., if every critical
pair between persisting rules is computed at some step of the
derivation).

Goal:

Show: If a run is fair and E, is empty, then R, is convergent

and equivalent to Ey.

In particular: If a run is fair and E, is empty, then

I

— A~ S * S
RE) = REcURe = <PE_UR. = R.-

413

Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:

(Eo; Ro) = kse (E1; R1) =«kse (E2; R2) =«kBC - - -
Is a fair run.

Ry and E, are empty.

414

Knuth-Bendix Completion: Correctness Proof

A proof of s &~ t in E,c U Ry, is a finite sequence (s, ..., Sn)
such that s = sy, t = s,, and for all i € {1,..., n}:

(1) Si—1 <7?E,, Si, Of
(2) Si—1 7R, Si, Or

(3) Si—1 Roo% S;.
The pairs (s;_1, s;) are called proof steps.

A proof is called a rewrite proof in R,, if thereisa k € {0,...,n}
such that s; 1 —g, sifor 1 </ < k and 5,1 < s for
k+1<i<n

415

Knuth-Bendix Completion: Correctness Proof

ldea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every
proof that is not a rewrite proof in R, there is an equivalent

smaller proof.

Consequence: For every proof there is an equivalent rewrite

proof in R,.

416

Knuth-Bendix Completion: Correctness Proof

We associate a cost ¢(s;_1, s;) with every proof step as follows:

(1) If s;_1 <>g_ s;, then c(s;—1,s)) = ({si—1,Si}, —, —), where
the first component is a multiset of terms and — denotes an

arbitrary (irrelevant) term.
(2) If s;_4 — R Si using | — r, then C(S,'_l, S,') = ({S,'_l}, / S,').

(3) If s;_4 Roo% S; using | — r, then C(S,'_l, S,') = ({S,'}, / S,'_1).

Proof steps are compared using the lexicographic combination
of the multiset extension of the reduction ordering >, the
encompassment ordering T, and the reduction ordering >.

417

Knuth-Bendix Completion: Correctness Proof

The cost ¢(P) of a proof P is the multiset of the costs of its
proof steps.

The proof ordering > compares the costs of proofs using the
multiset extension of the proof step ordering.

Lemma 4.30:
> c Is a well-founded ordering.

418

Knuth-Bendix Completion: Correctness Proof

Lemma 4.31:
Let P be a proof in E.o U Ry. If P is not a rewrite proof in R,,
then there exists an equivalent proof P’ in E., U Ry such that

P —c P’

Proof:
If P is not a rewrite proof in Ry, then it contains

(a) a proof step that is in E, or
(b) a proof step that is in Ry, \ Ry, or
(c) a subproof s;_; g¢ s; =g, sit1 (peak).

We show that in all three cases the proof step or subproof can
be replaced by a smaller subproof:

419

Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation s &~ t is in E,,. This

equation must be deleted during the run.

If s = t is deleted using Orient:

.51 <7E__ Si--. — e S5i-1 7R, Si.--

If s =~ t is deleted using Delete:

. Si—1 <7E_ Si—1--. — .5 _1...

If s =~ t is deleted using Simplify-Eq:

e Si1<2E__ Si--. — ...S,'_1%ROOS,HEOOS,'...

420

Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule s — tis in Ry \ Ri. This
rule must be deleted during the run.

If s — t is deleted using R-Simplify-Rule:

e Si—1 7R, Si--- — ...S,'_1%ROOS,ROO%S;...

If s — t is deleted using L-Simplify-Rule:

e Si—1 7R, Si--- — ...S;_1—>ROOS’HEOOS,'...

421

Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form s;_; p¢s; =g, Siy1.

If there is no overlap or a non-critical overlap:

/
... S5 _1 R*%S,' —R, Si+1... — ...S5j—1 %E* S 5ﬁ5i+1---

If there is a critical pair that has been added using Deduce:

...5_1 Rfsi%R*Si—l—l---j ce.Si—1 $S7E_ Si+1---

In all cases, checking that the replacement subproof is smaller
than the replaced subproof is routine. O

422

Knuth-Bendix Completion: Correctness Proof

Theorem 4.32:

Let (Eo; Ro) — KBC (El; Rl) — KBC (EQ; R2) —KBC - - - be a fair
run and let Ry and E. be empty. Then

(1) every proofin E., U Ry is equivalent to a rewrite proof in R,,
(2) R, is equivalent to Ey, and

(3) R, is convergent.

423

Knuth-Bendix Completion: Correctness Proof

Proof:
(1) By well-founded induction on ¢ using the previous lemma.

(2) Clearly ~g_ur. = =g, Since R, C R, we get
~gr, C ~c_ur.. On the other hand, by (1), =g_ur,_ C ~g,.

(3) Since —g, C >, R, is terminating. By (1), R, is confluent.
L]

424

4.6 Unfailing Completion

Classical completion:

Try to transform a set E of equations into an equivalent
convergent TRS.

Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (Bachmair, Dershowitz and Plaisted):

If an equation cannot be oriented, we can still use orientable

instances for rewriting.

Note: If > is total on ground terms, then every ground
instance of an equation is trivial or can be oriented.

Goal: Derive a ground convergent set of equations.

425

Unfailing Completion

Let E be a set of equations, let > be a reduction ordering.

We define the relation — g~ by

s —p- t iff there exist (u~v) € E or (v~ u) € E,
p € pos(s), and o : X — Tx(X),
such that s|, = uo and t = s|vo],
and uo > vo.

Note: — g~ Is terminating by construction.

426

Unfailing Completion

From now on let > be a reduction ordering that is total on

ground terms.

E is called ground convergent w.r.t. >, if for all ground terms
s and t with s <% t there exists a ground term v such that

S —p- V g4 L.

(Analogously for EU R.)

427

Unfailing Completion

As for standard completion, we establish ground convergence by

computing critical pairs.

However, the ordering > is not total on non-ground terms.

Since s >~ tf implies s A t, we approximate > on ground terms

by A on arbitrary terms.

428

Unfailing Completion

Let u; =~ v; (i = 1,2) be equations in E whose variables have
been renamed such that vars(u; = vi) Nvars(uy =~ v») = 0.
Let p € pos(uy1) be a position such that uj|, is not a variable,
o is an mgu of ui|, and wy, and ujoc A vio (i = 1,2). Then
(vio, (u1o)|[wve0o]p) is called a semi-critical pair of E with respect
to >.

The set of all semi-critical pairs of E is denoted by SP. (E).

Semi-critical pairs of E U R are defined analogously. If —r C >,
then CP(R) and SP.(R) agree.

429

Unfailing Completion

Note: In contrast to critical pairs, it may be necessary to
consider overlaps of a rule with itself at the top.

For instance, if E = {f(x) =~ g(y)}, then (g(y),g(y’)) is a
non-trivial semi-critical pair.

430

Unfailing Completion

The Deduce rule takes now the following form:

Deduce
(E; R) —> UKBC (EU{S% t};R)

if (s, t) € SP..(EUR)

The other rules are inherited from = kgc. The fairness criterion

for runs is replaced by
SP. (E. UR,) C E-

(i.e., if every semi-critical pair between persisting rules or
equations is computed at some step of the derivation).

431

Unfailing Completion

Analogously to Thm. 4.32 we obtain now the following theorem:

Theorem 4.33:

Let (Eo; Ro) = uksc (Ei; R1) = ukee (E2; R2) = ukse --. be a
fair run; let Ry = (. Then

(1) E. U R, is equivalent to Ey, and

(2) E. U R, is ground convergent.

432

Unfailing Completion

Moreover one can show that, whenever there exists a reduced
convergent R such that ~g, = |g and —r € >, then for every
fair and simplifying run E, = () and R, = R up to variable

renaming.

Here R is called reduced, if for every | — r € R, both / and r
are irreducible w.r.t. R\ {/ — r}. A run is called simplifying,
If R, is reduced, and for all equations u ~ v € E,, u and v are
iIncomparable w.r.t. > and irreducible w.r.t. R,.

433

Unfailing Completion

Unfailing completion is refutationally complete for equational

theories:

Theorem 4.34:

Let E be a set of equations, let >~ be a reduction ordering that
Is total on ground terms. For any two terms s and t, let 5 and
t be the terms obtained from s and t by replacing all variables
by Skolem constants. Let eq/2, true/0 and false/0 be new
operator symbols, such that true and false are smaller than all
other terms. Let Ey = E U {eq(5, t) = true, eq(x, x) ~ false}.
If (Eo; D) =ukec (E1; R1) =ukec (E2; R2) =ukec ... be a
fair run of unfailing completion, then s ~g t iff some E; U R;
contains true = false.

434

Unfailing Completion

Outlook:

Combine non-equational superposition resolution and unfailing
completion to get a calculus for equational clauses:

compute inferences between (strictly) maximal literals as in
ordered resolution,
compute overlaps between maximal sides of equations as in

unfailing completion

= Superposition calculus.

435

Part 5: Implementing Saturation Procedures

Problem:
Refutational completeness is nice in theory, but ...

... 1t guarantees only that proofs will be found eventually, not
that they will be found quickly.

Even though orderings and selection functions reduce the

number of possible inferences, the search space problem is
enormous.

First-order provers “look for a needle in a haystack™: It may
be necessary to make some millions of inferences to find a
proof that is only a few dozens of steps long.

436

Coping with Large Sets of Formulas

Consequently:

e We must deal with large sets of formulas.

e We must use efficient techniques to find formulas that can

be used as partners in an inference.
e We must simplify/eliminate as many formulas as possible.

e \We must use efficient techniques to check whether a formula
can be simplified /eliminated.

437

Coping with Large Sets of Formulas

Note:
Often there are several competing implementation techniques.
Design decisions are not independent of each other.

Design decisions are not independent of the particular class of
problems we want to solve. (FOL without equality/FOL with
equality /unit equations, size of the signature, special algebraic
properties like AC, etc.)

438

5.1 The Main Loop

Standard approach:
Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences
together with the “given clause” using an appropriate index
data structure.

Compute the conclusions of these inferences; add them to the
set of clauses.

439

The Main Loop

Consequently: split the set of clauses into two subsets.

o Wo = “Worked-off” (or “active”) clauses: Have already
been selected as “given clause”. (So all inferences between
these clauses have already been computed.)

e Us = “Usable” (or “passive”) clauses: Have not yet been
selected as “given clause”.

440

The Main Loop

During each iteration of the main loop:
Select a new given clause C from Us; Us := Us \ {C}.

Find partner clauses D; from Wo; New = Infer({D; | i €
[}, C);, Us = UsU New; Wo = Wo U{C}

441

The Main Loop

Additionally:

Try to simplify C using Wo. (Skip the remainder of the
iteration, if C can be eliminated.)

Try to simplify (or even eliminate) clauses from Wo using C.

442

The Main Loop

Design decision: should one also simplify Us using Wo ?

yes ~ “Full Reduction”:

Advantage: simplifications of Us may be useful to derive the
empty clause.

no ~ “Lazy Reduction:

Advantage: clauses in Us are really passive; only clauses in
Wo have to be kept in index data structure. (Hence: can

use index data structure for which retrieval is faster, even if

update is slower and space consumption is higher.)

443

Main Loop Full Reduction

Us = N;

Wo = (:

while (Us # () && 1 ¢ Us) {
Given = select clause from Us and move it from Us to Wo;
New = all inferences between Given and Wo;

Reduce New together with Wo and Us;
Us = Us U New;}

if (L e Us)
return “unsatisfiable”:
else

return “satisfiable”:

444

445

5.2 Term Representations

The obvious data structure for terms: Trees

f(g(x1), f(g(x1) x2))

optionally: (full) sharing

VAN
/N
g fly
\ / \
X1 g X2
X1

446

Term Representations

An alternative: Flatterms

f(g(x1) f(g(x1), x2))

f g X1 f g X1 X2

Y
Y
Y
Y
Y
Y

R A

(e
G

need more memory;
but: better suited for preorder term traversal
and easier memory management.

447

5.3 Index Data Structures

Problem:
For a term t, we want to find all terms s such that

® 5 IS an instance of t,
e s is a generalization of t (i.e., t is an instance of s),
e s and t are unifiable,

e s is a generalization of some subterm of t,

448

Index Data Structures

Requirements:
fast insertion,
fast deletion,
fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the
requirements are different (insertion and deletion are much less
important).

449

Index Data Structures

Many different approaches:

e Path indexing

e Discrimination trees
e Substitution trees

e Context trees

e Feature vector indexing

450

Index Data Structures

Perfect filtering:

The indexing technique returns exactly those terms satisfying
the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all
terms satisfying the query.

Retrieval operations must be followed by an additional check,
but the index can often be implemented more efficiently.

Frequently: All occurrences of variables are treated as different
variables.

451

Path Indexing

Path indexing:
Paths of terms are encoded in a trie (“retrieval tree”).

A star x represents arbitrary variables.

Example: Paths of f(g(x, b),*): f.1.g.1.x
f.1.g.2.b
f.2.x

Each leaf of the trie contains the set of (pointers to) all terms

that contain the respective path.

452

Path Indexing

Example: Path index for {f(g(d,*),c)}

453

Path Indexing

Example: Path index for {f(g(d,*),c), f(g(*, b), *)}

f\d’

o
12y 1r 12 11}

454

Path Indexing

Example: Path index for {f(g(d,*),c), f(g(*, b),*),
f(g(d, b). c)}

127 {13} {2,3} {1}

455

Path Indexing

Example: Path index for {f(g(d,*),c), f(g(*, b),*),
f(g(d,b).c), f(g(+.c) b);

12,4 {13} {2,3} {4} {1}

456

Path Indexing

Example: Path index for {f(g(d,*),c), f(g(*, b),*),
flg(d,b).c), f(g(+.c), b)., f(* %)}

{5} 1 {2,5}
*/ \d
o

12,4 {13} {2,3} {4} {1}

457

Path Indexing

Advantages:
Uses little space.
No backtracking for retrieval.
Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for subterms.

458

Discrimination Trees

Discrimination trees:
Preorder traversals of terms are encoded in a trie.
A star x represents arbitrary variables.
Example: String of f(g(*, b), *): f.g.x.b.x

Each leaf of the trie contains (a pointer to) the term that is
represented by the path.

459

Discrimination Trees

Example: Discrimination tree for {f(g(d, *), c)}

11}

460

Discrimination Trees

Example: Discrimination tree for {f(g(d, *),c), f(g(*, b),*)}

461

Discrimination Trees

Example: Discrimination tree for {f(g(d, *),c), f(g(x*, b), *),
f(g(d, b). c)}

3r 1} 12}

462

Discrimination Trees

Example: Discrimination tree for {f(g(d, *),c), f(g(x*, b), *),
f(g(d,b).c), f(g(+.c) b);

3r 1} 12) 4]

463

Discrimination Trees

Example: Discrimination tree for {f(g(d, *),c), f(g(x*, b), *),
flg(d,b).c), f(g(+.c), b)., f(* %)}

3r 1} 12) 4]

464

Discrimination Trees

Advantages:

Each leaf yields one term, hence retrieval does not require
Intersections of intermediate results for subterms.

Good for finding generalizations.

Disadvantages:
Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed
up the search for instances or unifiable terms.

Backtracking required for retrieval.

465

Feature Vector Indexing

Goal:
C’ is subsumed by C if C’ = Co VvV D.

Find all clauses C’ for a given C or vice versa.

466

Feature Vector Indexing

If C’ is subsumed by C, then

C’ contains at least as many literals as C.

C’ ' | itive literal C
contains at least as many positive literals as C.

C’ ' | ive literal C
contains at least as many negative literals as C.

C’ contains at least as many function symbols as C.

C’ contains at least as many occurrences of f as C.

C’ contains at least as many occurrences of f in negative
literals as C.

the deepest occurrence of f in C’ is at least as deep as in C.

467

Feature Vector Indexing

|dea:
Select a list of these “features’.

Compute the “feature vector” (a list of natural numbers) for
each clause and store it in a trie.

When searching for a subsuming clause: Traverse the trie,
check all clauses for which all features are smaller or equal.
(Stop if a subsuming clause is found.)

When searching for subsumed clauses: Traverse the trie,
check all clauses for which all features are larger or equal.

468

Feature Vector Indexing

Advantages:
Works on the clause level, rather than on the term level.

Specialized for subsumption testing.

Disadvantages:

Needs to be complemented by other index structure for other
operations.

469

Literature

Literature:

R. Sekar, |. V. Ramakrishnan, and Andrei Voronkov: Term
Indexing, Ch. 26 in Robinson and Voronkov (eds.), Handbook of
Automated Reasoning, Vol. Il, Elsevier, 2001.

Christoph Weidenbach: Combining Superposition, Sorts and
Splitting, Ch. 27 in Robinson and Voronkov (eds.), Handbook of

Automated Reasoning, Vol. Il, Elsevier, 2001.

470

Part 6: Termination Revisited

So far: Termination as a subordinate task for entailment

checking.

TRS is generated by some saturation process; ordering must

be chosen before the saturation starts.
Now: Termination as a main task (e. g., for program analysis).

TRS is fixed and known in advance.

471

Termination Revisited

Literature:

Nao Hirokawa and Aart Middeldorp: Dependency Pairs Revisited,
RTA 2004, pp. 249-268 (in particular Sect. 1-4).

Thomas Arts and Jurgen Giesl: Termination of Term Rewriting
Using Dependency Pairs, Theoretical Computer Science,
236:133-178, 2000.

472

6.1 Dependency Pairs

Invented by T. Arts and J. Giesl in 1996, many refinements since
then.

Given: finite TRS R over ¥ = (€, ().
To:={te Tg(X) | infinite deriv. t g t; 2> tp g ... }.

T i={teTy|Vp>c:t|, & To}
— minimal elements of Tg w.r.t. I>.

t € Tg = there exists a t/ € T, such that t > t’.
R is non-terminating iff Tg £ 0 iff T # 0.

473

Dependency Pairs

Assume that T, # () and consider some non-terminating
derivation starting from t € T,,. Since all subterms of t allow
only finite derivations, at some point a rule /| — r € R must
be applied at the root of t (possibly preceded by rewrite steps
below the root):

t=f(t1,..., tn) =% F(s1,...,5,) = lo —>& ro.

In particular, root(t) = root(/), so we see that the root symbol
of any term in T, must be contained in D := { root(/) | | —

r € R}. D is called the set of defined symbols of R; C :=Q\ D
Is called the set of constructor symbols of R.

474

Dependency Pairs

The term ro is contained in Tg, so there exists a v € T, such
that ro > v.

If v occurred in ro at or below a variable position of r, then
xo|, = v for some x € var(r) C var(/), hence s; > xo and
there would be an infinite derivation starting from some t;. This
contradicts t € T, though.

Therefore, v = uo for some non-variable subterm u of r. As
v € T, we see that root(u) = root(v) € D. Moreover, u
cannot be a proper subterm of /, since otherwise again there

would be an infinite derivation starting from some t;.

475

Dependency Pairs

Putting everything together, we obtain

t=f(t1,..., tn) =% F(S1,...,50) = lo —3g ro > uo

where r B> u, root(u) € D, | ¥ u, u is not a variable.

Since uo € T, we can continue this process and obtain an

infinite sequence.

476

Dependency Pairs

If we define
S={l—-u|l—=reR, r>u root(u) e D, I fu ue¢ X},

we can combine the rewrite step at the root and the subterm
step and obtain

>
t =5% lo —>s uo.

477

Dependency Pairs

To get rid of the superscripts € and >¢, it turns out to be useful
to introduce a new set of function symbols f# that are only used

for the root symbols of this derivation:
Q*={f"/n|f/neQ}.

For a term t = f(ty,..., t,) we define th .= fﬁ(tl t,); for a
set of terms T we define T#:={t?|tec T}.

The set of dependency pairs of a TRS R is then defined by

DP(R) ={IF = u*|l—=reR, r>u root(u)eD, I ¢ u u¢ X}

478

Dependency Pairs

For t € T, the sequence using the S-rule corresponds now to
tﬁ %7;\; /ﬁO' —7DP(R) UﬁO'
where t* € T! and vfo € TE .

(Note that rules in R do not contain symbols from Q! whereas
all roots of terms in DP(R) come from QF, so rules from R can

only be applied below the root and rules from DP(R) can only
be applied at the root.)

479

Dependency Pairs

Since ulo is again in Tﬁo, we can continue the process in the

same way. We obtain: R is non-terminating iff there is an

infinite sequence
t1 —r t2 —pp(R) 13 =R t4 —>DP(R) - - -

with t; € T%_ for all /.

Moreover, if there exists such an infinite sequence, then there
exists an infinite sequence in which all DPs that are used are used
infinitely often. (If some DP is used only finitely often, we can
cut off the initial part of the sequence up to the last occurrence
of that DP; the remainder is still an infinite sequence.)

480

Dependency Graphs

Such infinite sequences correspond to “cycles” in the “depen-
dency graph’:

Dependency graph DG(R) of a TRS R:
directed graph
nodes: dependency pairs s — t € DP(R)

edges: from s — t to u — v if there are o, 7 such that

to —p uT.

481

Dependency Graphs

Intuitively, we draw an edge between two dependency pairs,
If these two dependency pairs can be used after another in
an infinite sequence (with some R-steps in between). While
this relation is undecidable in general, there are reasonable

overapproximations:

482

Dependency Graphs

The functions cap and ren are defined by:

cap(x) = x
y iffebD
\f(cap(tl) cap(t,)) if f € Cu D*

ren(x) =y, y fresh
ren(f(ty,..., t,)) = f(ren(ty), ..., ren(t,))

The overapproximated dependency graph contains an edge from
s — ttou— vif ren(cap(t)) and u are unifiable.

483

Dependency Graphs

A cycle in the dependency graph is a non-empty subset
K C DP(R) such that there is a non-empty path from every DP
in K to every DP in K (the two DPs may be identical).

Let K C DP(R). An infinite rewrite sequence in R U K of the
form

4] %TQ h =Kk t3%>,:> s 7K ...

with t; € Tﬁo Is called K-minimal, if all rules in K are used
infinitely often.

R is non-terminating iff there is a cycle K C DP(R) and a
K-minimal infinite rewrite sequence.

484

6.2 Subterm Criterion

Our task is to show that there are no K-minimal infinite rewrite

sequences.

Suppose that every dependency pair symbol f# in K has positive
arity (i.e., no constants). A simple projection 7 is a mapping

m: Q% — N such that 7(f*) =i € {1,..., arity(f*)}.
We define W(fﬂ(tl, Cee tn)) = Tr(ft)-

485

Subterm Criterion

Theorem 6.1 (Hirokawa and Middeldorp):
Let K be a cycle in DG(R). If there is a simple projection 7 for

K such that w(/) > 7w(r) for every | — r € K and «(/) > m(r)
for some | — r € K, then there are no K-minimal sequences.

486

Subterm Criterion

Proof:
Suppose that

4] %E U1 —K tQ%E U —K ...

Is a K-minimal infinite rewrite sequence. Apply 7 to every t;:

Case 1: u; =k tiz1. Thereis an | — r € K such that u; = lo,
tiry1 = ro. Then w(u;) = w(/)o and 7(tj;1) = w(r)o. By
assumption, w(/) > 7w(r). If w(/) = w(r), then w(u;) = 7(tis1).
If w(/) > =w(r), then w(u;) = w(l)o > w(r)o = w(tir1). In
particular, w(u;) > mw(tj11) for infinitely many i (since every DP
is used infinitely often).

Case 2: tj =% uj. Then 7(t;) — w(u;).

487

Subterm Criterion

By applying 7 to every term in the K-minimal infinite rewrite
sequence, we obtain an infinite (—g U >)-sequence containing
infinitely many >-steps. Since > is well-founded, there must
also exist infinitely many —g-steps (otherwise the infinite
sequence would have an infinite tail consisting only of >-steps,
contradicting well-foundedness.)

Now note that > o —r € —p o >. Therefore we can commute
>-steps and —p-steps and move all —g-steps to the front.
We obtain an infinite —g-sequence that starts with 7(t;).
However t; > 7(t1) and t; € T, so there cannot be an infinite
— r-sequence starting from m(ty). O

488

Subterm Criterion

Problem: The number of cycles in DG(R) can be exponential.
Better method: Analyze strongly connected components (SCCs).

SCC of a graph: maximal subgraph in which there is a non-empty
path from every node to every node. (The two nodes can be
identical.)?

Important property: Every cycle is contained in some SCC.

@There are several definitions of SCCs that differ in the treatment of
edges from a node to itself.

489

Subterm Criterion

ldea: Search for a simple projection 7 such that w(/) > «(r) for
all DPs [— r in the SCC. Delete all DPs in the SCC for which
(/) > w(r) (by the previous theorem, there cannot be any
K-minimal infinite rewrite sequences using these DPs). Then
re-compute SCCs for the remaining graph and re-start.

No SCCs left = no cycles left = R is terminating.

Example: See Ex. 13 from Hirokawa and Middeldorp.

490

6.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite
sequences
4] %TQ u —k b —>>|,i> U —K ...

using well-founded orderings.

We observe that the requirements for the orderings used here

are less restrictive than for reduction orderings:

K-rules are only used at the top, so we need stability under
substitutions, but compatibility with contexts is unnecessary.

While — k-steps should be decreasing, for —g-steps it would
be sufficient to show that they are not increasing.

491

Reduction Pairs and Argument Filterings

This motivates the following definitions:
Rewrite quasi-ordering 7=

reflexive and transitive binary relation, stable under substitu-
tions, compatible with contexts.

Reduction pair (7, >):

>~ is a rewrite quasi-ordering.

> is a well-founded ordering that is stable under substitutions.

>~ and > are compatible: — o> C = or =0 C ».

(In practice, > is almost always the strict part of the quasi-
ordering ~.)

492

Reduction Pairs and Argument Filterings

Clearly, for any reduction ordering >, (>, =) is a reduction pair.

More general reduction pairs can be obtained using argument

filterings:
Argument filtering 7r:

7 QU - NU Iist of N

0 < k < arity(f)

493

Reduction Pairs and Argument Filterings

Extension to terms:

m(x) = x

w(f(ty,..., ty)) = f(m(t;), ..., m(t;)), if o(f) =[i,..., ik,

where f’/k is a new function symbol.

494

Reduction Pairs and Argument Filterings

Let > be a reduction ordering, let m be an argument filtering.
Define s >, t iff w(s) = w(t) and s = t iff w(s) = =(t).

Lemma 6.2:

(7=, >==) is a reduction pair.

Proof:
Follows from the following two properties:

m(so) = w(s)or, where o,(x) := w(o(x)).

)
7(s), if p does not correspond to any position in 7(s)

m(slulp) = 4

m(s)[m(u)]q, if p corresponds to q in 7(s)
\
L]

495

Reduction Pairs and Argument Filterings

For interpretation-based orderings (such as polynomial orderings)
the idea of “cutting out” certain subterms can be included

directly in the definition of the ordering:

496

Reduction Pairs and Argument Filterings

Reduction pairs by interpretation:

Let A be a X-algebra; let > be a well-founded strict partial
ordering on its universe.

Assume that all interpretations 4 of function symbols are
weakly monotone, i.e., a; = b; implies f(ay,...,, ap) =
f(by,..., b,) for all a;, b; € Uy4.

Define s =~ 4 t iff A(B)(s) = A(B)(t) for all assignments
B X = Uy; define s =4 t iff A(B)(s) = A(B)(t) for all
assignments 5 : X — Uy4.

Then (.4, >.4) is a reduction pair.

497

Reduction Pairs and Argument Filterings

For polynomial orderings, this definition permits interpretations
of function symbols where some variable does not occur at all
(e.g., Pr(X,Y) =2X + 1 for a binary function symbol). It is
no longer required that every variable must occur with some

positive coefficient.

498

Reduction Pairs and Argument Filterings

Theorem 6.3 (Arts and Giesl):
Let K be a cycle in the dependency graph of the TRS R. If

there is a reduction pair (-, =) such that
o /|~ rforall/ - reR,
e /|—rorl=rforall/l—rekK,
e /|~ rforatleastone /| — r € K,

then there is no K-minimal infinite sequence.

499

Reduction Pairs and Argument Filterings

Proof:
Assume that ty =5 11 —k to —p U2 —>k ... is a K-minimal infinite
rewrite sequence.

As | =~ r for all | - r € R, we obtain t; 7~ u; by stability under

Y

substitutions, compatibility with contexts, reflexivity and transitivity.

As | = ror | > rforall | - r € K, we obtain u; (- U >) tit1 by
stability under substitutions.

So we get an infinite (7~ U >)-sequence containing infinitely many
—-steps (since every DP in K, in particular the one for which [> r
holds, is used infinitely often).

By compatibility of -~ and >, we can transform this into an infinite
>—-sequence, contradicting well-foundedness. O]

500

Reduction Pairs and Argument Filterings

The idea can be extended to SCCs in the same way as for the
subterm criterion:

Search for a reduction pair (27, >) such that / zZ r for all

| - re Rand /2 ror /> rforall DPs/ — r in the SCC.
Delete all DPs in the SCC for which / = r. Then re-compute
SCCs for the remaining graph and re-start.

501

Reduction Pairs and Argument Filterings

Example: Consider the following TRS R from [Arts and Giesl|:

minus(x, 0) — x (1)
minus(s(x), s(y)) — minus(x, y) (2)
quot(0, s(y)) — 0 (3)
quot(s(x), s(y)) — s(quot(minus(x,y), s(y))) (4)

(R is not contained in any simplification ordering, since the
left-hand side of rule (4) is embedded in the right-hand side
after instantiating y by s(x).)

502

Reduction Pairs and Argument Filterings

R has three dependency pairs:
minus*(s(x), s(y)) — minus®(x, y) (5)
quott(s(x), s(y)) — quot*(minus(x,y),s(y)) (6)
quott(s(x), s(y)) — minus®(x, y) (7)
The dependency graph of R is

(5) & (7) —— (6)

O

503

Reduction Pairs and Argument Filterings

There are exactly two SCCs (and also two cycles). The
cycle at (5) can be handled using the subterm criterion with
m(minus*) = 1. For the cycle at (6) we can use an argument
filtering m that maps minus to 1 and leaves all other function
symbols unchanged (that is, 7(g) = [1, ..., arity(g)] for every g
different from minus.) After applying the argument filtering, we
compare left and right-hand sides using an LPO with precedence
quot > s (the precedence of other symbols is irrelevant). We
obtain / > r for (6) and |/ =~ r for (1), (2), (3), (4), so the
previous theorem can be applied.

504

DP Processors

The methods described so far are particular cases of DP

Processors:

A DP processor

(G, R)
(G, R1), -, (Go, Ry)

takes a graph G and a TRS R as input and produces a set of
pairs consisting of a graph and a TRS.

It is sound and complete if there are K-minimal infinite sequences
for G and R if and only if there are K-minimal infinite sequences

for at least one of the pairs (G;, R;).

505

DP Processors

Examples:
(G. R)
(SCC1, R), ..., (SCC,, R)
where SC(y, ..., SCC,, are the strongly conn. components of G.
(G.R)
(G\ N, R)

if there is an SCC of G and a simple projection 7 such that
(/) &> w(r) for all DPs | — r in the SCC, and N is the set of
DPs of the SCC for which (/) > «(r).

(and analogously for reduction pairs)

506

Innermost Termination

The dependency method can also be used for proving termination
of innermost rewriting: s %R t if s —-g t at position p and
no rule of R can be applied at a position strictly below p. (DP
processors for innermost termination are more powerful than
for ordinary termination, and for program analysis, innermost

termination is usually sufficient.)

507

6.4 Superposition

Goal:

Combine the ideas of superposition for first-order logic without
equality (overlap maximal literals in a clause) and Knuth-Bendix
completion (overlap maximal sides of equations) to get a

calculus for equational clauses.

508

Observation

It is possible to encode an arbitrary predicate p using a function

fp and a new constant tt:

P(ty,...,ty)
= P(ty,...,ty) ~ - fp(ty, ... ty) & tt

fp(ty, ..., ty) = tt

¢

In equational logic it is therefore sufficient to consider the case
that 1 = 0, i.e., equality is the only predicate symbol.

Abbreviation: s % t instead of = s ~ t.

509

The Superposition Calculus — Informally

Conventions:

From now on: I = () (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality
symbol.

We will first explain the ideas and motivations behind the
superposition calculus and its completeness proof. Precise
definitions will be given later.

510

The Superposition Calculus — Informally

Ground inference rules:

D'Vttt C'Vs[t]= s’

Superposition Right:
PETP 5 D'v C'vV st~ s’

Superposition Left:

D'Vttt C'Vvs[t] % s

D'V C'Vs[t'] % s’

C'Vss#s
C/

Equality Resolution:

(Note: We will need one further inference rule.)

511

The Superposition Calculus — Informally

Ordering restrictions:

Some considerations:

The literal ordering must depend primarily on the larger term
of an equation.

As In the resolution case, negative literals must be a bit larger
than the corresponding positive literals.

Additionally, we need the following property:

If s >t > u, then s % u must be larger than s =~ t.

In other words, we must compare first the larger term, then
the polarity, and finally the smaller term.

512

The Superposition Calculus — Informally

The following construction has the required properties:
Let > be a reduction ordering that is total on ground terms.

To a positive literal s ~ t, we assign the multiset {s, t},
to a negative literal s % t the multiset {s, s, t, t}.
The literal ordering >; compares these multisets using the

multiset extension of .

The clause ordering > compares clauses by comparing their
multisets of literals using the multiset extension of ;.

513

The Superposition Calculus — Informally

Ordering restrictions:

Ground inferences are necessary only if the following conditions

are satisfied:

— In superposition inferences, the left premise is smaller than
the right premise.

— The literals that are involved in the inferences are maximal

in the respective clauses
(strictly maximal for positive literals in superposition

inferences).

— In these literals, the lhs is greater than or equal to the rhs
(in superposition inferences: greater than the rhs).

514

The Superposition Calculus — Informally

Model construction:

We want to use roughly the same ideas as in the completenes
proof for superposition on first-order without equality.

But: a Herbrand interpretation does not work for equality:
The equality symbol =~ must be interpreted by equality in the
Interpretation.

515

The Superposition Calculus — Informally

Solution: Define a set E of ground equations and take
Ts(0)/E = Tx(0)/~g as the universe.

Then two ground terms s and t are equal in the interpretation,
if and only if s =g t.

If E is a terminating and confluent rewrite system R, then two

ground terms s and t are equal in the interpretation, if and only
if s gt

516

The Superposition Calculus — Informally

One problem:

In the completeness proof for the resolution calculus, the

following property holds:

If C = C’ Vv A with a strictly maximal and positive literal A
is false in the current interpretation, then adding A to the
current interpretation cannot make any literal of C’ true.

This does not hold for superposition:

Let b >~ ¢ > d.

Assume that the current rewrite system (representing the
current interpretation) contains the rule ¢ — d.

Now consider the clause b~ cV b~ d.

517

The Superposition Calculus — Informally

We need a further inference rule to deal with clauses of this
kind, either the “Merging Paramodulation” rule of Bachmair

and Ganzinger or the following “Equality Factoring” rule due to
Nieuwenhuis:

C'Vsx~t'Vsat

Equality Factoring: CVEZLY £
s~

Note: This inference rule subsumes the usual factoring rule.

518

The Superposition Calculus — Informally

How do the non-ground versions of the inference rules for
superposition look like?

Main idea as in non-equational first-order case:

Replace identity by unifiability.
Apply the mgu to the resulting clause.

In the ordering restrictions, replace > by A.

519

The Superposition Calculus — Informally

However:

As in Knuth-Bendix completion, we do not want to consider
overlaps at or below a variable position.

Consequence: there are inferences between ground instances
D6 and C@ of clauses D and C which are not ground instances
of inferences between D and C.

Such inferences have to be treated in a special way in the
completeness proof.

520

The Superposition Calculus — Formally

Until now, we have seen most of the ideas behind the
superposition calculus and its completeness proof.

We will now start again from the beginning giving precise

definitions and proofs.

Inference rules are applied with respect to the commutativity of

equality ~.

521

The Superposition Calculus — Formally

Inference rules (part 1):

Superposition Right:

Superposition Left:

D'vit~t C'Vslu]l = s’

(D"V C'Vs[t] = s')o

where ¢ = mgu(t, u) and
u 1s not a variable.

D'vit~t C'Vslu] % s

(D’ v C'Vs[t'] % s')o

where ¢ = mgu(t, u) and
u is not a variable.

522

The Superposition Calculus — Formally

Inference rules (part 2):

Equality Resolution:

Equality Factoring:

C'Vsss

C'o

where o = mgu(s, s’).

C'vs' ~t'Vsat

(C’'VtEgtVs=t)o

where o = mgu(s, s’).

523

The Superposition Calculus — Formally

Theorem 6.4:
All inference rules of the superposition calculus are correct, i.e.,
for every rule

Ch, ...,
Co

we have {Cq,..., G} E G.

Proof:
Exercise. []

524

The Superposition Calculus — Formally

Orderings:

Let > be a reduction ordering that is total on ground terms.

To a positive literal s ~ t, we assign the multiset {s, t},
to a negative literal s % t the multiset {s, s, t, t}.
The literal ordering >; compares these multisets using the

multiset extension of .

The clause ordering > compares clauses by comparing their
multisets of literals using the multiset extension of ;.

525

The Superposition Calculus — Formally

Inferences have to be computed only if the following ordering
restrictions are satisfied:

— In superposition inferences, after applying the unifier to
both premises, the left premise is not greater than or equal
to the right one.

— The last literal in each premise is maximal in the respective
premise, 1. €., there exists no greater literal
(strictly maximal for positive literals in superposition
inferences, i.e., there exists no greater or equal literal).

— In these literals, the lhs is not smaller than the rhs
(in superposition inferences: neither smaller nor equal).

526

The Superposition Calculus — Formally

Superposition Left in Detail:

D'vit~t C'Vslu] % s
(D" Vv C'Vs[t'] % s')o

where o = mgu(t, u),

u is not a variable,

to A t'o, so As'o

(t = t’)o strictly maximal in (D’ V t =~ t’)o, nothing selected

(s % s’")o maximal in (C’ Vs % s’)o or selected

527

The Superposition Calculus — Formally

Superposition Right in Detail:

D'vit~t C'Vslul = s
(D'V C'Vs[t] = s')o

where o = mgu(t, u),

u is not a variable,

to A t'o, so As'o

(t = t’)o strictly maximal in (D’ V t =~ t’)o, nothing selected

(s =~ s’)o strictly maximal in (C" Vs ~ s’)o, nothing selected

528

The Superposition Calculus — Formally

Equality Resolution in Detail:

C'Vs#s'
C'o

where o = mgu(s, s’),

(s % s’)o maximal in (C’V s = s")o or selected

529

The Superposition Calculus — Formally

Equality Factoring in Detail:

C'Vs'~=t'Vs~t
(C’'Vt#£t/Vst)o

where o = mgu(s, s’),
s'lo A t'o, so A to

(s &~ t)o maximal in (C' Vs’ ~ t' Vs~ t)o, nothing selected

530

The Superposition Calculus — Formally

A ground clause C is called redundant w.r.t. a set of ground
clauses N, if it follows from clauses in N that are smaller than C.

A clause is redundant w.r.t. a set of clauses N, if all its ground
instances are redundant w.r.t. Gg(N).

The set of all clauses that are redundant w.r.t. N is denoted by
Red(N).

N is called saturated up to redundancy, if the conclusion of

every inference from clauses in N \ Red(N) is contained in
N U Red(N).

531

Superposition: Refutational Completeness

For a set E of ground equations, Tx(0)/E is an E-interpretation
(or E-algebra) with universe {[t] | t € Tx(0) }.

One can show (similar to the proof of Birkhoff's Theorem) that
for every ground equation s ~ t we have Tx(0)/E = s ~ t if
and only if s <% t.

In particular, if E is a convergent set of rewrite rules R and

s &~ t is a ground equation, then Ts(())/R = s ~ t if and only
if s |r t. By abuse of terminology, we say that an equation or
clause is valid (or true) in R if and only if it is true in Tx(0)/R.

532

Superposition: Refutational Completeness

Construction of candidate interpretations
(Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing L.
Using induction on the clause ordering we define sets of rewrite

rules Ec and R¢ for all C € Gg(N) as follows:

Assume that Ep has already been defined for all D € Gg(N)
with D <¢ C. Then Rc = Up_ ¢ Ep.

533

Superposition: Refutational Completeness

The set Ec- contains the rewrite rule s — t, if

C’ is false in Rc U {s — t}.

s is irreducible w.r.t. Rc.

)
)
(c)
(d) C is false in Rc.
)
)
)

no negative literal is selected in C’

In this case, C is called productive. Otherwise Ec = ().

534

Superposition: Refutational Completeness

Lemma 6.5:
If Ec ={s — t} and Ep = {u — v}, then s > u if and only if
C>cD.

535

Superposition: Refutational Completeness

Corollary 6.6:
The rewrite systems R¢c and R, are convergent.

Proof:
Obviously, s = t for all rules s — t in R¢c and R..

Furthermore, it is easy to check that there are no critical pairs
between any two rules: Assume that there are rules u — v In
Ep and s — t in Ec such that v is a subterm of s. As > is a
reduction ordering that is total on ground terms, we get u < s
and therefore D <+ C and Ep € Rc. But then s would be
reducible by R¢, contradicting condition (f). O

536

Superposition: Refutational Completeness

Lemma 6.7:
If D <¢ C and Ec = {s — t}, then s > u for every term u
occurring in a negative literal in D and s > v for every term v

occurring in a positive literal in D.

537

Superposition: Refutational Completeness

Corollary 6.8:
If D € Gg(N) is true in Rp, then D is true in Ry, and R¢ for
all C =¢ D.

Proof:

If a positive literal of D is true in Rp, then this is obvious.

Otherwise, some negative literal s % t of D must be true in Rp,
hence s Jg, t. As the rules in R, \ Rp have left-hand sides that
are larger than s and t, they cannot be used in a rewrite proof
of sl t, hence s /r. t and s Jr_ t. O

538

Superposition: Refutational Completeness

Corollary 6.9:
If D= D’V u~= v is productive, then D’ is false and D is true
in R and R¢ for all C =¢ D.

Proof:
Obviously, D is true in Ry, and R¢ for all C >=¢ D.

Since all negative literals of D’ are false in Rp, it is clear that
they are false in Ry, and R¢. For the positive literals v’ ~ v/ of
D’, condition (e) ensures that they are false in Rp U {u — v}.
Since v’ < v and v/ <X u and all rules in Ry \ Rp have left-hand
sides that are larger than u, these rules cannot be used in a
rewrite proof of v’ | v/, hence v’ Jr. v/ and " Jr_ V' O

539

Superposition: Refutational Completeness

Lemma 6.10 (“Lifting Lemma"):
Let C be a clause and let # be a substitution such that C6
Is ground. Then every equality resolution or equality factoring

inference from C@ is a ground instance of an inference from C.

Proof:

Exercise. L

540

Superposition: Refutational Completeness

Lemma 6.11 (“Lifting Lemma"):
let D=D'Vu~vand C=C"V|[-]s =t betwo clauses

(without common variables) and let 6 be a substitution such
that D6 and C6 are ground.

If there is a superposition inference between D6 and C6 where
uf and some subterm of sf are overlapped, and uf does not
occur in sf at or below a variable position of s, then the

inference is a ground instance of a superposition inference from
D and C.

Proof:

Exercise. Ll

541

Superposition: Refutational Completeness

Theorem 6.12 (“Model Construction”):

Let N be a set of clauses that is saturated up to redundancy

and does not contain the empty clause. Then we have for every
ground clause CO € G (N):

(i) Eco = 0 if and only if C6 is true in Rcg.
(i) If CO is redundant w.r.t. Gx(N), then it is true in Rcy.

(iii) CO is true in Ry and in Rp for every D € Gy(N) with
D ¢ C0.

542

Superposition: Refutational Completeness

A Y -interpretation A is called term-generated, if forevery b € U4
there is a ground term t € Tx(()) such that b = A(B)(t).

543

Superposition: Refutational Completeness

Lemma 6.13:
Let N be a set of (universally quantified) ¥-clauses and let A

be a term-generated X -interpretation. Then A is a model of
Gy (N) if and only if it is a model of N.

Proof:

(=): Let A = Gg(N); let (VXC) € N.

Then A = VXC iff A(y[x; — ai])(C) =1 for all v and a;.
Choose ground terms t; such that A(v)(t;) = a;; define 6
such that x;0 = t;, then A(v[x; — a;])(C) = A(v 0 0)(C) =
A(7)(CO) = 1 since CH € Gs(N).

(«<): Let A be a model of N; let C € N and CO € Gg(N).
Then A(7)(CO) = A(y00)(C) =1since A= N. O

544

Superposition: Refutational Completeness

Theorem 6.14 (Refutational Completeness: Static View):

Let N be a set of clauses that is saturated up to redundancy.
Then N has a model if and only if N does not contain the empty
clause.

Proof:

If L € N, then obviously N does not have a model.

If L ¢ N, then the interpretation R, (thatis, Tx())/Rx) is a
model of all ground instances in Gy (N) according to part (iii) of
the model construction theorem.

As Ty (0)/R is term generated, it is a model of N. O

545

Superposition: Refutational Completeness

So far, we have considered only inference rules that add new
clauses to the current set of clauses
(corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form
No = Ny = Ny = ..., where each N;.; is obtained from N; by
adding the consequence of some inference from clauses in ;.

Under which circumstances are we allowed to delete (or simplify)
a clause during the derivation?

546

Superposition: Refutational Completeness

A run of the superposition calculus is a sequence
No = Ny No = ..., such that

(I) N,' ’: NH—lr and
(ii) all clauses in N; \ N;; 1 are redundant w.r.t. N; ;.

In other words, during a run we may add a new clause if it
follows from the old ones, and we may delete a clause, if it is

redundant w.r.t. the remaining ones.

For a run, Noo = ;5o Ni and N = U;5o (i N

The set N, of all persistent clauses is called the limit of the run.

547

Superposition: Refutational Completeness

Lemma 6.15:
If N C N’, then Red(N) C Red(N’).

Proof:
Obvious.]

548

Superposition: Refutational Completeness

Lemma 6.16:
If N/ C Red(N), then Red(N) C Red(N \ N').

Proof:

Follows from the compactness of first-order logic and the
well-foundedness of the multiset extension of the clause ordering.
[

549

Superposition: Refutational Completeness

Lemma 6.17:
Let No = Ny = Ny ... be a run.
Then Red(N;) C Red(Ny) and Red(N;) C Red(N,) for every i.

Proof:
Exercise. []

550

Superposition: Refutational Completeness

Corollary 6.18:
N; C N, U Red(N,) for every 1.

Proof:

If C € N;\ N,, then there is a kK > i such that C € N \ Ny,1,
so C must be redundant w.r.t. Ngy;.

Consequently, C is redundant w.r.t. N,.]

551

Superposition: Refutational Completeness

A run is called fair, if the conclusion of every inference from
clauses in N, \ Red(N,) is contained in some N; U Red(N;).

Lemma 6.19:

If a run is fair, then its limit is saturated up to redundancy.

Proof:

If the run is fair, then the conclusion of every inference from
non-redundant clauses in N, is contained in some N; U Red(N;),
and therefore contained in N, U Red(N,).

Hence N, is saturated up to redundancy. O

552

Superposition: Refutational Completeness

Theorem 6.20 (Refutational Completeness: Dynamic View):

Let Np = Ny = N> ... be a fair run, let N, be its limit.
Then Ny has a model if and only if 1 ¢ N,.

Proof:

(«<=): By fairness, N, is saturated up to redundancy.

If L ¢ N,, then it has a term-generated model.

Since every clause in Ny is contained in N, or redundant
w.r.t. N,, this model is also a model of Gg(N)

and therefore a model of M.

(=): Obvious, since Ny = N,.

553

Superposition: Extensions

Extensions and improvements:
simplification techniques,
selection functions (when, what),
redundancy for inferences,
constraint reasoning,

decidable first-order fragments.

554

Theory Reasoning

Superposition vs. resolution + equality axioms:

specialized inference rules,

thus no inferences with theory axioms,
computation modulo symmetry,
stronger ordering restrictions,

no variable overlaps,

stronger redundancy criterion.

555

Theory Reasoning

Similar techniques can be used for other theories:
transitive relations,
dense total orderings without endpoints,
commutativity,
associativity and commutativity,
abelian monoids,
abelian groups,

divisible torsion-free abelian groups.

556

Part 7: Outlook

Further topics in automated reasoning.

557

7.1 Satisfiability Modulo Theories (SMT)

CDCL checks satisfiability of propositional formulas.

CDCL can also be used for ground first-order formulas without
equality:

Ground first-order atoms are treated like propositional
variables.

Truth values of P(a), Q(a), Q(f(a)) are independent.

558

Satisfiability Modulo Theories (SMT)

For ground formulas with equality, independence is lost:
If b= cis true, then f(b) =~ f(c) must also be true.

Similarly for other theories, e.g. linear arithmetic: b > 5
implies b > 3.

We can still use CDCL, but we must combine it with a decision
procedure for the theory part T:

M =1 C: M and the theory axioms T entail C.

559

Satisfiability Modulo Theories (SMT)

New CDCL rules:

T-Propagate:

M N =cpcry ML N

if M =7 L where L is undefined in M and L or L occurs in N.
T-Learn:

M| N =cpcry M| NU{C}

if N =7 C and each atom of C occurs in N or M.

560

Satisfiability Modulo Theories (SMT)

T-Backjump:
M LYM || NU{C} =cpeymy ML | NU{C}

if M LM |=-C

and there is some “backjump clause” C’V L’ such that
NU{C} =+ C'"VL and M = -/,

L’ is undefined under M, and

L’ or L’ occursin N orin M L4 M.

561

7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:
read /2 becomes read : array x nat — data.
write/3 becomes write : array x nat x data — array.
Variables: x : data
Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

562

Sorted Logics

Algebras:
Instead of universe Uy, one set per sort: array 4, nat4.

Interpretations of function and predicate symbols correspond
to their declarations:

read 4 : array 4 X nat4 — datay

563

Sorted Logics

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

More difficult:
Subsorts
Overloading

Better treated via relativization:
Vxs ¢ = Vy S(y) — qb{XS —> y}

564

7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint

(positive) disjunctions:

NU{Cl\/ Cg}
NU{C} | NU{G}

if var(Cy) Nvar(G) = 0.

Split clauses are smaller and more likely to be usable for

simplification.

Splitting tree is explored using intelligent backtracking.

565

7.4 Integrating Theories into Superposition

Certain kinds of theories/axioms are
Important in practice,

but difficult for theorem provers.

So far important case: equality

but also: transitivity, arithmetic. ..

566

Integrating Theories into Superposition

ldea: Combine Superposition and Constraint Reasoning.

Superposition Left Modulo Theories:

M GVirt A Gvslu]#s
(/\1,/\2 H GGVvVGV S[t’] % S’)O‘

where o = mgu(t, u),

567

Advertisements

Interested in Bachelor/Master/PhD Thesis?

Automated Reasoning
contact Christoph Weidenbach
(MPI-INF, MPI-SWS Building, 6th floor)

Hybrid System Verification
contact Uwe Waldmann

Arithmetic Reasoning (Quantifier Elimination)
contact Thomas Sturm

568

Advertisements

Next semester:

Automated Reasoning |

Content: Integration of Theories (Arithmetic)
Lecture: Block Course

Tutorials: TBA

569

570

